首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《The Journal of cell biology》1992,118(6):1501-1510
Thrombin stimulates cultured endothelial cells (EC) to secrete stored von Willebrand factor (vWF), but the signal transduction pathways are poorly defined. Thrombin is known to elevate the concentration of intracellular calcium ([Ca2+]i) and to activate protein kinase C (PKC) in EC. Since both calcium ionophores and phorbol esters release vWF, both second messenger pathways have been postulated to participate in vWF secretion in response to naturally occurring agonists. We find that in intact human EC, vWF secretion stimulated by either thrombin or by a thrombin receptor activating peptide, TR(42-55), can be correlated with agonist-induced elevations of [Ca2+]i. Further evidence implicating calcium in the signal transduction pathway is suggested by the finding that MAPTAM, a cell-permeant calcium chelator, in combination with the extracellular calcium chelator EGTA, can inhibit thrombin-stimulated secretion. In contrast, the observation that staurosporine (a pharmacological inhibitor of PKC) blocks phorbol ester- but not thrombin-stimulated secretion provides evidence against PKC-mediated signal transduction. To examine further the signal transduction pathway initiated by thrombin, we developed novel conditions for minimal permeabilization of EC with saponin (4-8 micrograms/ml for 5-15 min at 37 degrees C) which allow the introduction of small extracellular molecules without the loss of large intracellular proteins and which retain thrombin-stimulated secretion. These minimally permeabilized cells secrete vWF in response to exogenous calcium, and EGTA blocks thrombin-induced secretion. Moreover, in these cells, thrombin- stimulated secretion is blocked by a calmodulin-binding inhibitory peptide but not by a PKC inhibitory peptide. Taken together, these findings demonstrate that thrombin-stimulated vWF secretion is transduced by a rise in [Ca2+]i and provide the first evidence for the role of calmodulin in this process.  相似文献   

3.
Major histocompatibility complex (MHC) class II antigen expression has been implicated in the pathogenesis of autoimmune type 1 diabetes. In this study we examined the role of various cytoldnes that may induce MHC class II surface antigen expression, using the rat insulinoma line RIN-5AH as a pertinent model system. As in another study, the ability of IFN-gamma to amplify MHC class II antigen expression 4-fold is demonstrated. At the same time we noted a 5-fold increase of these histocompatibility antigens by IL-6. Signal transduction analysis reveals that IL-6-induced MHC class II expression is specifically mediated by the G-protein system (activation of p21(ras) by IL-6) since mevalonic acid lactone (a Gprotein inhibitor) abolishes the action of IL-6. In contrast, IFN-gamma, which does not activate p21(ras), is not inhibited by protein kinase C (PKC) inhibitors but by those of the G-protein pathway. This finding raises the possibility that IFN-gamma induces RIN cells to secrete IL-6 (as shown previously, as well as in this paper) which, in turn, increases class II antigen expression via the G-protein pathway. This action may be unique to IL-6 or in synergy with IFN-gamma. Other cytokines such as IL-1alpha and beta, and TNF-alpha induce a smaller increase in MHC class II antigens on RIN cells, and appear to activate both the G-protein and the PKC signal transduction pathways to varying degrees. Therefore, injury of pancreatic beta-cells and possible induction of autoimmune type 1 diabetes via various cytokines may be caused by IL-6 or IFN-gamma, or by their ability to induce MHC class II antigen upregulation.  相似文献   

4.
Cross-linking of surface Ig has been shown to stimulate phosphatidylinositol hydrolysis in murine B cells, leading to increases in [Ca2+]i and activation of protein kinase C (PKC). Preliminary evidence suggests that a similar activation mechanism occurs in human B cells. We wished to examine whether anti-Ig antibody-stimulated human B cell proliferation is as dependent upon the presence of PKC as is anti-Ig-mediated murine B cell proliferation. Using highly purified, small, dense peripheral-blood B lymphocytes from healthy adult donors, we confirmed that PMA, a direct activator of PKC, is a potent mitogen for human B cells that synergizes with anti-mu antibody. Furthermore, we demonstrated that PMA treatment abolishes detectable cellular stores of immunoreactive PKC. However, after such depletion of cellular PKC, anti-mu antibody is still capable of delivering a proliferative signal to human B cells. It is unlikely that this signal occurs solely on the basis of increases in [Ca2+]i, because the calcium ionophore A23187 does not induce a proliferative response in PMA-treated B cells similar in magnitude to that seen with anti-mu. Additionally, the finding that pretreatment of B cells with PMA ablates the ability of anti-Ig antibody to mobilize intracellular and extracellular calcium also suggests that the ability of PMA to enhance anti-Ig mediated stimulation does not depend on elevations of [Ca2+]i induced by anti-Ig. Together, these observations suggest that anti-Ig signaling of human B cells may occur via other pathways in addition to the phosphatidylinositol system of calcium influx and PKC activation.  相似文献   

5.
The placenta, one of the most important fetal tissues during gestation, ensures nutrition, development and protection of the fetus. Although placenta lacks expression of class II MHC antigens, they can be induced either by interferon-gamma (IFN-gamma) on the spongiotrophoblast zone, or by 5-azacytidine (5-azaC) on the labyrinthine trophoblast zone, two agents actively participating in a plethora of immunological and inflammatory reactions. This induction is correlated with fetal abortion and fetal developmental abnormalities. In this work the in vitro and in vivo signal transduction pathways followed by IFN-gamma or 5-azaC to induce class H antigen expression on placental cells by using specific pathway inhibitors has been studied. It is shown that at least three intracellular pathways are implicated in the Ia induction, p21(ras) is the first protein activated by the two agents while further signalling requires Ca(2+) mobilization and PKC activations. When the in vitro results are transferred to live animals using the same inducing agents and pathway inhibitors, it is found that theophylline (Ca(2+)/CaM inhibitor) and anti-p21(ras) are the most potent suppressors of the IFN-gamma- and 5-azaC-induced side effects during pregnancy. The data presented here point to novel directions not only as to the intracellular signalling, but also to the use of pathway inhibitors in vivo to treat aberrant antigen expression associated with fetal loss.  相似文献   

6.
Bovine leukemia virus (BLV) is the etiologic agent of enzootic bovine leukosis. The virus adopts a strategy based on the lack of viral expression in vivo; only very rare BLV-infected B lymphocytes express viral information. When the cells are isolated from animals in persistent lymphocytosis and cultivated ex vivo, a tremendous increase in viral expression occurs. To gain insight into this mechanism, we employed a general approach using chemicals that interfere specifically with cellular pathways involved in signal transduction from the cell membrane to the nucleus. Our data demonstrate that BLV expression is not correlated with the activity of protein kinase A (PKA) and is even inhibited by cyclic AMP (cAMP). The cAMP/PKA pathway is thus apparently not involved in ex vivo viral expression. In contrast, PKC appears to play a key role in this process. Phorbol myristate acetate can directly activate viral expression in B cells (in the absence of T cells). Furthermore, calphostin C, a highly specific inhibitor of PKC, partly decreases ex vivo BLV expression. Our data further demonstrate that calmodulin and calcineurin, a calmodulin-dependent phosphatase, play a key role in the induction of viral expression. The involvement of this calmodulin-dependent pathway could explain the induction of expression that cannot be assigned to PKC. Furthermore, it appears that the activation of viral expression requires a calmodulin but not a PKA-dependent pathway. These data highlight major differences between transient transfection and ex vivo experiments. Finally, despite their homologies, BLV and human T-cell leukemia virus appear to use different signal transduction pathways to induce viral expression.  相似文献   

7.
Hyaluronan accumulation in the retroorbital connective tissue is one of the pathological features of Graves' ophthalmopathy. Interleukin-1beta (IL-1beta) is known to stimulate hyaluronan synthesis in orbital fibroblasts. In the present study, the intracellular signal transduction pathways involved in this stimulatory effect were investigated in cultured human retroorbital fibroblasts from patients with Graves' ophthalmopathy. IL-1beta-induced hyaluronan synthesis was significantly inhibited by pretreatment of the cells with two protein kinase C (PKC) inhibitors, chlerythrine chloride and H-7. In addition, treatment with phorbol 12-myristate 13-acetate (PMA), a direct PKC activator, also resulted in increased hyaluronan production. IL-1beta- or PMA-stimulated hyaluronan synthesis was blocked by the protein synthesis inhibitor, cycloheximide. Moreover, the intracellular Ca(2+) concentration of the orbital fibroblasts was also involved in the IL-1beta induced transduction pathway, the effect being completely inhibited by BAPTA, an internal calcium chelator. In addition, A23187, a calcium ionophore, increased hyaluronan synthesis in unstimulated cells. These results suggest that the Ca(2+)-dependent PKC signal transduction pathway plays an important role in the IL-1beta-induced hyaluronan synthesis. Moreover, IL-1beta treatment resulted in increased PKC activity and the rapid translocation of PKC betaII from the cytoplasm to the plasma membrane. These results indicate that cytosolic Ca(2+) and PKC betaII are involved in IL-1beta-induced hyaluronan synthesis in cultured orbital fibroblasts from patients with Graves' ophthalmopathy.  相似文献   

8.
We have previously demonstrated that the low number of interleukin-4 receptors (IL-4Rc) on HL-60 leukemia cells render this population susceptible to differentiation by IL-4. As it occurs with normal human monocytes, IL-4 induces the expression of HLA-DR surface antigens on HL-60 cells as well. The second messenger pathway(s) involved after the IL-4 stimulation leading to class II up-regulation has not been fully examined. Here we show that IL-4-induced class II antigen expression on the HL-60 cell line or normal human monocytes is calcium/calmodulin-independent since theophylline (TPH, a calmodulin inhibitor) does not block the IL-4 effect. In addition, the pyruvate kinase C (PKC) pathway does not seem to participate in the process either because in our system activation of PKC by 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) is insufficient by itself to induce HLA-DR. We found, however, that a second messenger pathway can be mediated by a G protein system since IL-4 concomitantly induces class II and p21ras expression which can be successfully blocked by a highly specific anti-p21ras monoclonal antibody. In addition, using another p21ras inducer, the 5-azacytidine C (5-AzaC), we showed that this agent can also induce the expression of p21ras and class II, both of which can be inhibited by the same antibody. Thus, it appears that IL-4 selects the G protein system as a signaling pathway in order to exert its action for the induction of HLA-DR on human normal monocytes or M2 leukemia target cells. Since monocytes and macrophages participate in virtually all immune reactions, the regulation of class II induction is of obvious importance.  相似文献   

9.
10.
11.
Transforming growth factor-beta 1 (TGF-beta 1) regulates the expression of the carcinoembryonic antigen (CEA) gene family in the human colon carcinoma cell line Moser. The mechanisms through which it acts, however, are unknown. In this communication, several lines of evidence are presented to show that the induction of CEA expression and secretion (collectively called CEA responses) by TGF-beta 1 is associated with protein kinase C (PKC) pathway of signal transduction. Treatment of intact cells with the PKC-specific inhibitor calphostin C down-modulated cellular PKC phosphotransferase activity and blocked the induction of the CEA responses by TGF-beta 1. Depletion of PKC by treatment of intact cells with phorbol ester also blocked the action of TGF-beta 1. The induction of the CEA responses by TGF-beta 1 was also blocked by the protein kinase inhibitor 1-(isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), which also inhibited cellular PKC activity. However, TGF-beta 1 did induce the CEA responses in intact cells treated with the calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7), the calmodulin-dependent phosphodiesterase inhibitor calmidazolium, the diacylglycerol kinase inhibitor R59 022, and the G-protein inhibitors cholera toxin and pertussis toxin. Treatment of intact cells with TGF-beta 1 induced a rapid and transient increase in PKC phosphotransferase activity. TGF-beta 1, however, was unable to induce PKC enzymatic activity in cells pretreated with calphostin C. Therefore, it is concluded that TGF-beta 1 regulates the CEA responses through a signal transducing pathway associated with PKC.  相似文献   

12.
Calcium-dependent facilitation of L-type calcium channels has been reported to depend on the function of calmodulin kinase II. In contrast, the mechanism for voltage-dependent facilitation is not clear. In HEK 293 cells expressing Ca(v)1.2, Ca(v)beta2a, and calmodulin kinase II, the calcium current measured at +30 mV was facilitated up to 1.5-fold by a 200-ms-long prepulse to +160 mV. This voltage-dependent facilitation was prevented by the calmodulin kinase II inhibitors KN93 and the autocamtide-2-related peptide. In cells expressing the Ca(v)1.2 mutation I1649E, a residue critical for the binding of Ca2+-bound calmodulin, facilitation was also abolished. Calmodulin kinase II was coimmunoprecipitated with the Ca(v)1.2 channel from murine heart and HEK 293 cells expressing Ca(v)1.2 and calmodulinkinase II. The precipitated Ca(v)1.2 channel was phosphorylated in the presence of calmodulin and Ca2+. Fifteen putative calmodulin kinase II phosphorylation sites were identified mostly in the carboxyl-terminal tail of Ca(v)1.2. Neither truncation at amino acid 1728 nor changing the II-III loop serines 808 and 888 to alanines affected facilitation of the calcium current. In contrast, facilitation was decreased by the single mutations S1512A and S1570A and abolished by the double mutation S1512A/S1570A. These serines flank the carboxyl-terminal EF-hand motif. Immunoprecipitation of calmodulin kinase II with the Ca(v)1.2 channel was not affected by the mutation S1512A/S1570A. The phosphorylation of the Ca(v)1.2 protein was strongly decreased in the S1512A/S1570A double mutant. These results suggest that voltage-dependent facilitation of the Ca(v)1.2 channel depends on the phosphorylation of Ser1512/Ser1570 by calmodulin kinase II.  相似文献   

13.
As a calcium-sensing protein, calmodulin acts as a transducer of the intracellular calcium signal for a variety of cellular responses. Although calcium is an important regulator of neuronal survival during development of the nervous system and is also implicated in the pathogenesis of neurodegenerative disorders, it is not known if calmodulin mediates these actions of calcium. To determine the role of calmodulin in regulating neuronal survival and death, we overexpressed calmodulin with mutations in all four Ca(2+)-binding sites (CaM(1-4)) or with disabled C-terminal Ca(2+)-binding sites (CaM(3,4)) in cultured neocortical neurons by adenoviral gene transfer. Long-term neuronal survival was decreased in neurons overexpressing CaM(1-4) and CaM(3,4), which could not be rescued by brain-derived neurotrophic factor (BDNF). The basal level of Akt kinase activation was decreased, and the ability of BDNF to activate Akt was completely abolished in neurons overexpressing CaM(1-4) or CaM(3,4). In contrast, BDNF-induced activation of p42/44 MAPKs was unaffected by calmodulin mutations. Treatment of neurons with calmodulin antagonists and a phosphatidylinositol 3-kinase inhibitor blocked the ability of BDNF to prevent neuronal death, whereas inhibitors of calcium/ calmodulin-dependent protein kinase II did not. Our findings demonstrate a pivotal role for calmodulin in survival signaling by BDNF in developing neocortical neurons by activating a transduction pathway involving phosphatidylinositol 3-kinase and Akt. In addition, our findings show that the C-terminal Ca(2+)-binding sites are critical for calmodulin-mediated cell survival signaling.  相似文献   

14.
A high concentration of circulating low-density lipoproteins (LDL) is a major risk factor for atherosclerosis. Native LDL and LDL modified by glycation and/or oxidation are increased in diabetic individuals. LDL directly stimulate vascular smooth muscle cell (VSMC) proliferation; however, the mechanisms remain undefined. The extracellular signal-regulated kinase (ERK) pathway mediates changes in cell function and growth. Therefore, we examined the cellular effects of native and modified LDL on ERK phosphorylation in VSMC. Addition of native, mildly modified (oxidized, glycated, glycoxidized) and highly modified (highly oxidized, highly glycoxidized) LDL at 25 microg/ml to rat VSMC for 5 min induced a fivefold increase in ERK phosphorylation. To elucidate the signal transduction pathway by which LDL phosphorylate ERK, we examined the roles of the Ca(2+)/calmodulin pathway, protein kinase C (PKC), src kinase, and mitogen-activated protein kinase kinase (MEK). Treatment of VSMC with the intracellular Ca(2+) chelator EGTA-AM (50 micromol/l) significantly increased ERK phosphorylation induced by native and mildly modified LDL, whereas chelation of extracellular Ca(2+) by EGTA (3 mmol/l) significantly reduced LDL-induced ERK phosphorylation. The calmodulin inhibitor N-(6-aminohexyl)-1-naphthalenesulfonamide (40 micromol/l) significantly decreased ERK phosphorylation induced by all types of LDL. Downregulation of PKC with phorbol myristate acetate (5 micromol/l) markedly reduced LDL-induced ERK phosphorylation. Pretreatment of VSMC with a cell-permeable MEK inhibitor (PD-98059, 40 micromol/l) significantly decreased ERK phosphorylation in response to native and modified LDL. These findings indicate that native and mildly and highly modified LDL utilize similar signaling pathways to phosphorylate ERK and implicate a role for Ca(2+)/calmodulin, PKC, and MEK. These results suggest a potential link between modified LDL, vascular function, and the development of atherosclerosis in diabetes.  相似文献   

15.
Cordyceps sinensis (CS) mycelium stimulates steroidogenesis in MA-10 mouse Leydig tumor cells, but the mechanisms remain unclear. In this study, MA-10 cells were treated with different reagents in the presence or absence of CS (10 mg/ml) for 3 h to determine the mechanisms. Results illustrated that CS activated the Gsalpha protein subunit, but not Gialpha, to induce cell steroidogenesis. Moreover, PKA inhibitors inhibited 37% of CS-stimulated steroidogenesis, which demonstrated that CS might enhance the cAMP-PKA pathway to affect MA-10 cell steroidogenesis. Because of incomplete inhibition by PKA inhibitors, we also examined the PKC pathway. PKC inhibitor, phospholipase C inhibitor, and calmodulin antagonist blocked 35-52% of CS-stimulated steroidogenesis in MA-10 cells, strongly suggesting that CS had activated the PKC pathway. Co-treatment with PKA and PKC inhibitors abolished 61% of CS-stimulated steroid production, indicating that CS simultaneously activated PKA and PKC pathways. Moreover, CS induced the expression of steroidogenic acute regulatory (StAR) protein in dose- and time-dependent relationships, and PKA inhibitor, PKC inhibitor, or co-treatment with both inhibitors suppressed it. These data support that CS activates both PKA and PKC signal transduction pathways to stimulate MA-10 cell steroidogenesis.  相似文献   

16.
This study investigated the intracellular signal transduction regulating the appearance of HLA class I antigens on Huh 6 cells induced by interferon-gamma. The expression was blocked by a protein kinase C inhibitor, H-7, but not by a calmodulin antagonist, W-7, nor by a protein kinase A inhibitor, H-8, at low dose. The antigen expression was induced by a direct activator of protein kinase C, phorbol myristate acetate, but not by calcium ionophore A23187 nor an analog of cAMP, dbcAMP. Therefore, we concluded that protein kinase C is involved in the expression of HLA class I antigens on Huh 6 cells induced by interferon-gamma but Ca(2+)-calmodulin and cAMP are not.  相似文献   

17.
The effect of angiotensin II (Ang II) on the T- and L-type calcium currents (I(Ca)) in single ventricular heart cells of 18-week-old fetal human and 10-day-old chick embryos was studied using the whole-cell voltage clamp technique. Our results showed that in both, human and chick cardiomyocytes, Ang II (10(-7)M) increased the T-type calcium current and decreased the L-type I(Ca). The effect of Ang II on both types of currents was blocked by the AT1 peptidic antagonist, [Sar1, Ala8] Ang II (2 x 10(-7)M). Protein kinase C activator, phorbol 12,13-dibutyrate, mimicked the effect of Ang II on the T- and L-type calcium currents. These results demonstrate that in fetal human and chick embryo cardiomyocytes Ang II affects the T- and L-type Ca2+ currents differently, and this effect seems to be mediated by the PKC pathway.  相似文献   

18.
19.
Murine embryonic palate mesenchyme (MEPM) cells are responsive to a number of endogenous factors found in the local embryonic tissue environment. Recently, it was shown that activation of the cyclic AMP (cAMP) or the transforming growth factor β (TGFβ) signal transduction pathways modulates the proliferative response of MEPM cells to epidermal growth factor (EGF). Since the mitogen-activated protein kinase (MAPK) cascade is a signal transduction pathway that mediates cellular responsiveness to EGF, we examined the possibility that several signaling pathways which abrogate EGF-stimulated proliferation do so via the p42/p44 MAPK signaling pathway. We demonstrate that EGF stimulates MAPK phosphorylation and activity in MEPM cells maximally at 5 minutes. Tyrosine phosphorylation and activation of MAPK was unaffected by treatment of MEPM cells with TGFβ or cholera toxin. Similarly, TGFβ altered neither EGF-induced MAPK tyrosine phosphorylation nor activity. However, the calcium ionophore, A23187, significantly increased MAPK phosphorylation which was further increased in the presence of EGF, although calcium mobilization reduced EGF-induced proliferation. Despite the increase in phosphorylation, we could not demonstrate induction of MAPK activity by A23187. Like EGF, phorbol ester, under conditions which activate PKC isozymes in MEPM cells, increased MAPK phosphorylation and activity but was also growth inhibitory to MEPM cells. The MEK inhibitor, PD098059, only partially abrogated EGF-induced phosphorylation. Likewise, depletion of PKC isozymes partially abrogated EGF-induced MAPK phosphorylation. Inhibition of both MEK and PKC isozymes resulted in a marked decrease in MAPK activity, confirming that EGF uses multiple pathways to stimulate MAPK activity. These data indicate that the MAPK cascade does not mediate signal transduction of several agents that inhibit growth in MEPM cells, and that there is a dissociation of the proliferative response and MAP kinase activation. Furthermore, other signaling pathways known to play significant roles in differentiation of palatal tissue converge with the MAPK cascade and may use this pathway in the regulation of alternative cellular processes. J. Cell. Physiol. 176:266–280, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号