首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Lipopolysaccharide (10 micrograms/ml) was found to stimulate resident mouse peritoneal macrophages to produce leukotriene C4 (36 +/- 1.3 ng/10(6) cells, SEM, n = 20) within 16 h. Spontaneous synthesis in control cultures without lipopolysaccharide was less than 1.6 ng/10(6) cells. Leukotriene C4 was characterized by reversed-phase high-performance liquid chromatography, ultraviolet spectrometry and radioimmunoassay. When the macrophages, prelabeled with [3H]arachidonic acid, were treated with lipopolysaccharide radioactivity was incorporated into leukotriene C4. The amount produced varied with the method of macrophage preparation and incubation conditions and was dependent on the amount of lipopolysaccharide added (0.5-60 micrograms/ml), on cell counts and on the incubation time (4-16 h). The released leukotriene C4 was converted to a compound identified as a C6-cysteinylleukotriene, indicating metabolism of the leukotriene by the macrophages. Parallel determinations of prostaglandins E2 and F2 alpha by radioimmunoassay demonstrated that leukotriene C4 and prostaglandin E2 are formed by mouse peritoneal macrophages to a similar degree.  相似文献   

2.
Hypoxia alters vascular tone which regulates regional blood flow in the pulmonary circulation. Endothelial derived eicosanoids alter vascular tone and blood flow and have been implicated as modulators of hypoxic pulmonary vasoconstriction. Eicosanoid production was measured in cultured bovine pulmonary endothelial cells during constant flow and pressure perfusion at two oxygen tensions (hypoxia: 4% O2, 5% CO2, 91% N2; normoxia: 21% O2, 5% CO2, 74% N2). Endothelial cells were grown to confluence on microcarrier beads. Cell cartridges (N = 8) containing 2 ml of microcarrier beads (congruent to 5 x 10(6) cells) were constantly perfused (3 ml/min) with Krebs' solutions (pH 7.4, T 37 degrees C) equilibrated with each gas mixture. After a ten minute equilibration period, lipids were extracted (C18 Sep Pak) from twenty minute aliquots of perfusate over three hours (nine aliquots per cartridge). Eicosanoids (6-keto PGF1 alpha; TXB2; and total leukotriene [LT - LTC4, LTD4, LTE4, LTF4]) were assayed by radioimmunoassay. Eicosanoid production did not vary over time. 6-keto PGF1 alpha production was increased during hypoxia (normoxia 291 +/- 27 vs hypoxia 395 +/- 35 ng/min/gm protein; p less than 0.01). Thromboxane production (normoxia 19 +/- 2 vs hypoxia 20 +/- 2 ng/min/gm protein) and total leukotriene production (normoxia 363 +/- 35 vs hypoxia 329 +/- 29 ng/min/gm protein) did not change with hypoxia. These data demonstrated that oxygen increased endothelial prostacyclin production but did not effect thromboxane or leukotriene production.  相似文献   

3.
The prostaglandin and leukotriene synthesizing capacity of human gastrointestinal tissues obtained at surgery was investigated using radioimmunoassay for prostaglandin E2, leukotriene B4 and sulfidopeptide leukotrienes. The leukotriene immunoassay data were validated by high-pressure liquid chromatography (HPLC). During incubation at 37 degrees C, fragments of human gastric, jejuno-ileal and colonic mucosa released considerably larger amounts of prostaglandin E2 than of leukotriene B4 and sulfidopeptide leukotrienes. Gastrointestinal smooth muscle tissues released even larger amounts of prostaglandin E2, but smaller amounts of leukotrienes than the corresponding mucosal tissues. Adenocarcinoma tissue released larger amounts of leukotriene B4, sulfidopeptide leukotrienes and prostaglandin E2 than normal colonic mucosa. Ionophore A23187 (5 micrograms/ml) did not stimulate release of prostaglandin E2 from any of the tissues investigated, but enhanced release of leukotriene B4 and sulfidopeptide leukotrienes. HPLC analysis demonstrated that immunoreactive leukotriene B4 co-chromatographed almost exclusively with standard leukotriene B4, while immunoreactive sulfidopeptide leukotrienes consisted of a mixture of leukotrienes C4, D4 and E4. Leukotriene synthesis by human gastrointestinal tissues was inhibited by the lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) and the dual enzyme inhibitor BW755C (3-amino-1-(trifluoromethylphenyl)-2-pyrazoline hydrochloride). Synthesis of prostaglandin E2 was inhibited by the cyclooxygenase inhibitor indomethacin as well as by BW755C. Incubation of gastrointestinal tissues in the presence of glutathione decreased the amounts of leukotrienes D4 and E4, while release of leukotriene C4 was simultaneously increased. On the other hand, incubation of tritiated leukotriene C4 with incubation media from human gastric or colonic mucosa resulted in conversion of the substrate to [3H]leukotriene D4 and [3H]leukotriene E4. The results indicate the capacity of human gastrointestinal tissues to synthesize the 5-lipoxygenase-derived products of arachidonate metabolism, leukotriene B4 and sulfidopeptide leukotrienes, in addition to larger amounts of prostaglandin E2. Furthermore, considerable activities of the sulfidopeptide leukotriene-metabolizing enzymes gamma-glutamyl transpeptidase and dipeptidase were detected in human gastrointestinal tissues. These enzymes might play an important role in biological inactivation and/or change of biological profile of sulfidopeptide leukotrienes generated in the human gastrointestinal tract.  相似文献   

4.
We examined the effect of three daily foot-shock stress sessions on glucose homeostasis, insulin secretion by isolated pancreatic islets, insulin sensitivity of white adipocytes, and glycogen stores in the liver and soleus muscle of rats. Stressed rats had plasma glucose (128.3 +/- 22.9 mg/dL) and insulin (1.09 +/- 0.33 ng/mL) levels higher than the controls (glucose, 73.8 +/- 3.5 mg/dL; insulin, 0.53 +/- 0.11 ng/mL, ANOVA plus Fisher's test; p < 0.05). After a glucose overload, the plasma glucose, but not insulin, levels remained higher (area under the curve 8.19 +/- 1.03 vs. 4.84 +/- 1.33 g/dL 30 min and 102.7 +/- 12.2 vs. 93.2 +/- 16.1 ng/mL 30 min, respectively). Although, the area under the insulin curve was higher in stressed (72.8 +/- 9.8 ng/mL) rats than in control rats (34.9 +/- 6.9 ng/mL) in the initial 10 min after glucose overload. The insulin release stimulated by glucose in pancreatic islets was not modified after stress. Adipocytes basal lipolysis was higher (stressed, 1.03 +/- 0.14; control, 0.69 +/- 0.11 micromol of glycerol in 60 min/100 mg of total lipids) but maximal lipolysis stimulated by norepinephrine was not different (stressed, 1.82 +/- 0.35; control, 1.46 +/- 0.09 micromol of glycerol in 60 min/100 mg of total lipids) after stress. Insulin dose-dependently inhibited the lipolytic response to norepinephrine by up to 35% in adipocytes from control rats but had no effect on adipocytes from stressed rats. The liver glycogen content was unaltered by stress, but was lower in soleus muscle from stressed rats than in control rats (0.45 +/- 0.04 vs. 0.35 +/- 0.04 mg/100 mg of wet tissue). These results suggest that rats submitted to foot-shock stress develop hyperglycemia along with hyperinsulinemia as a consequence of insulin subsensitivity in adipose tissue, with no alteration in the pancreatic sensitivity to glucose. Foot-shock stress may therefore provide a useful short-term model of insulin subsensitivity.  相似文献   

5.
Recent experiments indicate that prostaglandin E2 potentiates the vasodilatory properties of leukotrienes in the skin microcirculation. The present experiments were undertaken to study the effect of leukotriene D4 and prostaglandin E2 on renal hemodynamics and urinary electrolytes in the dog. Experiments were performed in three groups of anesthetized Mongrel dogs: the first group was studied under hydropenia, whereas the two remaining groups were studied during water diuresis with (Group 3) or without indomethacin (Group 2). LTD4 (100 ng/min) and PGE2 (3 ug/min) were infused in the left renal artery to minimize systemic effects of these compounds. LTD4 alone failed to influence urinary sodium excretion in all 3 groups. In Group 1, urinary sodium increased from 77 +/- 6 to 393 +/- 74 uEq/min during PGE2, and further increased to 511 +/- 52 uEq/min during LTD4 + PGE2. No change occurred in the contralateral right kidney. In this group, glomerular filtration as well as renal plasma flow were not statistically influenced. In Group 2, the same phenomenon was observed for urinary sodium. The combined infusion of LTD4 + PGE2 increased urinary sodium without significant changes in glomerular filtration and renal plasma flow. Finally, in Group 3, indomethacin was shown to reduce the natriuretic effects of LTD4 and PGE2: during PGE2 alone, urinary sodium increased from 90 +/- 14 to 260 +/- 66 uEq/min, and only rose from 80 +/- 10 to 175 +/- 19 uEq/min during the combined infusion of LTD4 and PGE2. In groups 2 and 3, free water clearance was utilized as an index of sodium chloride reabsorption in the thick ascending limb: this parameter increased from 2.35 +/- 0.25 to 4.70 +/- 0.30 ml/min, while urinary volume was increasing from 3.55 +/- 0.25 to 10.05 +/- 0.65 ml/min, during LTD4 + PGE2. Indomethacin, administered in Group 3, (3 mg/kg/hr) again abolished the effect of combined PGE2 + LTD4. These results indicate a potentiating effect of leukotriene D4 on the PGE2-induced natriuresis in the anesthetized dog. These phenomena occurred in the absence of significant changes in renal hemodynamics, therefore suggesting a direct tubular effect of these arachidonic acid metabolites. Finally, the water diuresis experiments suggest a proximal site of action of PGE2 and LTD4.  相似文献   

6.
To determine estrogen effects on osmotic regulation of arginine vasopressin (AVP) and body fluids, we suppressed endogenous estrogen and progesterone using the gonadotropin-releasing hormone (GnRH) analog leuprolide acetate (GnRHa). Subjects were assigned to one of two groups: 1) GnRHa alone, then GnRHa + estrogen (E, n = 9, 25 +/- 1 yr); 2) GnRHa alone, then GnRHa + estrogen with progesterone (E/P, n = 6, 26 +/- 3). During GnRHa alone and with hormone treatment, we compared AVP and body fluid regulatory responses to 3% NaCl infusion (HSI, 120 min, 0.1 ml. min(-1). kg body wt(-1)), drinking (30 min, 15 ml/kg body wt), and recovery (60 min of seated rest). Plasma [E(2)] increased from 23.9 to 275.3 pg/ml with hormone treatments. Plasma [P(4)] increased from 0.6 to 5.7 ng/ml during E/P and was unchanged (0.4 to 0.6 ng/ml) during E. Compared with GnRHa alone, E reduced osmotic AVP release threshold (275 +/- 4 to 271 +/- 4 mosmol/kg, P < 0.05), and E/P reduced the AVP increase in response during HSI (6.0 +/- 1.3 to 4.2 +/- 0.6 pg/ml at the end of HSI), but free water clearance was unaffected in either group. Relative to GnRHa, pre-HSI plasma renin activity (PRA) was greater during E (0.8 +/- 0.1 vs. 1.2 +/- 0.2 ng ANG I. ml(-1). h(-1)) but not after HSI or recovery. PRA was greater than GnRHa during E/P at baseline (1.1 +/- 0.2 vs. 2.5 +/- 0.6) and after HSI (0.6 +/- 0.1 vs. 1.1 +/- 1.1) and recovery (0.5 +/- 0.1 vs. 1.3 +/- 0.2 ng ANG I. ml(-1). h(-1)). Baseline fractional excretion of sodium was unaffected by E or E/P but was attenuated by the end of recovery for both E (3.3 +/- 0.6 vs. 2.4 +/- 0.4%) and E/P (2.8 +/- 0.4 vs 1.7 +/- 0.4%, GnRHa alone and with hormone treatment, respectively). Fluid retention increased with both hormone treatments. Renal sensitivity to AVP may be lower during E due to intrarenal effects on water and sodium excretion. E/P increased sodium retention and renin-angiotensin-aldosterone stimulation.  相似文献   

7.
Oxidative stress in patients with multiple sclerosis   总被引:5,自引:0,他引:5  
It is well known that brain and nervous system cells are prone to oxidative damage because of their relatively low content of antioxidants, especially enzymatic ones, and of the high levels of both membrane polyunsaturated fatty acids (PUFA) and iron easily released from injured cells. We have investigated the oxidative stress in the blood (plasma, erythrocytes and lymphocytes) of 28 patients affected with multiple sclerosis (MS) and of 30 healthy age matched controls, by performing a multiparameter analysis of non-enzymatic and enzymatic antioxidants--Vitamin E (Vit. E), ubiquinone (UBI), reduced and oxidized glutathione (GSH, GS-SG), superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT) and fatty acid patterns of phospholipids (PL-FA). PL-FA and Vit. E were assayed by GC-MS; UBI and GSH/GS-SG by HPLC; SOD, GPX and CAT by spectrophotometry. In comparison to controls, patients with MS showed significantly reduced levels of plasma UBI (0.21 +/- 0.10 vs. 0.78 +/- 0.08 mg/ml, p < 0.001), plasma Vit. E (7.4 +/- 2.1 vs. 11.4 +/- 1.8 mg/ml, p < 0.01), lymphocyte UBI (8.1 +/- 4.0 vs. 30.3 +/- 7.2 ng/ml blood, p < 0.001) and erythrocyte GPX (22.6 +/- 5.7 vs. 36.3 +/- 6.4 U/g Hb, p < 0.001). This blood antioxidant deficiency was associated with plasma levels of PL-PUFA--especially C20:3 n-6 and C20:4 n-6--significantly higher than controls. In conclusion, the blood of patients with MS shows the signs of a significant oxidative stress. The possibility of counteracting it by antioxidant administration plus an appropriate diet, might represent a promising way of inhibiting the progression of the disease. Antioxidant supplements should include not only GSH repleting agents, but also Vit. E, ubiquinol, and selenium.  相似文献   

8.
Glycogen turnover and anaplerosis in preconditioned rat hearts   总被引:1,自引:0,他引:1  
Using (13)C NMR, we tested the hypothesis that protection by preconditioning is associated with reduced glycogenolysis during ischemia. Preconditioned rat hearts showed improved postischemic function and reduced ischemic damage relative to ischemic controls after 30 min stop-flow ischemia and 30 min reperfusion (contractility: 30+/-10 vs. 2+/-2%; creatine kinase release: 41+/-4 vs. 83+/-15 U/g; both P<0.05). Preconditioning decreased preischemic [(13)C]glycogen by 24% (a 10% decrease in total glycogen), and delayed ischemic [(13)C]glycogen consumption by 5-10 min, reducing ischemic glycogenolysis without changing acidosis relative to controls. Upon reperfusion, glycogen synthesis resumed only after preconditioning. Glutamate (13)C-isotopomer analysis showed recovery of Krebs cycle activity with higher anaplerosis than before ischemia (23+/-4 vs. 11+/-3%, P<0.05), but in controls reperfusion failed to restore flux. Compared to control, preconditioning before 20 min ischemia increased contractility (86+/-10 vs. 29+/-14%, P<0.05) and restored preischemic anaplerosis (13+/-3 vs. 39+/-9%, P<0.05). Preconditioning is associated with reduced glycogenolysis early during ischemia. However, protection does not rely on major variations in intracellular pH, as proposed earlier. Our isotopomer data suggest that preconditioning accelerates metabolic and functional recovery during reperfusion by more efficient/active replenishment of the depleted Krebs cycle.  相似文献   

9.
A method for the simultaneous single-step organic extraction from biological matrices of peptido- and dihydroxyleukotrienes as well as 5-hydroperoxy- and 5-hydroxyeicosatetraenoic acid followed by separation and quantitation in a single run on reversed-phase high-performance liquid chromatography was evaluated. Using an extraction system comprising 400/1200/4800 (v/v/v) aqueous phase/isopropanol/dichloromethane, pH 3.0, absolute recoveries of 82.3 +/- 2.0, 89.7 +/- 1.0, 93.7 +/- 1.4, 92.8 +/- 1.4, 90 +/- 4, and 90 +/- 4% for prostaglandin B1 (PGB1), leukotriene C4 (LTC4), leukotriene B4 (LTB4), leukotriene D4 (LTD4), 5-hydroperoxyeicosatetraenoic acid (5-HETE), respectively, were achieved. Separation and quantitation of products were performed on a Nucleosil 100 C18 column (5 microns, 4.6 X 250 mm) using, at pH 6.0, a gradient system comprising 72/28/0.02 (v/v/v) methanol/water/glacial acetic acid from 0 to 15 min, followed by a convex gradient to 76/24/0.02 (v/v/v) methanol/water/glacial acetic acid, followed by a 10-min hold at this methanol concentration. The method was used to investigate the profile of leukotrienes synthesized by rat hepatocyte homogenates from 5-HPETE or leukotriene A4 in absence or presence of glutathione (GSH). During a 5-min incubation with 100 microM 5-HPETE, 9.6 ng LTB4/mg protein and 2.2 micrograms 5-HETE/mg protein were formed in the absence of GSH. In the presence of 0.4 mM GSH, 3.7 ng LTB4/mg protein and 11.0 micrograms 5-HETE/mg protein were formed. Using 20 microM LTA4 as a substrate, 17.3 and 324.0 ng LTC4/mg protein X min and 14.3 and 19.3 ng LTB4/mg protein X min were formed in the presence of 0.4 and 10 mM GSH, respectively.  相似文献   

10.
The steady-state levels of prostaglandin D2, E2 and F2 alpha in the rat eye were 0.5, 0.1 and 1.0 ng/g, respectively, which increased differently among the prostaglandins after a 40-min incubation of the homogenate at 37 degrees C (to 23, 12 and 14 ng/g, respectively). When the eye was dissected into anterior uveal, scleral, and retinal complexes, prostaglandin D2 was formed in the highest degree in all the complexes, whereas prostaglandin E2 and F2 alpha formation was specific to given ocular regions. Three prostaglandin synthetase activities with similar Km values (20-40 microM) were found in the 10,000 X g supernatant of these tissues, i.e., GSH-independent and soluble D, GSH-dependent and membrane-bound E, and soluble F synthetase activities. These enzyme activities correlated well with the prostaglandin formation in each tissue. D synthetase activity being highest in all the tissues (11-25 nmol/min per g). Three types of prostaglandin-catabolizing enzyme activities were detected in the 100,000 X g supernatant of the tissues, i.e., type II 15-hydroxy dehydrogenase (Km = 10-30 microM), 9-keto (500 microM) and 11-keto reductase (2.5 mM). The activity of the dehydrogenase was low even in the retina, the tissue with the highest levels (0.51, 0.35 and 0.15 nmol/min per g for prostaglandin E2, F2 alpha and D2, respectively).  相似文献   

11.
Severe IDDM (insulin-dependent diabetes mellitus) was produced in the musk shrew (Suncus murimus, Insectivora) by a high dose (a single intraperitoneal injection of 100 mg/kg Body Weight) of streptozotocin (STZ) injection. All shrews that were administered a high dose of STZ exhibited hyperglycemia (449 +/- 16 mg/dl vs 73 +/- 4 mg/dl in controls) and hypoinsulinemia(0.25 +/- 0.07 ng/ml vs 10.96 +/- 1.97 ng/ml in controls) with ketosuria 10 days after injection. Their livers were enlarged and exhibited ayellowish-brown color with marked triglyceride (TG) accumulation (63.25 +/- 7.10 mg/g Liver vs 2.11 +/- 0.19 mg/g Liver in controls). It is probable that the increased influx of fatty acids into the liver induced by hypoinsulinemia and the low capacity of excretion of lipoprotein secretion from liver in the musk shrew resulting from a deficiency of apolipoprotein B synthesis play important roles in fatty liver formation. Hyperlipidemia was another feature in shrews with severe IDDM. The blood TG level was especially high in these shrews (899 +/- 178 mg/dl vs 23 +/- 5 mg/dl in controls). These results indicate that the IDDM shrew, induced by high doses of STZ, is a unique model characterized by fatty liver and hyperlipidemia and may be useful for studying lipid metabolism of IDDM.  相似文献   

12.
Free radical-mediated oxidant injury and lipid peroxidation have been implicated in a number of neural disorders. We have reported that bioactive prostaglandin D2/E2-like compounds, termed D2/E2-isoprostanes, are produced in vivo by the free radical-catalyzed peroxidation of arachidonic acid. Docosahexaenoic acid, in contrast to arachidonic acid, is the most abundant unsaturated fatty acid in brain. We therefore questioned whether D/E-isoprostane-like compounds (D4/E4-neuroprostanes) are formed from the oxidation of docosahexaenoic acid. Levels of putative D4/E4-neuroprostanes increased 380-fold after oxidation of docosahexaenoic acid in vitro from 15.2 +/- 6.3 to 5773 +/- 1024 ng/mg of docosahexaenoic acid. Subsequently, chemical approaches and liquid chromatography electrospray ionization tandem mass spectrometry definitively identified these compounds as D4/E4-neuroprostanes. We then explored the formation of D4/E4-neuroprostanes from a biological source, rat brain synaptosomes. Basal levels of D4/E4-neuroprostanes were 3.8 +/- 0.6 ng/mg of protein and increased 54-fold after oxidation (n = 4). We also detected these compounds in fresh brain tissue from rats at levels of 12.1 +/- 2.4 ng/g of brain tissue (n = 3) and in human brain tissue at levels of 9.2 +/- 4.1 ng/g of brain tissue (n = 4). Thus, these studies have identified novel D/E-ring isoprostane-like compounds that are derived from docosahexaenoic acid and that are formed in brain in vivo. The fact that they are readily detectable suggests that ongoing oxidative stress is present in the central nervous system of humans and animals. Further, identification of these compounds provides a rationale for examining their role in neurological disorders associated with oxidant stress.  相似文献   

13.
We investigated effects of exogenous leukotrienes (C4, D4, or E4) on levels of prostanoids in cerebrospinal fluid in newborn pigs (1-5 days). A "closed" cranial window was placed over the parietal cortex. Pial arterial diameter was measured with a microscope and electronic micrometer system. Levels in cerebrospinal fluid (CSF) of 6-keto-Prostaglandin F1 alpha (6-keto-PGF1 alpha), Thromboxane B2 (TXB2), and Prostaglandin E2 (PGE2) were measured by radioimmunoassay. Topical application of leukotrienes C4, D4, or E4 (5,000 ng/ml) similarly constricted pial arteries by 15 +/- 2% (n = 14) (mean +/- SEM). In addition, leukotrienes increased levels of 6-keto-PGF1 alpha from 806 +/- 136 to 1,612 +/- 304 pg/ml (n = 13), TXB2 from 161 +/- 31 to 392 +/- 81 pg/ml (n = 10), and PGE2 from 2,271 +/- 342 to 4,636 +/- 740 pg/ml (n = 13). Each type of leukotriene had similar effects on prostanoid synthesis. In other experiments (n = 5), we found that 2.0 ng/ml PGE2 in CSF dilated pial arteries by 24 +/- 8% and that 1.0 ng/ml PGI2 dilated pial arteries by 15 +/- 6%. These results indicate that leukotrienes are able to increase levels of prostanoids in cerebral cortex.  相似文献   

14.
To characterize the metabolic regulatory response to interruption of the enterohepatic circulation of bile acids, we examined the effects of cholestyramine treatment on the rate-limiting steps in cholesterol biosynthesis (HMG-CoA reductase) and bile acid production (cholesterol 7 alpha-hydroxylase) as well as on the heparin-sensitive binding of low density lipoproteins (LDL) (reflecting LDL receptor expression) in human liver. Altogether, 18 normolipidemic patients with uncomplicated cholesterol gallstone disease were treated with cholestyramine (8 g b.i.d.) for 2-3 weeks prior to cholecystectomy, and another 34 cholesterol gallstone patients served as untreated controls. Cholestyramine treatment stimulated cholesterol 7 alpha-hydroxylase more than sixfold, and increased both HMG-CoA reductase activity (552 +/- 60 pmol/min per mg protein vs 103 +/- 9 pmol/min per mg protein) and LDL receptor expression (6.1 +/- 0.8 ng/mg protein; n = 6 vs 2.2 +/- 0.3 ng/mg protein; n = 7). Moreover, there was a good correlation between HMG-CoA reductase activity and LDL receptor binding (rs = +0.71; n = 13), suggesting a simultaneous stimulatory effect to compensate for the increased hepatic cholesterol catabolism due to bile acid depletion caused by cholestyramine. Further evidence for this assumption was the finding of a significant relationship between cholesterol 7 alpha-hydroxylase activity and both LDL receptor expression (rs = +0.77; n = 13) and HMG-CoA reductase activity (rs = +0.76; n = 46). We conclude that in human liver a parallel stimulation of cholesterol synthesis and LDL receptor expression occurs in response to stimulation of bile acid synthesis.  相似文献   

15.
A method for the determination of prostaglandin G/H synthase and lipoxygenase activities in tissues was developed and employed with rat gastric mucosa samples. Tissues and microsomes were incubated in a buffer containing nonionic detergent and 1.32 mM arachidonic acid for 10 min. Following extraction with ethyl acetate, the oxidation products of arachidonic acid were derivatized with panacyl bromide. A reversed-phase column and a quaternary mobile phase were used to separate and quantitate the panacyl bromide esters of prostaglandin E2 and leukotriene C4/D4. Prostaglandin G/H synthase and lipoxygenase activities were determined in gastric mucosa and were 371 +/- 66 and 173 +/- pg/mg/min, respectively.  相似文献   

16.
The role of prostaglandins in the control of adrenal renin in vivo was evaluated in nephrectomized rats. Nephrectomy increased adrenal renin from 13.2 +/- 1.37 ng angiotensin I/mg protein/hr to 166.5 +/- 17.3 ng angiotensin I/mg protein/hr. Indomethacin treatment significantly suppressed the adrenal renin response to nephrectomy. (47.8 +/- 5.22 ng angiotensin I/mg protein/hr). Adrenal aldosterone was also suppressed by indomethacin. Adrenal prostaglandin E2 increased after nephrectomy and decreased after indomethacin. Plasma corticosterone and serum potassium did not change after indomethacin. These data indicate that inhibition of prostaglandin synthesis by indomethacin partially blocks the adrenal renin response to nephrectomy, suggesting that prostaglandins may play a role in the adrenal response to nephrectomy.  相似文献   

17.
We examined the contributions of insulin secretion, glucagon suppression, splanchnic and peripheral glucose metabolism, and delayed gastric emptying to the attenuation of postprandial hyperglycemia during intravenous exenatide administration. Twelve subjects with type 2 diabetes (3 F/9 M, 44 +/- 2 yr, BMI 34 +/- 4 kg/m2, Hb A(1c) 7.5 +/- 1.5%) participated in three meal-tolerance tests performed with double tracer technique (iv [3-3H]glucose and oral [1-14C]glucose): 1) iv saline (CON), 2) iv exenatide (EXE), and 3) iv exenatide plus glucagon (E+G). Acetaminophen was given with the mixed meal (75 g glucose, 25 g fat, 20 g protein) to monitor gastric emptying. Plasma glucose, insulin, glucagon, acetaminophen concentrations and glucose specific activities were measured for 6 h post meal. Post-meal hyperglycemia was markedly reduced (P < 0.01) in EXE (138 +/- 16 mg/dl) and in E+G (165 +/- 12) compared with CON (206 +/- 15). Baseline plasma glucagon ( approximately 90 pg/ml) decreased by approximately 20% to 73 +/- 4 pg/ml in EXE (P < 0.01) and was not different from CON in E+G (81 +/- 2). EGP was suppressed by exenatide [231 +/- 9 to 108 +/- 8 mg/min (54%) vs. 254 +/- 29 to189 +/- 27 mg/min (26%, P < 0.001, EXE vs. CON] and partially reversed by glucagon replacement [247 +/- 15 to 173 +/- 18 mg/min (31%)]. Oral glucose appearance was 39 +/- 4 g in CON vs. 23 +/- 6 g in EXE (P < 0.001) and 15 +/- 5 g in E+G, (P < 0.01 vs. CON). The glucose retained within the splanchnic bed increased from approximately 36g in CON to approximately 52g in EXE and to approximately 60g in E+G (P < 0.001 vs. CON). Acetaminophen((AUC)) was reduced by approximately 80% in EXE vs. CON (P < 0.01). We conclude that exenatide infusion attenuates postprandial hyperglycemia by decreasing EGP (by approximately 50%) and by slowing gastric emptying.  相似文献   

18.
W Y Chan  J C Hill 《Prostaglandins》1978,15(2):365-375
We have developed a method which can measure the menstrual prostaglandin (PG) activity in a single tampon specimen by bioassays. This method makes it possible to monitor the menstrual PG activity continuously during menstruation. Using this technique, we determined the menstrual PG patterns of two normal non-dysmenorrheic subjects, one subject on oral contraceptives (OC) and one subject with moderate to severe dysmenorrhea. Two to four cycles were studied per subject. We observed three mentrual patterns among the four subjects studied. Compared to the two normal controls, the subject on OC had a significantly lower menstrual fluid total and menstrual PG activity. The mean values +/- S.E. per menstrual period were 33.4 g +/- 1.5 vs 21.5 g +/- 2.0 and 28.6 microgram (PGF2alpha equivalent) +/- 1.5 vs 11.3 microgram +/- 4.2 respectively (control vs OC). The dysmenorrheic subject had a menstrual fluid total of 37.0 g +/- 1.9 similar to the two normal controls. Her menstrual PG activity (49.8 microgram +/- 7.7), however, was nearly two times higher than the normal controls. In one cycle studied, the dysmenorrheic subject was treated with a PG synthetase inhibitor, ibuprofen (Motrin). Remarkable relief was achieved. The alleviation of symptoms was accompanied by a concomitant marked reduction in the menstrual PG activity.  相似文献   

19.
We have examined the effects of FK-506 and of the struturally related macrolide rapamycin, which bind with high affinity to a specific binding protein (FKBP), to evaluate the involvement of this protein in the release of preformed (histamine) and de novo synthesized inflammatory mediators (sulfidopeptide leukotriene C4 and prostaglandin D2) from mast cells isolated from human lung parenchyma. FK-506 (0.1 to 300 nM) concentration dependently inhibited histamine release from lung parenchymal mast cells activated by anti-IgE. FK-506 was more potent in lung mast cells than in basophils (IC50 = 1.13 +/- 0.46 nM vs 5.28 +/- 0.88 nM; p less than 0.001), whereas the maximal inhibitory effect was higher in basophils than in lung mast cells (88.4 +/- 2.5% vs 76.4 +/- 3.8%; p less than 0.01). FK-506 had little or no inhibitory effect on histamine release from lung mast cells challenged with compound A23187, whereas it completely suppressed A23187-induced histamine release from basophils. FK-506 also inhibited the de novo synthesis of 5-lipoxygenase (sulfidopeptide leukotriene C4) and cyclo-oxygenase (prostaglandin D2) metabolites of arachidonic acid from mast cells challenged with anti-IgE. Unlike in basophils, Il-3 (3 to 30 ng/ml) did not modify anti-IgE- or A23187-induced histamine release from lung mast cells nor did it reverse the inhibitory effect of FK-506. Rapamycin (3 to 300 nM) had little or no effect on the release of histamine from lung mast cells, but it was a competitive antagonist of the inhibitory effect of FK-506 on anti-IgE-induced histamine release from human mast cells with a dissociation constant of about 12 nM. These data indicate that FK-506 is a potent anti-inflammatory agent that acts on human lung mast cells presumably by binding to a receptor site (i.e., FKBP).  相似文献   

20.
Metabolism and excretion of peptide leukotrienes in the anesthetized rat   总被引:2,自引:0,他引:2  
The metabolism and excretion of the peptide leukotrienes C4, D4, E4 and N-acetylleukotriene E4 have been studied in the anesthetized rat. The intravenous administration of [3H]leukotriene C4 (2.6 X 10(-11) mol/kg) showed a rapid clearance of radioactivity from the blood and a time-related biliary excretion, recovering 69 +/- 1.6% (n = 6) over 60 min. Less than 1% of total radioactivity was recovered in the urine over the same time period. Similarly, the intravenous administration of [3H]leukotriene D4 (2.5 X 10(-11) mol/kg), [3H]leukotriene E4 (2.5 X 10(-11) mol/kg) and N-acetyl[3H]leukotriene E4 (2.1 X 10(-11) mol/kg) showed a 62 +/- 7.5% (n = 4), 52 +/- 1.5% (n = 4) and 37 +/- 4.6% (n = 5) biliary recovery of radioactivity, respectively, after 60 min. Examination of bile identified leukotriene D4 and N-acetylleukotriene E4 as the main products, although substantial radioactivity, which probably represents unidentified polar products, was present at the solvent fronts of the reverse-phase HPLC. Time course studies indicated a relatively rapid conversion of leukotriene C4 to leukotriene D4, while leukotriene D4 metabolism appeared to be much slower. Leukotriene E4 was a minor product, suggesting that the N-acetylation process is rapid. Incubation of [3H]leukotriene C4 in rat plasma and whole blood in vitro resulted in a slow conversion of leukotriene C4 to leukotriene D4 and leukotriene E4 only. These data suggest that the majority of the leukotriene metabolism and excretion in vivo in the anesthetized rat occurs predominantly in the hepatic system. We conclude that this model is suitable for the measurement of in vivo production of peptide leukotrienes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号