首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant preparations of human anti-inflammatory cytokines: IL-4, IL-13 and IL-10, inhibited LPS-induced synthesis of TNFalpha and IL-6 in the whole human blood tested in vitro. These cytokines also inhibited LPS-induced IL-6 and TNF mRNA accumulation in isolated human blood monocytes/macrophages. On the other hand, similar concentrations of IL-4 and IL-13 (but not IL-10) enhanced synthesis of IL-6 in cultured human umbilical vein endothelial cells (HUVEC). In human hepatoma HepG2 cells IL-4 and IL-13 (but not IL-10) inhibited IL-6-induced synthesis of haptoglobin. These differential responses to the tested anti-inflammatory cytokines were observed at mRNA and protein levels and may reflect cell specificities in signalling pathways and gene expression. When HUVEC and HepG2 cells were cultured together and stimulated with LPS the addition of IL-4 or IL-13 resulted in the reduction of LPS-induced and IL-6-mediated haptoglobin synthesis. Thus in co-culture the inhibitory effects of IL-4 or IL-13 on HepG2 cells prevail over stimulation of IL-6 synthesis in HUVEC.  相似文献   

2.
The beta-endorphin 10(-7-)-10(-11) M in LPS (lypopolisaccharide) presence and in spontaneous cultures promoted the IL-1beta production in mixed leukocyte fraction. LPS-induced IL-8 production in leukocyte fraction was inhibited by beta-endorphin 10(-7), 10(-11) M. The enchasing effect of beta-endorphin on IL-1beta production was not blocked by naloxone and naltrindole. The inhibitory effect of beta-endorphin on IL-8 production was blocked by naloxone and naltrindole. In mononuclear and neutrophile fractions beta-endorphin and delta-agonist DADLE enchased IL-1beta production in spontaneous and LPS-stimulating cultures, when IL-8 production inhibited beta-endorphin and delta-agonist DADLE only in LPS presence. No effect of mu-agonist DAGO were observed on IL-1beta production, whereas LPS-induced IL-8 secretion in neutrophile fraction inhibited by DAGO.  相似文献   

3.
IL-8 is a novel chemotactic cytokine, produced by a variety of blood and tissue cells, that has marked activating effects on polymorphonuclear leukocytes (PMN). We report that IL-8 is produced and released by human PMN after stimulation with the chemotactic agonist FMLP. Release of IL-8 in response to FMLP was transient and not influenced by PMN adherence or by the absence of serum in the medium. Maximum yields were usually obtained with 10 nM FMLP within 2 h of stimulation (0.5-3.5 ng/ml/7 x 10(6) cells, range of 17 different donors). IL-8 release was dependent on FMLP-induced de novo protein synthesis because it was inhibited by cycloheximide, was paralleled by enhanced expression of IL-8 mRNA and was potentiated from two- to sixfold after preincubation of PMN with cytochalasin B. The FMLP effect was direct and not dependent on LPS or on contaminating monocytes, which showed only low responsiveness to FMLP. Pretreatment of PMN with pertussis toxin prevented FMLP-dependent IL-8 production, the effect being evident both at the level of mRNA expression and protein secretion. In addition, two other chemoattractans, platelet-activating factor and C5a, were found capable to induce release of IL-8 by PMN. The results of this study suggest that chemotactically stimulated PMN may be able to amplify the recruitment process of PMN to the inflammatory site by releasing IL-8. As a long-lived cytokine, IL-8 could markedly prolong the attractant effect.  相似文献   

4.
Native LDL (nLDL) increases expression of adhesion molecules on endothelial cells through induction of Ca(2+) mobilization. Ca(2+) mobilization is also involved in the induction of proinflammatory cytokines, important mediators involved in atherogenesis. The aim of the study was to evaluate the capacity of nLDL to affect spontaneous and lipopolysaccharide (LPS)-stimulated cytokine production. Preincubation of human peripheral blood mononuclear cells (PBMC) with nLDL for 24 h did not influence spontaneous production of tumor necrosis factor alpha (TNF alpha) or interleukin-8 (IL-8), but significantly potentiated LPS-induced production of these cytokines. nLDL preincubation of PBMC did not increase the expression of the LPS receptors Toll-like receptor-4, CD14, or CD11c/CD18. Potentiation of cytokine production by nLDL was mediated through induction of Ca(2+) mobilization, because: a) nLDL induced a sustained pattern of repetitive Ca(2+) transients in human PBMC; b) the Ca(2+) chelator fura 2-acetoxymethyl ester, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, an intracellular Ca(2+) chelator, inhibited the potentiating effect of nLDL on LPS-induced cytokine synthesis; c) induction of Ca(2+) mobilization by thapsigargin potentiated LPS-induced cytokine production. nLDL are able to potentiate LPS-induced production of cytokines by human PBMC, and this effect is probably mediated through induction of Ca(2+) mobilization. This may represent an important pathogenetic mechanism in atherogenesis induced by hyperlipoproteinemia.  相似文献   

5.
In vitro monocyte-derived macrophages (MDMac) and synovial fluid macrophages from inflamed joints differ from monocytes in their responses to interleukin 4 (IL-4). While IL-4 can suppress LPS-induced interleukin beta (IL-beta) and tumour necrosis factor alpha (TNF-alpha) production by monocytes, IL-4 can suppress LPS-induced IL-1 beta, but not TNFalpha production by the more differentiated cells. Recently we reported a correlation between the ability of IL-4 to regulate TNFalpha production by monocytes and the expression of the IL-4 receptor gamma chain or gamma common (gamma c chain). Like MDMac, interferon alpha (IFNalpha)-treated monocytes expressed less IL-4 receptor gamma c chain, reduced levels of IL-4-activated STAT6 and IL-4 could not suppress LPS-induced TNFalpha production. In addition, like monocytes and MDMac, IFNalpha-treated monocytes expressed normal levels of the IL-4 receptor alpha chain and IL-4 significantly suppressed LPS-induced IL-1 beta production. With addition of IFNalpha-neutralizing antibodies, the ability of IL-4 to suppress LPS-induced TNFalpha production with prolonged monocyte culture was restored. Detection of IFNalpha in synovial fluids from inflamed joints further implicates IFNalpha in the inability of IL-4 to suppress TNFalpha production by synovial fluid macrophages. This study identifies a mechanism for the differential expression of gamma c and varied responses to IL-4 by human monocytes compared with MDMac.  相似文献   

6.
The costimulatory molecule B7.2 (CD86) plays a vital role in immune activation and development of Th responses. The molecular mechanisms by which B7.2 expression is regulated are not understood. We investigated the role of mitogen-activated protein kinases (MAPK) in the regulation of B7.2 expression in LPS-stimulated human monocytic cells. LPS stimulation of human monocytes resulted in the down-regulation of B7.2 expression that could be abrogated by anti-IL-10 Abs. Furthermore, SB202190, a specific inhibitor of p38 MAPK, inhibited LPS-induced IL-10 production and reversed B7.2 down-regulation, suggesting that LPS-induced B7.2 down-regulation may be mediated, at least in part, via regulation of IL-10 production by p38 MAPK. In contrast to human promonocytic THP-1 cells that are refractory to the inhibitory effects of IL-10, LPS stimulation enhanced B7.2 expression. This IL-10-independent B7.2 induction was not influenced by specific inhibitors of either p38 or p42/44 MAPK. To ascertain the role of the c-Jun N-terminal kinase (JNK) MAPK, dexamethasone, an inhibitor of JNK activation, was used, which inhibited LPS-induced B7.2 expression. Transfection of THP-1 cells with a plasmid expressing a dominant-negative stress-activated protein/extracellular signal-regulated kinase kinase 1 significantly reduced LPS-induced B7.2 expression, thus confirming the involvement of JNK. To study the signaling events downstream of JNK activation, we show that dexamethasone did not inhibit LPS-induced NF-kappaB activation in THP-1 cells, suggesting that JNK may not be involved in NF-kappaB activation leading to B7.2 expression. Taken together, our results reveal the distinct involvement of p38 in IL-10-dependent, and JNK in IL-10-independent regulation of B7.2 expression in LPS-stimulated monocytic cells.  相似文献   

7.
Abstract Endotoxin (lipopolysaccharide, LPS) induces the production of mediators of inflammation, which exerts pathophysiological effects such as fever or shock in mammals. In the present study we have investigated the modulation of LPS by the synthetic non-active tetraacylated precursor Ia of lipid A (compound 406) in the induction of tumor necrosis factor (TNF), interleukin 1 (IL-1) and interleukin 6 (IL-6) in human peripheral blood mononuclear cells (PBMC) and in human peripheral blood monocytes (PBMo). PBMC stimulated with LPS released TNF in a concentration dependent manner. Release of biologically active TNF, IL-1 and IL-6 was first detectable 4 h after LPS stimulation. Compound 406 alone in all concentrations tested did not induce TNF, IL-1 or IL-6 release, intracellular TNF or IL-1β, or mRNA for TNF or IL-1. Added to PBMC 1 h before LPS compound 406 enhanced or suppressed TNF release and suppressed IL-1 and IL-6 release depending on the ratio of concentrations between stimulator (LPS) and modulator (compound 406). In contrast to LPS stimulation alone TNF, IL-1 and IL-6 release in presence of compound 406 was delayed and first detectable after 6 to 8 h. Compound 406 was able to suppress LPS-induced intracellular TNF and IL-1β in PBMC. Added to PBMo 1 h before LPS it totally inhibited the production of mRNA for TNF and IL-1. When added to PBMC 1 h after LPS, TNF release was suppressed in a concentration-dependent way and release of biologically active TNF, IL-1 and IL-6 could again be detected for the first time after 4 h. Compound 406 was not able to inhibit phorbol 12-myristate 13-acetate (PMA)-induced TNF and IL-1 release in PBMo which suggests that its modulating effect is LPS-specific. This study provides evidence that the modulating effect of compound 406 on the LPS induction of TNF, IL-, 1 and IL-6 could be due to competitive binding.  相似文献   

8.
A mutant Escherichia coli lipopolysaccharide (LPS) lacking myristoyl fatty acid markedly stimulates the activity of manganese superoxide dismutase (MnSOD) without inducing tumor necrosis factor alpha (TNFalpha) production by human monocytes (Tian et al., 1998, Am J Physiol 275:C740.), suggesting that induction of MnSOD and TNFalpha by LPS are regulated through different signal transduction pathways. The protein tyrosine kinase (PTK)/mitogen-activated protein kinase (MAPK) pathway plays an important role in the LPS-induced TNFalpha production. In the current study, we determined the effects of PTK inhibitors, genistein and herbimycin A, on the induction of MnSOD and TNFalpha in human monocytes. Genistein (10 microg/ml) and herbimycin A (1 microg/ml) markedly inhibited LPS-induced protein tyrosine phosphorylation, phosphorylation and nuclear translocation of MAPK (p42 ERK, extracellular signal-regulated kinase), and increases in the steady state level of TNFalpha mRNA as well as TNFalpha production. In contrast, at similar concentrations, genistein and herbimycin A had no effect on the LPS-induced activation of nuclear factor kappaB (NFkappaB) and induction of MnSOD (mRNA and enzyme activity) in human monocytes. In addition, inhibition of NFkappaB activation by gliotoxin and pyrrodiline dithiocarbamate, inhibited LPS induction of TNFalpha and MnSOD mRNAs. These results suggest that (1) while PTK and MAPK are essential for the production of TNFalpha, they are not necessary for the induction of MnSOD by LPS, and (2) while activation of NFkappaB alone is insufficient for the induction of TNFalpha mRNA by LPS, it is necessary for the induction of TNFalpha as well as MnSOD mRNAs.  相似文献   

9.
Upon LPS exposure, mononuclear phagocytes produce TNF-alpha and IL-10, two cytokines with pro- and anti-inflammatory activities, respectively. We previously described that murine resident alveolar macrophages, which play a central role in the immunosurveillance of the lung alveoli, do not synthesize IL-10 in vivo or in vitro when exposed to LPS. In the present report we demonstrate that during lung inflammation induced by the intranasal administration of LPS, bronchoalveolar cells collected between days 3 and 5 are able to synthesize IL-10 when exposed to LPS. We also show that depletion of resident alveolar macrophages by an intratracheal instillation of liposome-encapsulated clodronate is followed by subsequent replenishment of the airspaces by mononuclear phagocytes. This is accompanied by the transient competence of cells for IL-10 production. The cell capacity to produce IL-10 is evident up to 3 days and then decreases. This led us to hypothesize that the alveolar environment contains a down-regulator of LPS-induced IL-10 synthesis by recently emigrating mononuclear phagocytes. We show that the surfactant protein A, an airspace protein that has known immunomodulatory activities, dramatically inhibits LPS-induced IL-10 formation by bone marrow-derived macrophages. These data show a difference between resident and inflammatory macrophages with respect to IL-10 synthesis. Moreover, this study highlights for the first time the inhibitory role of surfactant protein A in the anti-inflammatory activity of macrophages through inhibition of IL-10 production.  相似文献   

10.
Lipopolysaccharide (LPS) is recognized as an inducer of the inflammatory response associated with gram-negative sepsis and systemic inflammatory response syndrome. LPS induction proceeds through Toll-like receptor (TLR) in immune cells and intestinal epithelial cells (IEC). This report presents the first identification of Bcl10 (B-cell CLL/lymphoma 10) as a mediator of the LPS-induced activation of IL-8 in human IEC. Bcl10 is a caspase-recruitment domain-containing protein, associated with constitutive activation of NF-kappaB in MALT (mucosa-associated lymphoid tissue) lymphomas. The normal human IEC line NCM460, normal primary human colonocytes, and ex vivo human colonic tissue were exposed to 10 ng/ml of LPS for 2-6 h. Effects on Bcl10, phospho-IkappaBalpha, NF-kappaB, and IL-8 were determined by Western blot, ELISA, immunohistochemistry, and confocal microscopy. Effects of Bcl10 silencing by small-interfering RNA (siRNA), TLR4 blocking antibody, TLR4 silencing by siRNA, and an IL-1 receptor-associated kinase (IRAK)-1/4 inhibitor on LPS-induced activation were examined. Following Bcl10 silencing, LPS-induced increases in NF-kappaB, IkappaBalpha, and IL-8 were significantly reduced (P < 0.001). Increasing concentrations of LPS were associated with higher concentrations of Bcl10 protein when quantified by ELISA, and the association between LPS exposure and increased Bcl10 was also demonstrated by Western blot, immunohistochemistry, and confocal microscopy. Exposure to TLR4 antibody, TLR4 siRNA, or an IRAK-1/4 inhibitor eliminated the LPS-induced increases in Bcl10, NF-kappaB, and IL-8. Identification of Bcl10 as a mediator of LPS-induced activation of NF-kappaB and IL-8 in normal human IEC provides new insight into mechanisms of epithelial inflammation and new opportunities for therapeutic intervention.  相似文献   

11.
Lipopolysaccharides (LPS) of Porphyromonas gingivalis have been implicated in the initiation and development of periodontal diseases. In a previous study, we investigated the signal transduction pathway of P. gingivalis and demonstrated that LPS stimulates the production of interleukin (IL)-6 in human gingival fibroblasts (HGFs), which in turn activates osteoclasts in vitro. The cytokine, IL-10, was initially described as cytokine synthesis inhibitory factor. In this study, we examined that effect of IL-10 on P. gingivalis LPS-induced human gingival fibroblast production of IL-6. LPS-induced IL-6 production was inhibited by IL-10 in a dose-dependent manner. Flow cytometric analysis showed that HGFs bind to fluorescein-isothiocyanate (FITC) labeled IL-10. Western blotting analysis demonstrated the expression of IL-10 receptor on the cell surface of these cells. Engagement of LPS initiated the protein tyrosine phosphorylation of several intracellular proteins including extracellular signal-regulated kinase 2 (ERK2), and these events were suppressed by IL-10. These results suggest that IL-10 inhibits the inflammatory response via the IL-10 receptor in P. gingivalis LPS-initiated periodontal diseases.  相似文献   

12.
15-Deoxy-Delta(12,14)-prostaglandin J(2) (dPGJ(2)) is a metabolite of prostaglandin D(2), that binds to peroxisome proliferator-activated receptor gamma (PPARgamma). PPARgamma and prostaglandin D(2) synthase, which is required for dPGJ(2) synthesis, are predominantly expressed in macrophages. In contrast, IL-10 and IL-12 produced by macrophages stimulate Th1 and Th2 immune response, respectively. This study investigated the effect of dPGJ(2) on IL-10 and IL-12 production by macrophages in response to lipopolysaccharide (LPS). Our data clearly demonstrated that dPGJ(2) inhibits LPS-induced IL-10 and IL-12 production by macrophages. A different agonist of PPARgamma, 13-hydroxyoctadecadienoic acid, similarly inhibited the production of IL-10 and IL-12 in response to LPS. Further, dPGJ(2) did not appear to act through the PGD(2) receptor. These results suggest that dPGJ(2) may inhibit LPS-induced IL-10 and IL-12 production by macrophages through PPARgamma.  相似文献   

13.
Monokine induced by IFN-gamma (MIG), IFN-inducible T cell alpha chemoattractant (I-TAC), and IFN-gamma-inducible protein of 10 kDa (IP-10) are related members of the CXC chemokine subfamily that bind to a common receptor, CXCR3, and that are produced by different cell types in response to IFN-gamma. We have recently reported that human polymorphonuclear neutrophils (PMN) have the capacity to release IP-10. Herein, we show that PMN also have the ability to produce MIG and to express I-TAC mRNA in response to IFN-gamma in combination with either TNF-alpha or LPS. While IFN-gamma, alone or in association with agonists such as fMLP, IL-8, granulocyte (G)-CSF and granulocyte-macrophage (GM)-CSF, failed to influence MIG, IP-10, and I-TAC gene expression, IFN-alpha, in combination with TNF-alpha, LPS, or IL-1beta, resulted in a considerable induction of IP-10 release by neutrophils. Furthermore, IL-10 and IL-4 significantly suppressed the expression of MIG, IP-10, and I-TAC mRNA and the extracellular production of MIG and IP-10 in neutrophils stimulated with IFN-gamma plus either LPS or TNF-alpha. Finally, supernatants harvested from stimulated PMN induced migration and rapid integrin-dependent adhesion of CXCR3-expressing lymphocytes; these activities were significantly reduced by neutralizing anti-MIG and anti-IP-10 Abs, suggesting that they were mediated by MIG and IP-10 present in the supernatants. Since MIG, IP-10, and I-TAC are potent chemoattractants for NK cells and Th1 lymphocytes, the ability of neutrophils to produce these chemokines might contribute not only to the progression and evolution of the inflammatory response, but also to the regulation of the immune response.  相似文献   

14.
In a previous work we have reported that gangliosides inhibit interleukin 1 (IL-1) release by human monocytes stimulated with lipopolysaccharides (LPS). In the present study we extend this work to IL-1 production and we correlate these observations with the capacity of gangliosides to inhibit the binding of radiolabeled LPS to its specific receptor on human monocytes. Preincubation of 3H-LPS with crude bovine brain gangliosides, as well as purified human brain mono, di, and trisialogangliosides (GM1, GD1a, and GT1b, respectively), led to an inhibition of the specific binding of LPS to the cell surface. Neither ceramide nor N-acetyl neuraminic acid, two constituents of gangliosides, was able by itself to inhibit the specific binding. A strict parallelism was observed with respect to inhibition on LPS-induced IL-1 production and release. Asialoganglioside (asialo-GM1) was inactive in both assays, suggesting that the N-acetyl neuraminic acid plays a role within the ganglioside molecule, with respect to inhibitory activity. We conclude that LPS-induced production and release by human monocytes is not due to a signal triggered by nonspecific absorption and/or intercalation of LPS into cell membrane which occur through hydrophobic interaction mediated by the lipid A region. Addition of exogenous sialogangliosides which blocked LPS-induced IL-1 production and release, did not modify significantly the nonspecific binding of 3H-LPS, whereas it did inhibit the specific binding which is mediated by the polysaccharide moiety of the LPS molecule. These results establish a relationship between the specific endotoxin receptor on monocytes and a LPS-induced cellular function.  相似文献   

15.
IL-12p70 is a key cytokine for the induction of Th1 immune responses. IL-12p70 production in myeloid cells is thought to be strictly controlled by T cell help. In this work we demonstrate that primary human monocytes can produce IL-12p70 in the absence of T cell help. We show that human monocytes express TLR4 and TLR8 but lack TLR3 and TLR7 even after preincubation with type I IFN. Simultaneous stimulation of TLR4 and TLR8 induced IL-12p70 in primary human monocytes. IL-12p70 production in peripheral blood myeloid dendritic cells required combined stimulation of TLR7/8 ligands together with TLR4 or with TLR3 ligands. In the presence of T cell-derived IL-4, but not IFN-gamma, stimulation with TLR7/8 ligands was sufficient to stimulate IL-12p70 production. In monocytes, type I IFN was required but not sufficient to costimulate IL-12p70 induction by TLR8 ligation. Furthermore, TLR8 ligation inhibited LPS-induced IL-10 in monocytes, and LPS alone gained the ability to stimulate IL-12p70 in monocytes when the IL-10 receptor was blocked. Together, these results demonstrate that monocytes are licensed to synthesize IL-12p70 through type I IFN provided via the Toll/IL-1R domain-containing adaptor inducing IFN-beta pathway and the inhibition of IL-10, both provided by combined stimulation with TLR4 and TLR8 ligands, triggering a potent Th1 response before T cell help is established.  相似文献   

16.
17.
Ligation of FcgammaR concurrent with LPS stimulation of murine macrophages results in decreased IL-12 and increased IL-10 production. Because PI3K deficiency has been associated with increased IL-12, we hypothesized that PI3K was central to the anti-inflammatory effect of FcgammaR ligation on TLR-induced IL-12. FcgammaR ligation of macrophages increased pAKT, a correlate of PI3K activity, above levels induced by TLR4 or TLR2 agonists. This increase was blocked by PI3K inhibitors, wortmannin or LY294002, as was the effect of FcgammaR ligation on TLR-induced IL-12 and IL-10. LPS-induced binding of NF-kappaB to the IL-12 p40 promoter NF-kappaB-binding site was not affected by FcgammaR ligation at 1 h; however, by 4 h, NF-kappaB binding was markedly inhibited, confirmed in situ by chromatin immunoprecipitation analysis. This effect was wortmannin sensitive. Although TLR-induced IkappaBalpha degradation was not affected by FcgammaR ligation, IkappaBalpha accumulated in the nuclei of cells treated with LPS and FcgammaR ligation for 4 h, and was blocked by PI3K inhibitors. LPS-induced IFN regulatory factor-8/IFN consensus sequence-binding protein mRNA, and an IFN regulatory factor-8-dependent gene, Nos2, were inhibited by concurrent FcgammaR ligation, and this was also reversed by wortmannin. Thus, FcgammaR ligation modulates LPS-induced IL-12 via multiple PI3K-sensitive pathways that affect production, accumulation, and binding of key DNA-binding proteins required for IL-12 induction.  相似文献   

18.
Recent studies in vitro have demonstrated that LPS from Gram-negative bacteria are capable of inducing endothelial cells to express a cell surface property that promotes the adherence of neutrophils (polymorphonuclear cells, PMN). We have investigated the effects of LPS from Bacteroides fragilis, an organism documented to have little toxicity in vivo, on the induction of this property in human endothelial cells. Monolayers of cultured human umbilical vein endothelial cells (HUVE) exhibited no increase in adhesiveness for 51Cr-radiolabeled PMN after 4 h of exposure to B. fragilis LPS from 1 ng to 10 micrograms/ml. Escherichia coli LPS elicited a dose-dependent enhancement of HUVE adhesiveness for PMN over the same concentration range, reaching a maximum of 49.4 +/- 6.6% at 10 micrograms/ml. Like E. coli LPS, B. fragilis LPS converted chromogenic substrate in the Limulus amebocyte lysate assay, and was directly cytotoxic to bovine aortic endothelial cells. Both B. fragilis LPS activities required doses two-to-three log-fold higher than for E. coli LPS. In addition, we found that B. fragilis LPS inhibited the induction of HUVE adhesiveness for PMN by E. coli LPS. This inhibition was also dose-dependent, becoming maximal (greater than 80%) when B. fragilis LPS was in 10- to 20-fold excess. Tumor necrosis factor and IL-1, two monokines which also elicit HUVE adhesiveness for PMN, were not inhibited by B. fragilis LPS, suggesting a mechanism of HUVE activation by LPS which is signal-specific, and which recognizes specificities of LPS structure.  相似文献   

19.
Bruton's tyrosine kinase (Btk), the gene mutated in the human immunodeficiency X-linked agammaglobulinemia, is activated by LPS and is required for LPS-induced TNF production. In this study, we have investigated the role of Btk both in signaling via another TLR (TLR2) and in the production of other proinflammatory cytokines such as IL-1beta, IL-6, and IL-8. Our data show that in X-linked agammaglobulinemia PBMCs, stimulation with TLR4 (LPS) or TLR2 (N-palmitoyl-S-[2, 3-bis(palmitoyloxy)-(2R)-propyl]-(R)-cysteine) ligands produces significantly less TNF and IL-1beta than in normal controls. In contrast, a lack of Btk has no impact on the production of IL-6, IL-8, or the anti-inflammatory cytokine, IL-10. Our previous data suggested that Btk lies within a p38-dependent pathway that stabilizes TNF mRNA. Accordingly, TaqMan quantitative PCR analysis of actinomycin D time courses presented in this work shows that overexpression of Btk is able to stabilize TNF, but not IL-6 mRNA. Furthermore, using the p38 inhibitor SB203580, we show that the TLR4-induced production of TNF, but not IL-6, requires the activity of p38 MAPK. These data provide evidence for a common requirement for Btk in TLR2- and TLR4-mediated induction of two important proinflammatory cytokines, TNF and IL-1beta, and reveal important differences in the TLR-mediated signals required for the production of IL-6, IL-8, and IL-10.  相似文献   

20.
IL-10 has a wide range of effects tending to control inflammatory responses. We used flow cytometry to study IL-10 binding at the polymorphonuclear neutrophil (PMN) surface and its modulation by various proinflammatory agents. Little IL-10 bound to the surface of resting PMN. However, binding was strongly increased after stimulation with LPS and proinflammatory cytokines such as TNF and GM-CSF. IL-1 and IL-8 did not significantly modify IL-10 binding. Cycloheximide had no effect on TNF-induced IL-10 binding, strongly suggesting the release of a pre-existing pool of IL-10R rather than de novo receptor synthesis by PMN. This was confirmed by the inhibitory effect of pentoxifylline, an inhibitor of degranulation. The existence of an intracellular pool of IL-10R was shown by flow cytometry, immunocytochemical staining, and Western blotting with several anti-human IL-10R Abs. In subcellular fractions of resting PMN, IL-10R was mainly located in the specific granule fraction, and was absent from azurophil granules and cytosol. We also tested the mobilization of specific granules by measuring the release of lactoferrin, their reference marker. The differential effects of the proinflammatory agents on IL-10 binding matched their effects on lactoferrin release and may therefore be related to differential mobilization of specific granules by these agents. Furthermore, the kinetics of TNF-induced up-regulation of IL-10 binding to PMN ran parallel to the kinetics of the inhibitory effect of IL-10 on the oxidative burst, suggesting a key role of IL-10R mobilization from specific granules to the membranes in optimal regulation of inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号