首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteinase 3 (PR3), a serine proteinase which can degrade lung tissue, is present in the cystic fibrosis (CF) sputum. In the present study, PR3 protein and mRNA expression was determined in circulating neutrophils and monocytes. CF neutrophils contained similar PR3 concentrations as healthy controls and poorly expressed PR3 mRNA. In contrast, CF monocytes showed significantly higher PR3 concentrations than controls, together with an upregulation of PR3 mRNA expression especially during pulmonary exacerbation. Interestingly, antibiotic treatment fully abrogated PR3 mRNA expression and decreased PR3 protein in monocytes. Our findings highlight a potential role of monocyte-derived PR3 in CF-associated airway inflammation.  相似文献   

2.

Background

Prior microrheologic assessments of selected, microlitre plugs of cystic fibrosis (CF) sputum suggest no intrinsic rheologic abnormality. However, such analyses may not be representative of CF sputum as a whole. We therefore reassessed this question using whole sputum macrorheology. Additionally, we wished to further explore the relationships between sputum rheology, inflammation and infection.

Methods

Dynamic oscillatory macrorheometry was performed on whole expectorated sputum from stable adults with CF (n = 18) and COPD (n = 12) and induced sputum from normal controls (n = 7). Concomitant sputum inflammatory mediator levels were measured in CF and COPD samples. Sputum collected from CF subjects (n = 6) at commencement and completion of intravenous antibiotic therapy for an infective exacerbation was also assessed.

Results

CF sputum neutrophil elastase activity (NE) was significantly related to degree of sputum purulence (p = 0.049) and correlated significantly with measures of sputum viscoelasticity (r = 0.696, p = 0.008 for storage modulus G'' at 9 Hz). There were significant differences in viscoelasticity between subject groups when samples were compared irrespective of appearance/degree of sputum purulence. However, the macrorheology of mucoid CF sputum did not differ from normal sputum (eg median (range) G'' at 9 Hz 2.25 (0.79, 3.26) vs 2.04 (1.4,4.6) Pa, p = 1). In contrast, mucoid COPD samples demonstrated significantly greater viscoelasticity (G'' at 9 Hz 4.5 (2.4, 23) Pa) than sputum from both CF (p = 0.048) & normal subjects (p = 0.009). Antibiotic therapy during exacerbations was associated with significant reductions in CF sputum viscoelasticity, with mean (SD) G'' at 9 Hz decreasing from 28.5 (11.5) Pa at commencement to 6.4 (4.6) Pa on day 7 (p = 0.01).

Conclusion

The macrorheologic properties of whole, mucoid CF sputum are not different from normal, confirming the results of prior microrheologic studies. Instead, CF sputum viscoelasticity is related to secondary infection, decreases with intravenous antibiotic therapy and correlates with inflammation. In contrast, COPD sputum demonstrates inherently greater viscoelasticity, providing a novel target for potential therapeutic interventions.  相似文献   

3.

Background

Eosinophilic airway inflammation has successfully been used to tailor anti-inflammatory therapy in chronic obstructive pulmonary disease (COPD). Airway hyperresponsiveness (AHR) by indirect challenges is associated with airway inflammation. We hypothesized that AHR to inhaled mannitol captures eosinophilia in induced sputum in COPD.

Methods

Twenty-eight patients (age 58 ± 7.8 yr, packyears 40 ± 15.5, post-bronchodilator FEV1 77 ± 14.0%predicted, no inhaled steroids ≥4 wks) with mild-moderate COPD (GOLD I-II) completed two randomized visits with hypertonic saline-induced sputum and mannitol challenge (including sputum collection). AHR to mannitol was expressed as response-dose-ratio (RDR) and related to cell counts, ECP, MPO and IL-8 levels in sputum.

Results

There was a positive correlation between RDR to mannitol and eosinophil numbers (r = 0.47, p = 0.03) and level of IL-8 (r = 0.46, p = 0.04) in hypertonic saline-induced sputum. Furthermore, significant correlations were found between RDR and eosinophil numbers (r = 0.71, p = 0.001), level of ECP (r = 0.72, p = 0.001), IL-8 (r = 0.57, p = 0.015) and MPO (r = 0.64, p = 0.007) in sputum collected after mannitol challenge. ROC-curves showed 60% sensitivity and 100% specificity of RDR for >2.5% eosinophils in mannitol-induced sputum.

Conclusions

In mild-moderate COPD mannitol hyperresponsiveness is associated with biomarkers of airway inflammation. The high specificity of mannitol challenge suggests that the test is particularly suitable to exclude eosinophilic airways inflammation, which may facilitate individualized treatment in COPD.

Trial registration

Netherlands Trial Register (NTR): NTR1283  相似文献   

4.
Cystic fibrosis (CF) is associated with chronic pulmonary inflammation and progressive lung dysfunction, possibly associated with the formation of neutrophil myeloperoxidase (MPO)-derived oxidants. Expectorated sputum specimens from adult CF patients were analyzed for MPO characteristic protein modifications and found to contain large amounts of active MPO as well as high levels of protein-associated 3-chlorotyrosine and 3,3'-dityrosine, products that result from MPO activity, compared with expectorated sputum from non-CF subjects. Sputum levels of nitrite (NO(2)(-)) and nitrate (NO(3)(-)), indicating local production of nitric oxide (NO. ), were not elevated but in fact were slightly reduced in CF. However, there was a slight increase in protein-associated 3-nitrotyrosine in CF sputum compared with controls, reflecting the formation of reactive nitrogen intermediates, possibly through MPO-catalyzed oxidation of NO(2)(-). CF sputum MPO was found to contribute to oxidant-mediated cytotoxicity toward cultured tracheobronchial epithelial cells; however, peroxidase-dependent protein oxidation occurred primarily within sputum proteins, suggesting scavenging of MPO-derived oxidants by CF mucus and perhaps formation of secondary cytotoxic products within CF sputum. Our findings demonstrate the formation of MPO-derived oxidizing and possibly nitrating species within the respiratory tract of subjects with CF, which collectively may contribute to bronchial injury and respiratory failure in CF.  相似文献   

5.
Chronic endobronchial inflammation and bacterial infection are the main causes of morbidity and mortality in cystic fibrosis (CF), an autosomal recessive genetic disorder associated with improper function of chloride channels. Inflammation in CF lung is greatly amplified after Pseudomonas aeruginosa infection. In this study the relationship between P. aeruginosa status and inflammatory markers has been investigated. Seventeen CF children in acute lung exacerbation were examined. CF patients without P. aeruginosa infection were characterized by elevated activity of sputum elastase, reduced response of peripheral blood lymphocytes to PHA and significant resistance to the antiproliferative action of glucocorticoids. These parameters were normalized after antibiotic treatment. The patients with prolonged P. aeruginosa infection demonstrated extremely high levels of elastase activity and elevated amounts of sputum IL-8 and TNF-alpha. Although antibiotic treatment resulted in clinical improvement, it failed to suppress excessive immune response in the lung. The data indicate that CF patients with prolonged P. aeruginosa need the modified treatment, which should include immunomodulating drugs and protease inhibitors as well as antibacterial therapy.  相似文献   

6.
7.
In seeking more specific biomarkers of the cystic fibrosis (CF) lung inflammatory disease that would be sensitive to antibiotic therapy, we sought to evaluate the gene expression profiles of neutrophils in CF patients before treatment in comparison with non-CF healthy individuals and after antibiotic treatment. Genes involved in neutrophil-mediated inflammation, i.e. chemotaxis, respiratory burst, apoptosis, and granule exocytosis, were the targets of this study. Microarray analysis was carried out in blood and airway neutrophils from CF patients and in control subjects. A fold change (log) threshold of 1.4 and a cut-off of p<0.05 were utilized to identify significant genes. Community networks and principal component analysis were used to distinguish the groups of controls, pre- and post-therapy patients. Control subjects and CF patients before therapy were readily separated, whereas a clear distinction between patients before and after antibiotic therapy was not possible. Blood neutrophils before therapy presented 269 genes down-regulated and 56 up-regulated as compared with control subjects. Comparison between the same patients before and after therapy showed instead 44 genes down-regulated and 72 up-regulated. Three genes appeared to be sensitive to therapy and returned to “healthy” condition: phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1), hydrogen voltage-gated channel 1 (HVCN1), and β-arrestin 1 (ARRB1). The up-regulation of these genes after therapy were confirmed by real time PCR. In airway neutrophils, 1029 genes were differentially expressed post- vs pre-therapy. Of these, 30 genes were up-regulated and 75 down-regulated following antibiotic treatment. However, biological plausibility determined that only down-regulated genes belonged to the gene classes studied for blood neutrophils. Finally, it was observed that commonly expressed genes showed a greater variability in airway neutrophils than that found in blood neutrophils, both before and after therapy. These results indicate more specific targets for future interventions in CF patients involving respiratory burst, apoptosis, and granule exocytosis.  相似文献   

8.

Background

Pulmonary exacerbations (PEx), frequently associated with airway infection and inflammation, are the leading cause of morbidity in cystic fibrosis (CF). Molecular microbiologic approaches detect complex microbiota from CF airway samples taken during PEx. The relationship between airway microbiota, inflammation, and lung function during CF PEx is not well understood.

Objective

To determine the relationships between airway microbiota, inflammation, and lung function in CF subjects treated for PEx.

Methods

Expectorated sputum and blood were collected and lung function testing performed in CF subjects during early (0–3d.) and late treatment (>7d.) for PEx. Sputum was analyzed by culture, pyrosequencing of 16S rRNA amplicons, and quantitative PCR for total and specific bacteria. Sputum IL-8 and neutrophil elastase (NE); and circulating C-reactive protein (CRP) were measured.

Results

Thirty-seven sputum samples were collected from 21 CF subjects. At early treatment, lower diversity was associated with high relative abundance (RA) of Pseudomonas (r = −0.67, p<0.001), decreased FEV1% predicted (r = 0.49, p = 0.03) and increased CRP (r = −0.58, p = 0.01). In contrast to Pseudomonas, obligate and facultative anaerobic genera were associated with less inflammation and higher FEV1. With treatment, Pseudomonas RA and P. aeruginosa by qPCR decreased while anaerobic genera showed marked variability in response. Change in RA of Prevotella was associated with more variability in FEV1 response to treatment than Pseudomonas or Staphylococcus.

Conclusions

Anaerobes identified from sputum by sequencing are associated with less inflammation and higher lung function compared to Pseudomonas at early exacerbation. CF PEx treatment results in variable changes of anaerobic genera suggesting the need for larger studies particularly of patients without traditional CF pathogens.  相似文献   

9.

Background

Phosphodiesterase 4 (PDE4) inhibitors increase intracellular cyclic adenosine monophosphate (cAMP), leading to regulation of inflammatory cell functions. Roflumilast is a potent and targeted PDE4 inhibitor. The objective of this study was to evaluate the effects of roflumilast on bronchoconstriction, airway hyperresponsiveness (AHR), and airway inflammation in mild asthmatic patients undergoing allergen inhalation challenge.

Methods

25 subjects with mild allergic asthma were randomized to oral roflumilast 500 mcg or placebo, once daily for 14 days in a double-blind, placebo-controlled, crossover study. Allergen challenge was performed on Day 14, and FEV1 was measured until 7 h post challenge. Methacholine challenge was performed on Days 1 (pre-dose), 13 (24 h pre-allergen), and 15 (24 h post-allergen), and sputum induction was performed on Days 1, 13, 14 (7 h post-allergen), and 15.

Results

Roflumilast inhibited the allergen-induced late phase response compared to placebo; maximum % fall in FEV1 (p = 0.02) and the area under the curve (p = 0.01). Roflumilast had a more impressive effect inhibiting allergen-induced sputum eosinophils, neutrophils, and eosinophil cationic protein (ECP) at 7 h post-allergen (all p = 0.02), and sputum neutrophils (p = 0.04), ECP (p = 0.02), neutrophil elastase (p = 0.0001) and AHR (p = 0.004) at 24 h post-allergen.

Conclusions

This study demonstrates a protective effect of roflumilast on allergen-induced airway inflammation. The observed attenuation of sputum eosinophils and neutrophils demonstrates the anti-inflammatory properties of PDE4 inhibition and supports the roles of both cell types in the development of late phase bronchoconstriction and AHR.

Trial Registration

ClinicalTrials.gov: NCT01365533
  相似文献   

10.

Background

Cystic fibrosis (CF) is an autosomal recessive disorder characterized by a chronic neutrophilic airways inflammation, increasing levels of oxidative stress and reduced levels of antioxidants such as glutathione (GSH). Gamma-glutamyltransferase (GGT), an enzyme induced by oxidative stress and involved in the catabolism of GSH and its derivatives, is increased in the airways of CF patients with inflammation, but the possible implications of its increase have not yet been investigated in detail.

Principal Findings

The present study was aimed to evaluate the origin and the biochemical characteristics of the GGT detectable in CF sputum. We found GGT activity both in neutrophils and in the fluid, the latter significantly correlating with myeloperoxidase expression. In neutrophils, GGT was associated with intracellular granules. In the fluid, gel-filtration chromatography showed the presence of two distinct GGT fractions, the first corresponding to the human plasma b-GGT fraction, the other to the free enzyme. The same fractions were also observed in the supernatant of ionomycin and fMLP-activated neutrophils. Western blot analysis confirmed the presence of a single band of GGT immunoreactive peptide in the CF sputum samples and in isolated neutrophils.

Conclusions

In conclusion, our data indicate that neutrophils are able to transport and release GGT, thus increasing GGT activity in CF sputum. The prompt release of GGT may have consequences on all GGT substrates, including major inflammatory mediators such as S-nitrosoglutathione and leukotrienes, and could participate in early modulation of inflammatory response.  相似文献   

11.
Thioredoxin (Trx) decreases viscosity of cystic fibrosis (CF) sputum. In this study reduced Trx increased the solubility and decreased the size of MUC5B glycoprotein while reducing disulfide bonds in sputum. Because Trx used as a mucolytic would enter airways, this study determined the effects of intratracheal instillation of reduced recombinant human thioredoxin (rhTrx) in naïve rat airways. Reduced rhTrx increased neutrophils and the cytokines TNFα, CINC2β, and MIP3α in airways after 4 h. The effect of rhTrx was concentration-dependent. Exposure to saline, human serum albumin, or oxidized rhTrx at equal molarities did not increase airway neutrophils or cytokines. Instilling CF sputum (50 μl) into the lung before reduced rhTrx delivery attenuated these responses. This suggests that rhTrx reduces disulfide bonds present in CF sputum, limiting the reduction of other lung constituents. Together these findings indicate that the chemotactic and cytokine responses are due to the reducing potential of rhTrx and that the potential for inflammation in non-CF and CF patients given aerosolized rhTrx may differ. In parallel studies, increased amounts of the p65 subunit of NF-κB were present in nuclear extracts from rat lungs administered reduced rhTrx, suggesting a role for NF-κB in these proinflammatory responses.  相似文献   

12.
Epidemiologic studies suggest that dietary vitamin E is an important candidate intervention for asthma. Our group has shown that daily consumption of vitamin E (γ-tocopherol, γT) has anti-inflammatory actions in both rodent and human phase I studies. The objective of this study was to test whether γT supplementation could mitigate a model of neutrophilic airway inflammation in rats and in healthy human volunteers. F344/N rats were randomized to oral gavage with γT versus placebo, followed by intranasal LPS (20 μg) challenge. Bronchoalveolar lavage fluid and lung histology were used to assess airway neutrophil recruitment. In a phase IIa clinical study, 13 nonasthmatic subjects completed a double-blinded, placebo-controlled crossover study in which they consumed either a γT-enriched capsule or a sunflower oil placebo capsule. After 7 days of daily supplementation, they underwent an inhaled LPS challenge. Induced sputum was assessed for neutrophils 6 h after inhaled LPS. The effect of γT compared to placebo on airway neutrophils post-LPS was compared using a repeated-measures analysis of variance. In rats, oral γT supplementation significantly reduced tissue infiltration (p<0.05) and accumulation of airway neutrophils (p<0.05) that are elicited by intranasal LPS challenge compared to control rats. In human volunteers, γT treatment significantly decreased induced sputum neutrophils (p=0.03) compared to placebo. Oral supplementation with γT reduced airway neutrophil recruitment in both rat and human models of inhaled LPS challenge. These results suggest that γT is a potential therapeutic candidate for prevention or treatment of neutrophilic airway inflammation in diseased populations.  相似文献   

13.
BACKGROUND: Although myeloperoxidase (MPO) and adenosine-deaminase (ADA) levels are markers of activated leukocytes, both enzymes have not been currently addressed in inflammation models. AIMS: This study evaluates whether the concentrations of these enzymes are significantly correlated with the content of leukocytes in a pleurisy model. METHODS: The pleurisy was induced by carrageenan (1%) in mice, and the parameters analyzed 4 and 48 h after. RESULTS: After the induction of inflammation (4h), MPO and ADA levels peaked in parallel to neutrophils (p<0.01). Regarding the second phase of pleurisy (48 h), the highest concentrations of ADA were detected in parallel to the highest levels of mononuclears (p<0.01). At this time, MPO levels and neutrophils remained elevated, although at lower levels than those found at 4 h. A significant positive correlation was found among neutrophiLs and MPO, and mononuclears and ADA (p<0.01). CONCLUSIONS: These findings support the evidence that both enzymes are markers of the inflammatory process, and provide new tools for a better understanding of the immunoregulatory pathways that occur in inflammation.  相似文献   

14.
Patients with cystic fibrosis (CF) develop chronic Pseudomonas aeruginosa lung infection with mucoid strains of P. aeruginosa; these infections cause significant morbidity. The immunological response in these infections is characterized by an influx of neutrophils to the lung and subsequent lung damage over time; however, the underlying mediators to this response are not well understood. We recently reported that IL-23 and IL-17 were elevated in the sputum of patients with CF who were actively infected with P. aeruginosa; however, the importance of IL-23 and IL-17 in mediating this inflammation was unclear. To understand the role that IL-23 plays in initiating airway inflammation in response to P. aeruginosa, IL-23p19(-/-) (IL-23 deficient) and wild-type (WT) mice were challenged with agarose beads containing a clinical, mucoid isolate of P. aeruginosa. Levels of proinflammatory cytokines, chemokines, bacterial dissemination, and inflammatory infiltrates were measured. IL-23-deficient mice had significantly lower induction of IL-17, keratinocyte-derived chemokine (KC), and IL-6, decreased bronchoalveolar lavage (BAL) neutrophils, metalloproteinase-9 (MMP-9), and reduced airway inflammation than WT mice. Despite the reduced level of inflammation in IL-23p19(-/-) mice, there were no differences in the induction of TNF and interferon-gamma or in bacterial dissemination between the two groups. This study demonstrates that IL-23 plays a critical role in generating airway inflammation observed in mucoid P. aeruginosa infection and suggests that IL-23 could be a potential target for immunotherapy to treat airway inflammation in CF.  相似文献   

15.
The severity of cystic fibrosis (CF) pulmonary disease is not directly related to CFTR genotype but depends upon several parameters, including neutrophil-dominated inflammation. Identification of agents modulating inflammation constitutes a relevant goal. Myeloperoxidase (MPO) is involved in both microbicidal and proinflammatory neutrophil activities. The aim of this study was to evaluate whether the -463GA MPO promoter polymorphism is linked to clinical severity of CF-associated pulmonary inflammation. This polymorphism significantly affects the level of MPO gene expression in leukocytes and the G allele is more expressing than the A allele. We show that MPO genotype significantly influences the severity of pulmonary disease in early stages, prior to the development of chronic lung infections, with GG genotype being associated with more severe CF disease. Our findings indicate that the level of MPO gene expression influences the CF pathogenesis, presumably reflecting cellular damage by MPO-generated oxidants or other activity of MPO in airway inflammation.  相似文献   

16.

Background

TNFα may contribute to the pathophysiology of airway inflammation. For example, we have recently shown that nasal administration of TNFα produces late phase co-appearance of granulocyte and plasma exudation markers on the mucosal surface. The objective of the present study was to examine indices of granulocyte presence and activity in response to intranasal TNFα challenge.

Methods

Healthy subjects and patients with allergic rhinitis (examined out of season) were subjected to nasal challenge with TNFα (10 μg) in a sham-controlled and crossover design. Nasal lavages were carried out prior to and 24 hours post challenge. Nasal biopsies were obtained post challenge. Nasal lavage fluid levels of myeloperoxidase (MPO) and eosinophil cationic protein (ECP) were analyzed as indices of neutrophil and eosinophil activity. Moreover, IL-8 and α2-macroglobulin were analyzed as markers of pro-inflammatory cytokine production and plasma exudation. Nasal biopsy numbers of neutrophils and eosinophils were monitored.

Results

Nasal lavage fluid levels of MPO recorded 24 hours post TNFα challenge were increased in healthy subjects (p = 0.0081) and in patients with allergic rhinitis (p = 0.0081) (c.f. sham challenge). Similarly, α2-macroglobulin was increased in healthy subjects (p = 0.014) and in patients with allergic rhinitis (p = 0.0034). Lavage fluid levels of ECP and IL-8 were not affected by TNFα challenge. TNFα increased the numbers of subepithelial neutrophils (p = 0.0021), but not the numbers of eosinophils.

Conclusion

TNFα produces a nasal inflammatory response in humans that is characterised by late phase (i.e., 24 hours post challenge) neutrophil activity and plasma exudation.  相似文献   

17.
Cystic fibrosis (CF) is characterized by defective mucociliary clearance and chronic airway infection by a complex microbiota. Infection, persistent inflammation and periodic episodes of acute pulmonary exacerbation contribute to an irreversible decline in CF lung function. While the factors leading to acute exacerbations are poorly understood, antibiotic treatment can temporarily resolve pulmonary symptoms and partially restore lung function. Previous studies indicated that exacerbations may be associated with changes in microbial densities and the acquisition of new microbial species. Given the complexity of the CF microbiota, we applied massively parallel pyrosequencing to identify changes in airway microbial community structure in 23 adult CF patients during acute pulmonary exacerbation, after antibiotic treatment and during periods of stable disease. Over 350,000 sequences were generated, representing nearly 170 distinct microbial taxa. Approximately 60% of sequences obtained were from the recognized CF pathogens Pseudomonas and Burkholderia, which were detected in largely non-overlapping patient subsets. In contrast, other taxa including Prevotella, Streptococcus, Rothia and Veillonella were abundant in nearly all patient samples. Although antibiotic treatment was associated with a small decrease in species richness, there was minimal change in overall microbial community structure. Furthermore, microbial community composition was highly similar in patients during an exacerbation and when clinically stable, suggesting that exacerbations may represent intrapulmonary spread of infection rather than a change in microbial community composition. Mouthwash samples, obtained from a subset of patients, showed a nearly identical distribution of taxa as expectorated sputum, indicating that aspiration may contribute to colonization of the lower airways. Finally, we observed a strong correlation between low species richness and poor lung function. Taken together, these results indicate that the adult CF lung microbiome is largely stable through periods of exacerbation and antibiotic treatment and that short-term compositional changes in the airway microbiota do not account for CF pulmonary exacerbations.  相似文献   

18.
Impaired microvascular function during myocardial ischemia and reperfusion is associated with recruitment of polymorphonuclear neutrophils (PMN) and has been attributed to decreased bioavailability of nitric oxide (NO). Whereas myeloperoxidase (MPO), a highly abundant, PMN-derived heme protein facilitates oxidative NO consumption and impairs vascular function in animal models of acute inflammation, its capacity to function in this regard during human myocardial ischemia and reperfusion remains unknown. Plasma samples from 30 consecutive patients (61 +/- 14 years, 80% male) presenting with acute myocardial infarction were collected 9 +/- 4 h after vessel recanalization and compared to plasma from healthy control subjects (n = 12). Plasma levels of MPO were higher in patients than in control subjects (1.4 +/- 0.9 vs 0.3 +/- 0.2 ng/mg protein, respectively, p < 0.0001). The addition of hydrogen peroxide to patient plasma resulted in accelerated rates of NO consumption compared to control subjects (0.53 +/- 0.25 vs 0.068 +/- 0.039 nM/s/mg protein, respectively, p < 0.0001). Myocardial tissue from patients with the same pathology revealed intense recruitment of MPO-positive PMN localized along infarct-related vessels as well as diffuse endothelial distribution of non-PMN-associated MPO immunoreactivity. Endothelium-dependent microvascular function, as assessed by an acetylcholine-dependent increase in forearm blood flow in 75 patients with symptomatic coronary artery disease, inversely correlated with MPO plasma levels (r = -0.75, p < 0.005). Plasma from patients undergoing myocardial reperfusion contained increased levels of MPO, which catalytically consumed NO in the presence of H(2)O(2). Given the correlation between intravascular MPO levels and forearm vasomotor function in patients with coronary artery disease, MPO appears to be an important modulator of vasomotor function in inflammatory vascular disease and a potential therapeutic target for treatment.  相似文献   

19.
BACKGROUND: The model of pleurisy induced by carrageenan exhibits a biphasic response (4 and 48 h) and permits the quantification of exudate, cell migration and certain enzymes such as myeloperoxidase (MPO) and adenosine-deaminase (ADA) that are markers of activated leukocytes. AIMS: The present study evaluates whether there exists, in the pleurisy model, a significant inhibition of ADA and MPO enzymes, leukocyte kinetics and other markers of inflammation [nitric oxide (NO) levels, exudation] caused by methotrexate treatment by the intraperitoneal (i.p.) route. METHODS: The pleurisy was induced by carrageenan (1%) in mice, and the parameters were analyzed 4 and 48 h after. RESULTS: After the induction of inflammation (4 h), methotrexate (20 mg/kg, i.p., 24 h before pleurisy induction) inhibited the leukocyte infiltration (p < 0.05), NO levels and MPO activity (p < 0.01), but not ADA activity and fluid leakage (p > 0.05). Regarding the second phase of pleurisy (48 h), methotrexate (40 mg/kg, i.p., 0.5 h before pleurisy induction) inhibited the leukocyte infiltration (p < 0.05), fluid leakage, NO levels (p < 0.01), and ADA and MPO activity (p < 0.05). CONCLUSIONS: These findings support the evidence that the acute administration of methotrexate has an important systemic anti-inflammatory activity in the studied inflammatory model. This effect was due to a significant inhibition on both neutrophil and mononuclear cells, being less marked in relation to exudation 48 h after. In relation to the enzymes studied and to NO levels, the findings support the evidence that methotrexate inhibits both enzymes (MPO and ADA) from leukocytes at the site of injury, thus reflecting the activation of both neutrophils and lymphocytes, respectively. Furthermore, the inhibiting effect on NO in both phases of pleurisy induced by carrageenan (4 and 48 h) indicates that methotrexate acts on constitutive and/or inducible NO synthases by means of different cells of the pleural cavity.  相似文献   

20.
Chronic graft-versus-host disease (cGVHD) is a common side effect of allogeneic stem cell transplantation and a major cause of morbidity and mortality in affected patients. Especially skin, eyes and oral mucosa are affected. This can lead to pain and functional impairment. Extracorporeal photopheresis (ECP) is an effective immunomodulatory therapy with minimal side effects but its mode of action is still largely unknown. The objective of the present study was to examine the effects of ECP on neutrophil granulocytes in patients with cGVHD. Analysis of leukocytes from cGVHD patients obtained from the ECP device during treatment showed that neutrophil granulocytes account for the majority of cells treated during ECP. Neutrophils from healthy donors treated in vitro with 8-methoxypsoralen and UVA light as well as neutrophils from buffy coats of patients with cGVHD treated by ECP showed increased apoptosis and decreased half-life. In remaining non-apoptotic cells chemoirradiation resulted in loss of activation markers and reduced effector functions. This was accompanied by an increase in extracellular arginase-1 activity. Additional comparison of neutrophils isolated from blood of cGVHD patients before and 24h after ECP revealed a decreased half-life and reduction of effector functions of post-ECP neutrophils ex vivo. These observations strongly suggest that ECP induces both apoptosis and physiological changes in neutrophils and that these changes also take place in vivo. This study is the first to show that ECP modulates apoptosis and inflammatory activity in neutrophil granulocytes, indicating that neutrophils may significantly contribute to the overall immunomodulatory effects attributed to this treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号