首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Life sciences》1996,59(16):PL255-PL261
The effects of specific inhibitors of cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) on the inhibitory activity of phosphodiesterase (PDE) type IV inhibitors and of the cell permeable analogue of cAMP, db-cAMP, were investigated on fMLP-induced arachidonate release from human monocytes. When monocytes were preincubated with the combined PKA/PKG inhibitor H8 (10−6 to 10−4 M) or the selective PKG inhibitor Rp-8-cpt-cGMPs (10−6 to 10−4 M) a concentration-dependent reduction of the inhibitory effect of db-cAMP (10 M), rolipram (10−5 M) and Ro 20-1724 (10−5 M) was noted. When monocytes were preincubated with the selective PKA inhibitor H89 (10−6 to 10−4 M), only a small inhibition of the effect of db-cAMP and no inhibition of the effects of rolipram and Ro 20–1724 were observed. The present data indicate that db-cAMP and PDE IV inhibitors elicit an in vitro anti-inflammatory activity by a PKA-independent mechanism, which do not appear to be mainly mediated via the PKG activation.  相似文献   

2.
AIMS: Phosphodiesterase 4 (PDE4) inhibitors have been described as potent anti-inflammatory compounds, involving an increase in intracellular levels of cyclic 3'',5''-adenosine monophosphate (AMP). The aim of this study was to compare the effects of selective PDE4 inhibitors, rolipram and RP 73-401 with the cell permeable analogue of cyclic AMP, dibutyryl-cyclic AMP (db-cAMP) and the anti-inflammatory cytokine interleukin-10 (IL-10) on superoxide anion production from peripheral blood mononuclear cells preincubated with lipopolysaccharide (LPS). MAJOR FINDINGS: We report that, after incubation of the cells with LPS, a large increase in superoxide anion production was observed. Rolipram or RP 73-401 (10(-8) to 10(-5) M) induced significant reductions of fMLP-induced superoxide anion production in cells incubated with or without LPS. The db-cAMP (10(-5) to 10(-3) M) also elicited dose-dependent inhibitions of the fMLP-induced superoxide anion production. In contrast, IL-10 (1 or 10 ng/ml) did not elicit a reduction in fMLP-induced superoxide anion production in both conditions. PRINCIPAL CONCLUSION: These results suggest that the inhibitory activity of PDE4 inhibitors on fMLP-induced production of superoxide anion production is mediated by db-cAMP rather than IL-10.  相似文献   

3.
The effects of forskolin, Ro 20-1724, rolipram, and 3-isobutyl-1-methylxanthine (IBMX) on morphine-evoked release of adenosine from dorsal spinal cord synaptosomes were evaluated to examine the potential involvement of cyclic AMP in this action of morphine. Ro 20-1724 (1-100 microM), rolipram (1-100 microM), and forskolin (1-10 microM) increased basal release of adenosine, and at 1 microM inhibited morphine-evoked release of adenosine. Release of adenosine by Ro 20-1724, rolipram, and forskolin was reduced 42-77% in the presence of alpha,beta-methylene ADP and GMP, which inhibits ecto-5'-nucleotidase activity by 81%, indicating that this adenosine originated predominantly as nucleotide(s). Significant amounts of adenosine also were released from the ventral spinal cord by these agents. Ro 20-1724 and rolipram did not significantly alter the uptake of adenosine into synaptosomes. Although Ro 20-1724 and rolipram had only limited effects on the extrasynaptosomal conversion of added cyclic AMP to adenosine, IBMX, a phosphodiesterase inhibitor with a broader spectrum of inhibitory activity for phosphodiesterase isoenzymes, significantly inhibited the conversion of cyclic AMP to adenosine and resulted in recovery of a substantial amount of cyclic AMP. As with the non-xanthine phosphodiesterase inhibitors, IBMX increased basal release of adenosine and reduced morphine-evoked release of adenosine. Adenosine released by IBMX was reduced 70% in the presence of alpha,beta-methylene ADP and GMP, and release from the ventral spinal cord was 61% of that from the dorsal spinal cord. Collectively, these results indicate that forskolin and phosphodiesterase inhibitors release nucleotide(s) which is (are) converted extrasynaptosomally to adenosine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The possible role of cyclic AMP in the presynaptic alpha-adrenoceptor-mediated modulation of [3H]noradrenaline (NA) release induced by 13 mM K+ from superfused rat cerebral cortex slices was investigated. Both dibutyryl-cyclic AMP (db-cAMP) and 8-bromo-cyclic AMP (8-Br-cAMP) dose-dependently (10(-4) - 10(-2) M) enhanced K+-induced (3H]NA release, maximally to about 160% of control. In contrast, db-cAMP had no effect on calcium-induced [3H]NA release in the presence of the calcium ionophore A 23187. Surprisingly, the phosphodiesterase (PDE) inhibitors 3-isobutyl-1-methylxanthine (IBMX). 7-benzyl-IBMX, 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone (ZK 62771), and 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro 20-1724) appeared to inhibit K+-induced [3H]NA release in a dose-dependent (10(-5) - 10(-3) M) manner. At a concentration of 10(-4) M, AK 62771 caused an inhibition of [3H]NA release by 30%, and this inhibitory effect was not affected by 10(-6) M phentolamine nor by 10(-3) M db-cAMP or 10(-4) M theophylline. Theophylline by itself enhanced [3H]NA release to about 135% of control. The inhibitor effect of the alpha-adrenoceptor agonist oxymetazoline (1 micro M) and the enhancing effect of the antagonist phentolamine (1 micro M) on [3H]NA release were significantly decreased in the presence of 10(-3) M db-cAMP or 8-Br-cAMP, whereas 10(-4) M ZK 62771 had no effect. In the presence of 10(-2) M NaF, a potent activator of adenylate cyclase, the inhibitory effect of oxymetazoline (1 micro M) on [3H]NA release was significantly decreased. The data obtained with the cyclic AMP analogues support the hypothesis that activation of presynaptic alpha-receptors modulating NA release results in an inhibition of a presynaptic adenylate cyclase. Possible causes for the anomalous effects of th PDE inhibitors are discussed.  相似文献   

5.
The effects of PDE inhibitors on oxazolone-induced contact hypersensitivity (CS) were studied in mice. Rolipram, Ro 20-1724 and theophylline dose dependently inhibited CS but none caused >53% inhibition. ED(30) values at 24 h before challenge for rolipram, Ro 20-1724 and theophylline were 2.1, 5.4 and 30.4 mg/kg, p.o., respectively. Milrinone and SKF 94836 at 30 mg/kg caused a small, but significant inhibition of 13% and 18%, respectively, although the inhibition (8%) caused by zaprinast was not significant. Betamethasone (10 mg/kg, p.o.) caused a marked inhibition (80%) as did indomethacin (65% at 5 mg/kg, p.o.). Rolipram and Ro 20-1724 inhibited proliferation of mouse lymphoblasts with IC(50) values of 0.08 muM and 0.83 muM, respectively. In contrast, zaprinast caused only a weak inhibition (IC(50) = 119 muM) of lymphocyte proliferation, whereas SKF 94836 and theophylline failed to cause any significant inhibition at 100 muM (26% and 2%, respectively). These findings suggest that PDE IV isozymes play a principal role in mediating CS by inhibiting lymphocyte activation.  相似文献   

6.
It was previously demonstrated that inhibition of cAMP degradation with phosphodiesterase type 3 (PDE3) inhibitors resulted in the maintenance of bovine cumulus–oocyte complexes (COC) and denuded oocytes (DO) in meiotic arrest, while a PDE4 inhibitor was without effect. In this study, different inhibitors of PDE3 and PDE4 were tested for their effects on bovine oocyte nuclear maturation. Bovine COC and DO were cultured in TCM-199+10% fetal bovine serum (FBS) with or without different concentrations of the PDE inhibitors. The PDE3 inhibitor trequinsin significantly increased the percentage of COC remaining at the germinal vesicle (GV) stage after 7 h of culture (19.3, 60.3, and 67.8% GV for control and trequinsin 10 and 50 nM, respectively) while Ro 20-1724 (a PDE4 inhibitor) was without effect. In DO, only trequinsin at 10 nM had a significant effect after 7 h of culture (51.3 and 86.1% GV for control and trequinsin 10 nM, respectively). Trequinsin reduced the percentage of COC reaching the mature phase after 22 h, but was without effect on DO. The protein kinase A (PKA) inhibitor H-89 reversed the inhibitory effect of trequinsin in COC and DO, indicating that inhibition of nuclear maturation by trequinsin involves activation of PKA. Trequinsin increased cAMP concentrations in COC but not in DO, suggesting that cumulus cells may also contain a PDE3 isoenzyme.  相似文献   

7.
The aim of the present study was to examine the role of cGMP-dependent intracellular mechanisms in control of ovarian functions. In the first series of experiments we studied the effects of the cGMP analogues 8-pCPT-cGMP (0.001-100 nM), Rp-8-pCPT-cGMPS (0. 01-100 nM), Rp-8-Br-cGMPS (0.01-100 nM), and Rp-8-Br-PET-cGMPS (0.01-100 nM) on the release of progesterone, insulin-like growth factor I (IGF-I) and oxytocin by cultured porcine granulosa cells. In a second series of experiments, the effects of Rp-8-Br-PET-cGMPS (50 nM) and KT5822 (100 ng/ml), specific inhibitor of cGMP-dependent protein kinase (PKG), on cAMP, PKA, oxytocin and the occurrence of apoptosis in cultured cells were compared. The release of hormones and IGF-I into the culture medium was evaluated using a RIA, while the percentage of cells containing visible oxytocin, cAMP, as well as the regulatory and catalytic subunits of PKA was assessed using immunocytochemistry. Occurrence of apoptosis in these cells was detected using the TUNEL method. The stimulatory (8-pCPT-cGMP and Rp-8-pCPT-cGMPS), inhibitory (Rp-8-Br-cGMPS) and biphasic (Rp-8-Br-PET-cGMPS) effect of cGMP analogues on progesterone release was observed. All cGMP analogues used suppressed IGF-I release. All cGMP analogues decreased oxytocin release, but 8-pCPT-cGMP and Rp-8-Br-cGMPS, when given at low doses (0.01-0.1 and 1-10 nM, respectively) stimulated oxytocin output. Both, Rp-8-Br-PET-cGMPS and KT5822 increased the rate of incidence of apoptosis and percentage of cells containing immunoreactive cAMP. Both Rp-8-Br-PET-cGMPS and KT5822 decreased the proportion of cells containing immunoreactive oxytocin and regulatory subunit of PAK KT5822, but not Rp-8-Br-PET-cGMPS, increased the number of cells containing catalytic subunit of PKA. The present observations suggest the involvement of cGMP and PKG in control of the production of steroid, nonapeptide hormone, growth factor, cAMP and cAMP-dependent PKA, as well as the induction of apoptosis in porcine ovarian cells.  相似文献   

8.
A novel series of 1-pyridylisoquinoline and 1-pyridyldihydroisoquinoline derivatives has been prepared. These compounds showed potent PDE4 inhibitory activities and a broad margin between the K(i) value of the rolipram binding affinity and the IC(50) value of PDE4 inhibition. They also exhibited potent inhibitory activities toward LPS-induced TNF-alpha production in mice.  相似文献   

9.
In cells transfected to express wild-type PDE4A4 cAMP phosphodiesterase (PDE), the PDE4 selective inhibitor rolipram caused PDE4A4 to relocalise so as to form accretion foci. This process was followed in detail in living cells using a PDE4A4 chimera formed with Green Fluorescent Protein (GFP). The same pattern of behaviour was also seen in chimeras of PDE4A4 formed with various proteins and peptides, including LimK, RhoC, FRB and the V5-6His tag. Maximal PDE4A4 foci formation, occurred over a period of about 10 h, was dose-dependent on rolipram and was reversible upon washout of rolipram. Inhibition of protein synthesis, using cycloheximide, but not PKA activity with H89, inhibited foci generation. Foci formation was elicited by Ro20-1724 and RS25344 but not by either Ariflo or RP73401, showing that not all PDE4 selective inhibitors had this effect. Ariflo and RP73401 dose-dependently antagonised rolipram-induced foci formation and dispersed rolipram pre-formed foci as did the adenylyl cyclase activator, forskolin. Foci formation showed specificity for PDE4A4 and its rodent homologue, PDE4A5, as it was not triggered in living cells expressing the PDE4B2, PDE4C2, PDE4D3 and PDE4D5 isoforms as GFP chimeras. Altered foci formation was seen in the Deltab-LR2-PDE4A4 construct, which deleted a region within LRZ, showing that appropriate linkage between the N-terminal portion of PDE4A4 and the catalytic unit of PDE4A4 was needed for foci formation. Certain single point mutations within the PDE4A4 catalytic site (His505Asn, His506Asn and Val475Asp) were shown to ablate foci formation but still allow rolipram inhibition of PDE4A4 catalytic activity. We suggest that the binding of certain, but not all, PDE4 selective inhibitors to PDE4A4 induces a conformational change in this isoform by 'inside-out' signalling that causes it to redistribute in the cell. Displacing foci-forming inhibitors with either cAMP or inhibitors that do not form foci can antagonise this effect. Specificity of this effect for PDE4A4 and its homologue PDE4A5 suggests that interplay between the catalytic site and the unique N-terminal region of these isoforms is required. Thus, certain PDE4 selective inhibitors may exert effects on PDE4A4 that extend beyond simple catalytic inhibition. These require protein synthesis and may lead to redistribution of PDE4A4 and any associated proteins. Foci formation of PDE4A4 may be of use in probing for conformational changes in this isoform and for sub-categorising PDE4 selective inhibitors.  相似文献   

10.
In an earlier study, theophylline was shown to antagonize the morphine-induced inhibition of electrically induced contractions of the longitudinal muscle-myenteric plexus preparation from the guinea pig ileum. In the present study, acetylcholine (ACh) released from the myenteric plexus was measured directly using a radioenzymatic assay. Theophylline antagonized the morphine-induced inhibiton of ACh release. A similar antagonism was also observed with caffeine and 3-isobutyl-l-methylxanthine (IBMX). All three methylxanthines also increased ACh release. The nonxanthine phosphodiesterase (PDE) inhibitors 4-(3-butoxy-4-methoxy)-2-imidazolidinone (Ro 20-1724) and l-ethyl-4-isopropylidenehydrazino-1 H-pyrozolo(3,4-b)-pyridine-5-carboxylate, ethylester, HCl (SQ 20,009) generally did not antagonize the morphine-induced inhibiton of ACh release. The PDE inhibitor SQ 20,009 but not Ro 20-1724, enhanced the release of ACh. Both high calcium concentration and the divalent cation ionophore A23187 antagonized the inhibitory action of morphine on ACh release. These observations suggest that alteration in calcium fluxes rather than the inhibiton of PDE mediate the methylxanthine-induced antagonism of morphine in this preparation.  相似文献   

11.
Regulation of adenylyl cyclase type V/VI and cAMP-specific, cGMP-inhibited phosphodiesterase (PDE) 3 and cAMP-specific PDE4 by cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) was examined in gastric smooth muscle cells. Expression of PDE3A but not PDE3B was demonstrated by RT-PCR and Western blot. Basal PDE3 and PDE4 activities were present in a ratio of 2:1. Forskolin, isoproterenol, and the PKA activator 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole 3',5'-cyclic monophosphate, SP-isomer, stimulated PDE3A phosphorylation and both PDE3A and PDE4 activities. Phosphorylation of PDE3A and activation of PDE3A and PDE4 were blocked by the PKA inhibitors [protein kinase inhibitor (PKI) and H-89] but not by the PKG inhibitor (KT-5823). Sodium nitroprusside inhibited PDE3 activity and augmented forskolin- and isoproterenol-stimulated cAMP levels; PDE3 inhibition was reversed by blockade of cGMP synthesis. Forskolin stimulated adenylyl cyclase phosphorylation and activity; PKI blocked phosphorylation and enhanced activity. Stimulation of cAMP and inhibition of inositol 1,4,5-trisphosphate-induced Ca(2+) release and muscle contraction by isoproterenol were augmented additively by PDE3 and PDE4 inhibitors. The results indicate that PKA regulates cAMP levels in smooth muscle via stimulatory phosphorylation of PDE3A and PDE4 and inhibitory phosphorylation of adenylyl cyclase type V/VI. Concurrent generation of cGMP inhibits PDE3 activity and augments cAMP levels.  相似文献   

12.
Insulin-like growth factor-I (IGF-I) stimulated Xenopus laevis oocyte ribosomal S6 kinase activity 5- to 10-fold, with an apparent EC50 of 0.8 +/- 0.1 nM after 90 min of hormone treatment. IGF-I-stimulated enzyme activity was inhibited by treatment of oocytes with nonselective phosphodiesterase (PDE) inhibitors, with apparent IC50 values of 2 +/- 1 microM papaverine, 20 +/- 2 microM isobutylmethylxanthine, and 128 +/- 16 microM theophylline. Type III PDE inhibitors also inhibited IGF-I-stimulated S6 kinase activity with IC50 values of 9.7 +/- 0.3 microM Cl-930 and 84 +/- 23 microM imazodan (Cl-914). These drugs apparently affected an intracellular molecular event leading to activation of S6 kinase, since Cl-930 prevented IGF-I-stimulation of S6 kinase, but had no direct inhibitory effect when added to the S6 kinase enzyme assay mixture. While hormone-stimulated S6 kinase activity was inhibited by isobutylmethylxanthine (nonselective PDE inhibitor) and Cl-930 (PDE III inhibitor), Ro 20, 1724 and rolipram (PDE IV inhibitors) and dipyridamole (PDE V inhibitor) had no significant effect on activated enzyme levels. The time course for IGF-I stimulation of oocyte S6 kinase displayed a small early peak of activity approximately 0.15-0.4 time required for 50% of cell population to display white spots (GVBD50) and a second major increase in activity at 0.6-0.7 GVBD50 that was sustained until meiotic maturation was complete. The second wave of enzyme activation was inhibited by Cl-930, but the early increase was not.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Over-expression of matrix metalloproteinases by lung fibroblasts has been blamed for much of the tissue destruction associated with airway inflammation. Because cyclic AMP is known to regulate fibroblast proliferation, as well as cytokine and extracellular matrix protein production, the current study was designed to evaluate the ability of three selective phosphodiesterase (PDE) type 4 inhibitors, rolipram, cilomilast and CI-1044, to inhibit extracellular matrix degradation. Using zymography and ELISA, we found that pro-MMP-2 release was enhanced following 24 h treatment of human lung fibroblast (MRC-5) with TGF-beta1 (10 ng/ml) or TNF-alpha (10 ng/ml), whereas PMA (0.02 microM) had no effect. One hour of pre-incubation with PDE4 inhibitors (10 microM) induced an inhibition of TNF-alpha-stimulated pro-MMP-2 release. Zymography and immunoblotting revealed that fibroblasts cultured with PMA or TNF-alpha released increased amounts of pro-MMP-1, whereas TGF-beta1 had no effect. Incubation with CI-1044 or cilomilast significantly prevented the TNF-alpha increase in pro-MMP-1. These results suggest that PDE4 inhibitors are effective in inhibiting the pro-MMP-2 and pro-MMP-1 secretion induced by TNF-alpha and might underline a potential therapeutic benefit of selective PDE4 inhibitors in lung diseases associated with abnormal tissue remodelling.  相似文献   

14.
Cyclic nucleotide signaling functions as a negative modulator of inflammatory cell responses, and type 4 phosphodiesterases (PDE4) are important regulators of this pathway. In this study, we provide evidence that only one of the three PDE4 genes expressed in mouse peritoneal macrophages is involved in the control of TLR signaling. In these cells, LPS stimulation of TLR caused a major up-regulation of PDE4B but not the paralogs PDE4A or PDE4D. Only ablation of PDE4B impacted LPS signaling and TNF-alpha production. TNF-alpha mRNA and protein were decreased by >50% in PDE4B-/-, but not in PDE4A-/- or PDE4D-/- macrophages. The PDE4 selective inhibitors rolipram and roflumilast had no additional inhibitory effect in macrophages deficient in PDE4B, but suppressed the TNF-alpha response in the other PDE4 null cells. The inhibition of TNF-alpha production that follows either genetic ablation or acute inhibition of PDE4B is cAMP-dependent and requires protein kinase A activity. However, no global changes in cAMP concentration were observed in the PDE4B-/- macrophages. Moreover, ablation of PDE4B protected mice from LPS-induced shock, suggesting that altered TLR signaling is retained in vivo. These findings demonstrate the highly specialized function of PDE4B in macrophages and its critical role in LPS signaling. Moreover, they provide proof of concept that a PDE4 inhibitor with subtype selectivity retains useful pharmacological effects.  相似文献   

15.
16.
Various phosphodiesterase (PDE) 3,4 and 5 inhibitors have been compared with glucagon for their effectiveness at increasing hepatocyte cAMP, glycogenolysis and gluconeogenesis. Preincubation of isolated hepatocytes with PDE 3 and 4 inhibitors (50 M) for 2 h induced significant increases in cellular cAMP level. The order of effectiveness was: glucagon (78%), V11294A (42%), rolipram (40%), milrinone (36%), CDP-840 (33%), R0 20-1724 (31%), papaverine (27%), isobutylmethylxanthine (28%), isoliquiritigenin (25%), theophylline (22%), and amrinone (22%). The PDE 5 inhibitors dipyridamol and sildenafil had only a slight effect on cAMP levels. Glucose formation was increased as a result of increased glycogenolysis in the following order of effectiveness: glucagon (89%), V11294A (63%), rolipram (61%), milrinone (50%), CDP-840 (46%), R0 20-1724 (45%), sildenafil (34%), dipyridamol (31%), papaverine (30%), isobutylmethylxanthine (29%), theophylline (20%), amrinone (20%), and isoliquiritigenin (20%). Rolipram and milrinone, selective PDE 4 and PDE 3 inhibitors respectively, stimulated the gluconeogenesis of alanine, lactate + pyruvate, or fructose in hepatocytes isolated from fasted rats. On the other hand, selective cGMP specific phospodiesterase inhibitors, sildenafil and dipyridamol inhibited alanine-induced gluconeogenesis. All PDE inhibitors increased hepatocyte susceptibility to cyanide toxicity (3–4 fold) which was prevented by fructose whereas PDE 5 inhibitors did not significantly increase hepatocyte susceptibility.  相似文献   

17.
Agonist-induced smooth muscle relaxation occurs following an increase in intracellular concentrations of cGMP or cAMP. However, the role of protein kinase G (PKG) and/or protein kinase A (PKA) in cGMP- or cAMP-mediated pulmonary vasodilation is not clearly elucidated. In this study, we examined the relaxation responses of isolated pulmonary arteries of lambs (age = 10 +/- 1 days), preconstricted with endothelin-1, to increasing concentrations of 8-bromo-cGMP (8-BrcGMP) or 8-BrcAMP (cell-permeable analogs), in the presence or absence of Rp-8-beta-phenyl-1,N(2)-etheno-bromoguanosine cyclic monosphordthioate (Rp-8-PET-BrcGMPS) or KT-5720, selective inhibitors of PKG and PKA, respectively. When examined for specificity, Rp-8-Br-PET-cGMPS abolished PKG, but not PKA, activity in pulmonary arterial extracts, whereas KT-5720 inhibited PKA activity only. 8-BrcGMP-induced relaxation was inhibited by the PKG inhibitor only, whereas 8-BrcAMP-induced relaxation was inhibited by both inhibitors. A nearly fourfold higher concentration of cAMP than cGMP was required to relax arteries by 50% and to activate PKG by 50%. Our results demonstrate that relaxation of pulmonary arteries is more sensitive to cGMP than cAMP and that PKG plays an important role in both cGMP- and cAMP-mediated relaxation.  相似文献   

18.
We have demonstrated that confluent monolayers of the mouse fibroblast cell line C3H/10T1/2 (10T1/2) have the ability to cause reversible growth inhibition of cocultured transformed cells. This was first demonstrated for de novo transformed cells and later extended to established cell lines of proven oncogenicity in vivo. This growth inhibition could be increased by growing the 10T1/2 cells to high density in increasing concentrations of serum or by elevating intracellular concentrations of cAMP using inhibitors of phosphodiesterase (PDE). These manipulations, which in cocultures of nontransformed and transformed cells caused complete inhibition of tumor cell growth, had no effect on growth rate or saturation density of either ceil type when cultured alone, demonstrating the cooperative nature of this phenomenon. This cooperation could not be produced by transfer of culture medium, demonstrating the requirement for intimate cell contact. Inhibition of the formation of transformed foci of cells in these mixed cultures was accompanied by a decrease in the incorporation of labeled thymidine into these cultures; the kinetics of this inhibition and recovery suggested a rapidly reversible effect on cell cycle transit times. The potent inhibitor of cAMP PDE, Ro 20-1724 induced dose dependent increases in intracellular cAMP in both nontransformed and in transformed cells. However, at a concentration of 10?4 M Ro 20-1724, which inhibited tumor cell growth in mixed cultures, cAMP was elevated 30-fold in nontransformed versus only 3-fold in transformed cells. The inhibitory effects of PDE inhibitors on tumor growth have been extended to an in vivo model system, utilizing Lewis lung carcinoma cells growing as metastases in the lungs of C57B1 mice. In these mice, inoculated intravenously with a single cell suspension of Lewis lung cells, the formation of lung metastases was dramatically decreased by the twice daily administration of either isobutylmethylxanthine or Ro 20-1724; PDE inhibitors were shown to be active in vitro. The latter compound, which showed highest activity in vitro, was also substantially more potent in vivo as an inhibitor of lung tumor colony formation and doubled the life span of the tumor bearing animals. Cell cycle analysis of lung tumor colonies by the labeled mitosis method showed that both phosphodiesterase inhibitors caused a prolonged G1 phase in the cell cycle but failed to influence other phases. Although detailed analysis of host tissues is not complete, prolonged treatment with these drugs caused no statistically significant weight loss or changes in counts of red or white blood cells indicating a selective growth inhibition of transformed cells at these doses. Studies to determine the mechanism of the cellular communication and the nature of the signal are in progress.  相似文献   

19.
Studies by various investigators have demonstrated that the low Km, cAMP-specific phosphodiesterase (PDE IV) is selectively inhibited by a group of compounds typified by rolipram and Ro 20-1724. In addition to inhibiting the catalytic activity of PDE IV, rolipram binds to a high affinity binding site present in brain homogenates. Although it has been assumed that the high affinity rolipram-binding site is PDE IV, no direct evidence has been produced to support this assumption. The present studies were undertaken to determine whether the rolipram-binding site is coexpressed with PDE IV catalytic activity in Saccharomyces cerevisiae genetically engineered to express human recombinant monocytic PDE IV (hPDE IV). Expressing hPDE IV cDNA in yeast resulted in a 20-fold increase in PDE activity that was evident within 1 h of induction and reached a maximum by 3-6 h. The recombinant protein represented hPDE IV as judged by its immunoreactivity, molecular mass (approximately 88 kDa), kinetic characteristics (cAMP Km = 3.1 microM; cGMP Km greater than 100 microM), sensitivity to rolipram (Ki = 0.06 microM), and insensitivity to siguazodan (PDE III inhibitor) and zaprinast (PDE V inhibitor). Saturable, high affinity [3H] (R)-rolipram-binding sites (Kd = 1.0 nM) were coexpressed with PDE activity, indicating that both binding activity and catalytic activity are properties of the same protein. A limited number of compounds were tested for their ability to inhibit hPDE IV catalytic activity and compete for [3H](R)-rolipram binding. Analysis of the data revealed little correlation (r2 = 0.35) in the structure-activity relationships for hPDE IV inhibition versus competition for [3H] (R)-rolipram binding. In fact, certain compounds (e.g. (R)-rolipram Ro 20-1724) possessed a 10-100-fold selectivity for inhibition of [3H] (R)-rolipram binding over hPDE IV inhibition, whereas others (e.g. dipyridamole, trequinsin) possessed a 10-fold selectivity for PDE inhibition. Thus, although the results of these studies demonstrate that hPDE IV activity and high affinity [3H](R)-rolipram binding are properties of the same protein, they do not provide clear cut evidence linking the binding site with the PDE inhibitory activity of rolipram and related compounds.  相似文献   

20.
To understand the role of protein kinase A (PKA) in the control of ovarian secretory activity, we examined effects of stimulators (db-cAMP, 6-Phe-cAMP, Sp-cDBIMPS) or inhibitors (Rp-cAMPS, KT5720) of PKA on the release of insulin-like growth factor I (IGF-I), progesterone (P) and estradiol (E) by cultured porcine granulosa cells using RIA. All the PKA stimulators db-cAMP (10-10000 ng/ml), 6-Phe-cAMP (10-10000 pmol) or Sp-cDBIMPS (1-10000 pmol) increased IGF-I almost at all doses tested. P release was stimulated by db-cAMP (at doses 100-10000 ng/ml), Sp-cDBIMPS (at 10-1000 pmol) and 6-Phe-cAMP (at 1000 and 10000 pmol). The release of E was stimulated by Sp-cDBIMPS (1-100 pmol), db-cAMP (1000 and 10000 ng/ml) and 6-Phe-cAMP (1000 and 10000 pmol). Since Sp-cDBIMPS, which activates preferentially PKA isozyme type II, showed stimulating effects at doses lower than those of 6-Phe-cAMP, a preferential activator of both, type I and II of PKA, it is assumed that PKA type II is more important for the control of ovarian steroidogenesis than type I. A PKA inhibitor Rp-cAMPS inhibited release of IGF-I (10000 pmol), P (1000 pmol) and E (1000 and 10000 pmol), whereas Rp-cAMPS, at doses higher than 1000 pmol, tended to reverse this inhibitory effect. Other PKA inhibitor KT5720 suppressed P (at 10-1000 ng/ml), but not IGF-I or E release.The stimulation of growth factor and sex steroid release by PKA activators, and suppression of the secretion some of these substances by PKA inhibitors may indicate the implication of PKA (probably site B) in up- and down-regulation of ovarian IGF-I and steroid release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号