首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We sought to establish a model of inflammatory bowel disease by augmenting the activity of the local immune system with Freund's complete adjuvant, and to determine if inducible nitric oxide synthase (iNOS) expression and peroxynitrite formation accompanied the inflammatory condition. In anaesthetized guinea-pigs, a loop of distal ileum received intraluminal 50% ethanol followed by Freund's complete adjuvant. Control animals were sham operated. When the animals were killed 7 or 14 days later, loop lavage fluid was examined for nitrite and PGE(2) levels; mucosal levels of granulocyte and macrophages were estimated by myeloperoxidase (MPO) and N-acetyl-D-glucosaminidase (NAG) activity, respectively. Cellular localization if iNOS and peroxynitrite formation were determined by immunohistochemistry with polyclonal antibodies directed against peptide epitopes of mouse iNOS and nitrotyrosine, respectfully. Adjuvant administration resulted in a persistent ileitis, featuring gut thickening, crypt hyperplasia, villus tip swelling and disruption, and cellular infiltration. Lavage levels of PGE(2) and nitrite were markedly elevated by adjuvant treatment. Immunoreactive iNOS and nitrotyrosine bordered on detectability in normal animals but were markedly evident with adjuvant treatment at day 7 and particularly day 14. Immunohistochemistry suggested that enteric neurons and epithelia were major sites of iNOS activity and peroxynitrite formation. We conclude that local administration of adjuvant establishes a chronic ileitis. Inducible nitric oxide synthase may contribute to the inflammatory process.  相似文献   

2.
The present study was undertaken to investigate the involvement of nitric oxide in the augmentation of benzo(a)pyrene induced cellular injury in polymorphonuclear leukocytes (PMNs). Polymorphs were isolated from the blood collected from Wistar rats treated with and without benzo(a)pyrene (50mg/kg, i.p.) through cardiac puncture. Catalase, superoxide dismutase (SOD), glutathione-s-transferase (GST), myeloperoxidase (MPO) and nitrite content were estimated in PMNs using standard procedures. Inducible nitric oxide synthase (iNOS) and cytochrome P-4501A1 (CYP1A1) expression in PMNs were also analyzed in presence or absence of nitric oxide synthase (NOS) inhibitors, aminoguanidine (AG, 5mM) and L-NG nitro L-arginine methyl ester (L-NAME, 1mM). A significant augmentation was observed in the nitrite content, activities of superoxide dismutase, MPO and GST and the expressions of iNOS and CYP1A1, however, catalase activity was attenuated in PMNs of benzo(a)pyrene treated rats as compared with their respective controls. AG and L-NAME resulted in a significant attenuation in nitrite content, MPO activity and iNOS expression; however, no significant alteration was observed in CYP1A1 expression. CYP1A1 inhibitor alpha-naphthoflavone inhibited the expression of iNOS in PMNs of benzo(a)pyrene treated animals significantly. The results obtained thus suggest that CYP1A1 induces iNOS expression leading to the generation of endogenous nitric oxide (NO) that could be responsible for the augmentation of myeloperoxidase-mediated benzo(a)pyrene-induced injury in PMNs.  相似文献   

3.
Inducible nitric oxide synthase (iNOS) contributes importantly to septic pulmonary protein leak in mice with septic acute lung injury (ALI). However, the role of alveolar macrophage (AM) iNOS in septic ALI is not known. Thus we assessed the specific effects of AM iNOS in murine septic ALI through selective AM depletion (via intratracheal instillation of clodronate liposomes) and subsequent AM reconstitution (via intratracheal instillation of donor iNOS+/+ or iNOS-/- AM). Sepsis was induced by cecal ligation and perforation, and ALI was assessed at 4 h: protein leak by the Evans blue (EB) dye method, neutrophil infiltration via myeloperoxidase (MPO) activity, and pulmonary iNOS mRNA expression via RT-PCR. In iNOS+/+ mice, AM depletion attenuated the sepsis-induced increases in pulmonary microvascular protein leak (0.3 +/- 0.1 vs. 1.4 +/- 0.1 microg EB.g lung(-1).min(-1); P < 0.05) and MPO activity (37 +/- 4 vs. 67 +/- 8 U/g lung; P < 0.05) compared with that shown in non-AM-depleted mice. In AM-depleted iNOS+/+ mice, septic pulmonary protein leak was restored by AM reconstitution with iNOS+/+ AM (0.9 +/- 0.3 microg EB.g lung(-1).min(-1)) but not with iNOS-/- donor AM. In iNOS-/- mice, sepsis did not induce pulmonary protein leak or iNOS mRNA expression, despite increased pulmonary MPO activity. However, AM depletion in iNOS-/- mice and subsequent reconstitution with iNOS+/+ donor AM resulted in significant sepsis-induced pulmonary protein leak and iNOS expression. Septic pulmonary MPO levels were similar in all AM-reconstituted groups. Thus septic pulmonary protein leak is absolutely dependent on the presence of functional AM and specifically on iNOS in AM. AM iNOS-dependent pulmonary protein leak was not mediated through changes in pulmonary neutrophil influx.  相似文献   

4.
Nitric oxide, superoxide, and lipid peroxidation (LPO) produced under oxidative stress may contribute to the development of postoperative adhesions. The objective of this study was to determine the effects of polychlorinated biphenyls (PCBs) on LPO, superoxide dismutase, myeloperoxidase (MPO), and nitrite/nitrate in human normal peritoneal and adhesion fibroblasts. PCB treatment reduced inducible nitric oxide synthase (iNOS) expression as well as levels of nitrite/nitrate in both cell lines. Although there was no difference in iNOS expression between the two cell lines, adhesion fibroblasts manifested lower basal levels of MPO compared to normal peritoneal fibroblasts. There was a reduction in MPO expression and its activity in response to PCB treatment in normal peritoneal fibroblasts; however, this effect was minimal in adhesion fibroblasts. Moreover, adhesion fibroblasts manifested higher levels of LPO compared to normal peritoneal fibroblasts, whereas PCB treatment increased LPO levels in both cell types. We conclude that PCBs promote the development of the adhesion phenotype by generating an oxidative stress environment. This is evident by lower iNOS, MPO, and nitrite/nitrate and a simultaneous increase in LPO. Loss of MPO activity, possibly through a mechanism involving MPO heme depletion and free iron release, is yet another source of oxidative stress.  相似文献   

5.
L-Arginine crosses the cell membrane primarily through the system y(+) transporter. The aim of this study was to investigate the role of L-arginine transport in nitric oxide (NO) production in aortas of rats with heart failure induced by myocardial infarction. Tumor necrosis factor-alpha levels in aortas of rats with heart failure were six times higher than in sham rats (P < 0.01). L-Arginine uptake was increased in aortas of rats with heart failure compared with sham rats (P < 0.01). Cationic amino acid transporter-2B and inducible (i) nitric oxide synthase (NOS) expression were increased in aortas of rats with heart failure compared with sham rats (P < 0.05). Aortic strips from rats with heart failure treated with L-arginine but not D-arginine increased NO production (P < 0.05). The effect of L-arginine on NO production was blocked by L-lysine, a basic amino acid that shares the same system y(+) transporter with L-arginine, and by the NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). Treatment with L-lysine and L-NAME in vivo decreased plasma nitrate and nitrite levels in rats with heart failure (P < 0.05). Our data demonstrate that NO production is dependent on iNOS activity and L-arginine uptake and suggest that L-arginine transport plays an important role in enhanced NO production in heart failure.  相似文献   

6.
Mice deficient in both inducible nitric oxide synthase (iNOS) and interleukin (IL)-10 (iNOS(-/-)/IL-10(-/-)) were created to examine the role of iNOS in spontaneously developing intestinal inflammation. IL-10(-/-)/iNOS(-/-) mice were compared with IL-10(-/-) (iNOS(+/+)) littermates over 6 mo. RT-PCR, Western blot analysis, and immunohistochemistry were performed to measure iNOS message and protein levels. Plasma nitrate/nitrite (NO(x)) levels were assessed by HPLC. Damage scores (macroscopic and microscopic) and granulocyte infiltration were assessed. At 3-4 wk, IL-10(-/-) and IL-10(-/-)/iNOS(-/-) mice had no signs of colonic inflammation or granulocyte infiltration. Plasma NO(x) levels were not different from controls. By 3-4 mo, IL-10(-/-) mice had increased damage scores and granulocyte infiltration concurrent with increased mRNA and protein synthesis (restricted to the epithelium) for iNOS in intestinal tissues but not other tissues. Plasma NO(x) levels increased fivefold. Interestingly, in the absence of iNOS induction or increased plasma NO(x), iNOS(-/-)/IL-10(-/-) mice had damage and granulocyte infiltration equivalent to those observed in IL-10(-/-) littermates. These data suggest that iNOS does not impact on the development or severity of spontaneous chronic inflammation in IL-10-deficient mice.  相似文献   

7.
OBJECTIVE AND DESIGN: The involvement of PAF, TXA2 and NO in LPS-induced pulmonary neutrophil sequestration an hyperlactataemia was studied in conscious rats. As pharmacological tools WEB 2170 (PAF receptor antagonist, 20 mg/kg), camongarel (inhibitor of TXA2 synthase, 30 mg/kg), N(G)-nitro L-arginine methyl ester (L-NAME -- non-selective nitric oxide synthase inhibitor, 30 mg/kg) were used. METHODS: Plasma lactate and NO2-/NO3- levels as well as myeloperoxidase (MPO) activity in lung tissue were measured one and five hours after administration of LPS (4 mg/kg(-1)). RESULTS: LPS induced a twofold increase in plasma lactate levels and nearly 10-fold increase in plasma NO2-/NO3- levels five but not one hour after LPS administration. However, LPS-induced increase in pulmonary MPO activity was seen at both time intervals. Neither WEB 2170 nor camonagrel changed one or five hours responses to LPS (lactate, NO2-/NO3-, MPO). L-NAME potentiated LPS-induced rise in MPO activity in the lung and this potentiation was not affected by WEB 2170 or camonagrel. L-NAME supressed plasma NO2-/NO3- response and substantially potentiated plasma lactate response to LPS and both effects were partially reversed by WEB 2170 or camonagrel. CONCLUSIONS: In summary, we demonstrated that PAF and TXA 2 play a role in overproduction of lactate during endotoxaemia in NO-deficient rats. However, these lipids do not mediate endotoxin-induced sequestration of neutrophils in the lung.  相似文献   

8.
Elayan HH  Kennedy BP  Ziegler MG 《Life sciences》2002,70(21):2481-2491
It is generally thought that inhibition of nitric oxide synthase leads to blood pressure elevation largely through reduction in vascular levels of the vasodilator nitric oxide. However, there are several reports suggesting that NO synthase inhibitors cause adrenal epinephrine (E) release by both central and peripheral mechanisms. We investigated the role of adrenal E in the pressor effects of the nitric oxide synthase inhibitor L-NAME in the pithed rat to help distinguish central from peripherally mediated actions. L-NAME (10 mg/kg) raised both systolic and diastolic BP by about 30 mm Hg (P < .01) in the absence of exogenous electrical stimulation of sympathetic nerves. During stimulation at 10 V and frequencies of 1 or 2 Hz, systolic BP was about 70 mm Hg higher in L-NAME treated rats than in drug free stimulated rats. This enhancement of systolic BP by L-NAME was less pronounced at 5 or 10 Hz stimulation frequencies. Following these types of electrical stimulations of pithed rats, both plasma norepinephrine (NE) and E levels were dramatically elevated above resting plasma levels. L-NAME pretreatment of these electrically stimulated rats increased plasma E levels by an additional 60% and decreased NE by 18%. Acute adrenalectomy dramatically reduced plasma E levels and abolished the ability of L-NAME to enhance the pressor effect of sympathetic stimulation. In contrast, acute adrenalectomy of unstimulated pithed rats did not significantly reduce the pressor response to L-NAME. We conclude that adrenal E release may mediate much of the systolic pressor response of L-NAME in the stimulated pithed rat, but the magnitude of this effect varies with stimulation frequency. Since pithing disrupts central pathways, this induction of adrenal E release by L-NAME is a peripheral effect.  相似文献   

9.
Nitric oxide production, nitric oxide synthase (NOS) and mitochondrial nitrite-reducing activities in roots, leaves and stems of different developmental stages were investigated, using potted 3-year-old apple (Malus domestica Borkh.) trees. The arginine-dependent NOS activity is sensitive to NOS inhibitor L-NAME and aminoguanidine (AG), with L-NAME being more effective than AG. Endogenous NO production, NOS and mitochondrial nitrite-reducing activities are predominately presented in young leaves and especially in young white roots and young stems. Root and stem mitochondria can reduce nitrite to nitric oxide at the expense of NADH, however, this mitochondrial nitrite-reducing activity is absent in leaves.  相似文献   

10.
Endogenously produced nitric oxide is a recognized regulator of physiological lung events, such as a neurotransmitter and a proinflammatory mediator. We tested the differences between chronic and acute nitric oxide inhibition by N(omega)-nitro-L-arginine methyl ester (L-NAME) treatment in lung mechanics, inflammation, and airway remodeling in an experimental asthma model in guinea pigs. Both acute and chronic L-NAME treatment reduced exhaled nitric oxide in sensitized animals (P < 0.001). Chronic L-NAME treatment increased baseline and maximal responses after antigen challenge of respiratory system resistance and reduced peribronchial edema and mononuclear cells airway infiltration (P < 0.05). Acute administration of L-NAME increased maximal values of respiratory system elastance and reduced mononuclear cells and eosinophils in airway wall (P < 0.05). Chronic ovalbumin exposure resulted in airway wall thickening due to an increase in collagen content (P < 0.005). Chronic nitric oxide inhibition increased collagen deposition in airway wall in sensitized animals (P < 0.05). These data support the hypothesis that in this model nitric oxide acts as a bronchodilator, mainly in proximal airways. Furthermore, chronic nitric oxide inhibition was effective in reducing edema and mononuclear cells in airway wall. However, airway eosinophilic inflammation was unaltered by chronic L-NAME treatment. In addition, nitric oxide inhibition upregulates collagen deposition in airway walls.  相似文献   

11.
Tumour necrosis factor-alpha (TNF-alpha) is a pro-inflammatory cytokine which is shed in its soluble form by a disintegrin and metalloproteinase (ADAM) called TNF-alpha convertase (TACE; ADAM17). TNF-alpha plays a role in inflammatory bowel disease (IBD) and is involved in the expression of inducible nitric oxide synthase (iNOS) which has also been implicated in IBD. The study was designed to investigate whether colitis induced by trinitrobenzene sulphonic acid (TNBS) in rats produces an increase in TACE activity and/or expression and whether its pharmacological inhibition reduces TNF-alpha levels, iNOS expression and colonic damage in this model. TNBS (30 mg in 0.4 ml of 50% ethanol) was instilled into the colon of female Wistar rats. Saline or TACE inhibitor BB1101 (10 mg/kg/day) was administered intraperitoneally 5 days after TNBS instillation. On day 10, colons were removed and assessed for pathological score, myeloperoxidase (MPO), NO synthase (NOS), TACE enzymatic activity and protein levels, colonic TNF-alpha and NOx- levels. Instillation of TNBS caused an increase in TACE activity and expression and the release of TNF-alpha. TNBS also resulted in iNOS expression and colonic damage. BB1101 blocked TNBS-induced increase in TACE activity, TNF-alpha release and iNOS expression. Concomitantly, BB1101 ameliorated TNBS-induced colonic damage and inflammation. TNBS causes TNF-alpha release by an increase in TACE activity and expression and this results in the expression of iNOS and subsequent inflammation, suggesting that TACE inhibition may prove useful as a therapeutic means in IBD.  相似文献   

12.
Glucagon-like peptide-2 (GLP-2) is an important regulator of nutritional absorptive capacity with anti-inflammatory actions. We hypothesized that GLP-2 reduces intestinal mucosal inflammation by activation of vasoactive intestinal polypeptide (VIP) neurons of the submucosal plexus. Ileitis or colitis was induced in rats by injection of trinitrobenzene sulfonic acid (TNBS), or colitis was induced by administration of dextran sodium sulfate (DSS) in drinking water. Subsets of animals received (1-33)-GLP-2 (50 mug/kg sc bid) either immediately or 2 days after the establishment of inflammation and were followed for 3-5 days. The involvement of VIP neurons was assessed by concomitant administration of GLP-2 and the VIP antagonist [Lys(1)-Pro(2,5)-Arg(3,4)-Tyr(6)]VIP and by immunohistochemical labeling of GLP-2-activated neurons. In all models, GLP-2 treatment, whether given immediately or delayed until inflammation was established, resulted in significant improvements in animal weights, mucosal inflammation indices (myeloperoxidase levels, histological mucosal scores), and reduced levels of inflammatory cytokines (IFN-gamma, TNF-alpha, IL-1beta) and inducible nitric oxide synthase, with increased levels of IL-10 in TNBS ileitis and DSS colitis. Reduced rates of crypt cell proliferation and of apoptosis within crypts in inflamed tissues were also noted with GLP-2 treatment. These effects were abolished with coadministration of GLP-2 and the VIP antagonist. GLP-2 was shown to activate neurons and to increase the number of cells expressing VIP in the submucosal plexus of the ileum. These findings suggest that GLP-2 acts as an anti-inflammatory agent through activation of enteric VIP neurons, independent of proliferative effects. They support further studies to examine the role of neural signaling in the regulation of intestinal inflammation.  相似文献   

13.
Oxidative stress plays a crucial role in the manifestations of maneb (MB) and paraquat (PQ)-induced toxicity including MB+PQ-induced Parkinson's disease (PD). Polymorphonuclear leukocytes (PMNs) actively participate in the oxidative stress-mediated inflammation and organ toxicity. The present study was undertaken to investigate the MB- and/or PQ-induced alterations in the indices of oxidative stress in rat PMNs. Animals were treated with or without MB and/or PQ in an exposure time dependent manner. In some sets of experiments, the animals were pre-treated with NOS inhibitors N(G)-nitro-L-arginine methyl ester (L-NAME) and aminoguanidine (AG) along with respective controls. A significant increase in myeloperoxidase (MPO), superoxide dismutase (SOD), nitric oxide, iNOS expression and lipid peroxidation (LPO) was observed in PMNs of MB- and/or PQ-treated animals, while catalase and glutathione S-transferase (GST) activities were attenuated. L-NAME and AG significantly reduced the augmented nitrite content, iNOS expression and MPO activity to control level in MB and PQ exposed animals. Although the augmented LPO was also reduced significantly in L-NAME and AG treated rat PMNs, the level was still higher as compared with controls. Alterations induced in SOD and GST activities were not affected by NOS inhibitors. The results thus suggest that MB and/or PQ induce iNOS-mediated nitric oxide production, which in turn increases MPO activity and lipid peroxidation, thereby oxidative stress.  相似文献   

14.
Oxidative stress plays a crucial role in the manifestations of maneb (MB) and paraquat (PQ)-induced toxicity including MB+PQ-induced Parkinson's disease (PD). Polymorphonuclear leukocytes (PMNs) actively participate in the oxidative stress-mediated inflammation and organ toxicity. The present study was undertaken to investigate the MB- and/or PQ-induced alterations in the indices of oxidative stress in rat PMNs. Animals were treated with or without MB and/or PQ in an exposure time dependent manner. In some sets of experiments, the animals were pre-treated with NOS inhibitors NG-nitro-L-arginine methyl ester (L-NAME) and aminoguanidine (AG) along with respective controls. A significant increase in myeloperoxidase (MPO), superoxide dismutase (SOD), nitric oxide, iNOS expression and lipid peroxidation (LPO) was observed in PMNs of MB- and/or PQ-treated animals, while catalase and glutathione S-transferase (GST) activities were attenuated. L-NAME and AG significantly reduced the augmented nitrite content, iNOS expression and MPO activity to control level in MB and PQ exposed animals. Although the augmented LPO was also reduced significantly in L-NAME and AG treated rat PMNs, the level was still higher as compared with controls. Alterations induced in SOD and GST activities were not affected by NOS inhibitors. The results thus suggest that MB and/or PQ induce iNOS-mediated nitric oxide production, which in turn increases MPO activity and lipid peroxidation, thereby oxidative stress.  相似文献   

15.
Our aim was to investigate whether guinea pig urothelium-derived bioactivities compatible with the existence of urothelium-derived inhibitory factor could be demonstrated by in vitro serial bioassay and whether purinergic P1 receptor agonists, nitric oxide, nitrite or prostaglandins might explain observed activities. In a cascade superfusion system, urothelium-denuded guinea pig ureters were used as bioassay tissues, recording their spontaneous rhythmic contractions in presence of scopolamine. Urothelium-intact or -denuded guinea pig urinary bladders were used as donor tissues, stimulated by intermittent application of carbachol before or during the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME), the adenosine/P1 nucleoside receptor antagonist 8-(p-sulfophenyl)theophylline (8-PST) or the cyclo-oxygenase inhibitor diclofenac infused to bath donor and bioassay tissues. The spontaneous contractions of bioassay ureters were unaltered by application of carbachol 1–5 µM in the presence of scopolamine 5–30 µM. When carbachol was applied over the urothelium-denuded bladder, the assay ureter contraction rate was unaltered. Introducing carbachol over the everted urothelium-intact bladder significantly inhibited the contraction frequency of the assay ureter, suggesting the transfer of an inhibitory activity from the bladder to the assay ureter. The transmissible inhibitory activity was not markedly antagonized by L-NAME, 8-PST or diclofenac, while L-NAME nearly abolished nitrite release from the urothelium-intact bladder preparations. We suggest that urothelium-derived inhibitory factor is a transmissible entity over a significant distance as demonstrated in this novel cascade superfusion assay and seems less likely to be nitric oxide, nitrite, an adenosine receptor agonist or subject to inhibition by administration of a cyclo-oxygenase inhibitor.  相似文献   

16.
The aim of this study was to assess the effects of vitamin C (ascorbic acid) on coronary flow and oxidative stress markers with or without non-specific inhibition of nitric oxide synthase by N(ω)-nitro-L-arginine monomethyl ester (L-NAME) in isolated rat hearts. The hearts of male Wistar albino rats (n = 12, age 8 weeks, body mass 180-200 g) were retrograde perfused according to the Langendorff technique at gradually increased constant perfusion pressure (40-120 cm H2O). Coronary flow, nitrite outflow, superoxide anion production, and index of lipid peroxidation (by measuring thiobarbituric acid reactive substances) in coronary effluent were determined. The experiments were performed during control conditions and in presence of vitamin C (100 μM) alone or vitamin C (100 μM) + L-NAME (30 μM). Administration of vitamin C induced only increase of nitrite levels, while vitamin C + L-NAME induced significant decrease of coronary flow above autoregulatory range, i.e. especially at higher coronary perfusion pressure (CPP) values, accompanied with similar dynamic in nitrite outflow. Vitamin C + L-NAME also induced significant decrease in TBARS production. The results of our study show no significant effects of vitamin C administration either on ROS levels or on coronary flow in isolated rat heart.  相似文献   

17.
Both nitric oxide and prostaglandins induce vasodilatation which is an important feature of local inflammation. The purpose of the study described here was to investigate a possible interaction between these two types of mediators in an experimental model of allergic conjunctivitis. A conjunctival allergic reaction was induced with antigen in sensitized guinea pigs. Conjunctival vascular permeability changes were evaluated with the prophylactic use of an inhibitor of nitric oxide synthase (L-NAME) and a cycloxygenase inhibitor (indomethacin). To study a possible interaction between nitric oxide and prostaglandin synthesis in the acute phase of allergic conjunctivitis, the levels of nitrite and PGE2 were determined in lavage fluid. The prophylactic use of L-NAME on the formation of conjunctival edema in response to topical PGD2 administration was studied by measurement of albumin levels in lavage fluid. Both nitric oxide and PGE2 are synthesized in response to antigen provocation and after histamine administration. Nitric oxide and PGE2 are produced simultaneously in the conjunctiva and they showed identical synthesis profiles in response to antigen provocation. Pretreatment with L-NAME inhibited the synthesis of PGE2 whereas exogenous administration of nitric oxide increased the level of PGE2 in lavage fluid. Prophylactic treatment with L-NAME significantly inhibited the PGD2 induced albumin extravasation. Nitric oxide seems to play an important role in the acute phase of allergic conjunctivitis it may stimulate PGE2 production and acts as a secondary mediator in PGD2 and histamine induced conjunctival edema.  相似文献   

18.
Inflammatory bowel disease (IBD) is a chronic inflammatory condition with an unknown etiology. Nicorandil, a potassium channel opener, has been used for many years for the treatment of angina. Recently, it has been shown that nicorandil possesses some novel traits such as anti-apoptotic, gastroprotective, free radical scavenging, and anti-inflammatory properties. Therefore, we set out to examine the possible beneficial effect of nicorandil in a rat model of IBD. Colitis was induced by rectal administration of 2,4,6-trintrobenzene sulphonic acid (TNBS) into rats. Groups of animals used in this study were sham, control, and exposure to dexamethasone, nicorandil, glibenclamid (a pure adenosine triphosphate sensitive potassium channel (KATP) blocker), or nicorandil plus glibenclamid. Drugs were administered by gavage and animals were sacrificed after 7 days. Biochemical markers, including TNF-α and IL-1β, ferric reducing/antioxidant power (FRAP), myeloperoxidase (MPO) activity and thiobarbitoric acid-reactive substance (TBARS), were measured in the homogenate of colonic tissue. Results indicate that nicorandil significantly reduces macroscopic and histological damage induced by TNBS. Nicorandil diminishes MPO activity and levels of TBARS, TNF-∢, and IL-1β in damaged colonic tissue with a concomitant increase in FRAP value (P<0.01). These effects were not reversed by coadministration of glibenclamide. In conclusion, nicorandil is able to ameliorate experimental IBD with a dose in which it does not show any anti-hypertensive effect, and the mechanism of which is partially or totally independent from KATP channels. It is hypothesized that nitric oxide donation and free-radical scavenging properties of nicorandil upregulate endothelial nitric oxide synthase may be responsible for this phenomenon. These findings suggest that nicorandil can be useful in treatment of IBD, although further investigations are needed to elucidate the mechanisms involved.  相似文献   

19.
The attenuation of baroreflex gain associated with hereditary hypertension could involve abnormal signalling by nitric oxide or substance P. Baroreflex gain was measured in age-matched male genetically hypertensive (GH) and nonnotensive (N) anaesthetised rats from heart rate changes in response to i.v. phenylephrine or sodium nitroprusside. In subgroups of these animals, nitric oxide synthesis was inhibited using NG-nitro-L-arginine methyl ester (L-NAME, 30 mg x kg(-1) i.v.), substance P transmission was blocked using the antagonist SR 140333 (360 nmoles x kg(-1) i.v.) or substance P release was inhibited with resiniferatoxin (4 doses of 0.3 microg x kg(-1) i.v. at 4 min intervals). Baroreflex gain was markedly reduced in GH compared to N animals (N -0.37 +/- 0.04 beat x min(-1) x mm Hg(-1), GH -0.17 +/- 0.02 beat x min(-1) x mm Hg(-1), p < 0.0001). Inhibition of nitric oxide synthase increased baroreflex gain in each strain, but the inter-strain difference in gain persisted (post-treatment N -0.57 +/- 0.07 beat x min(-1) x mm Hg(-1), GH -0.24 +/- 0.05 beat x min(-1) x mm Hg(-1) (p < 0.001). Blockade of receptors or inhibition of substance P release did not affect gain in either strain. Nitric oxide, but not substance P, appears to play an inhibitory role in the rat arterial baroreflex. Impairment of baroreflex gain in GH rats is not secondary to altered nitric oxide signaling.  相似文献   

20.
Adrenomedullin (AM) is a 52 amino acid peptide and member of the calcitonin gene-related peptide (CGRP) super family. Given that AM has emerged as a potential immuno-regulatory and anti-inflammatory agent in various experimental models, this study has deepened into its possible therapeutic effect in intestinal inflammation analyzing the responses in both acute and chronic (14 and 21 days) phases of TNBS-induced colitis in rats. In the acute model, AM treatment reduced the incidence of diarrhea and the severity of colonic damage, and improved the survival rate at the three doses assayed (50, 100, and 200ng/kg animal). AM administration was able to reduce the early production of TNF-alpha and collaborated to maintaining basal levels of IFN-gamma and IL-10. In the chronic studies the peptide attenuated the extent of the damage with lesser incidence of weight loss and diarrhea (50 and 100ng/kg animal). Cellular neutrophil infiltration, with the subsequent increase in myeloperoxidase (MPO) levels caused by TNBS, was reduced after chronic AM administration. The peptide played a role in the evolution of Th1/Th2 cytokines balance and chronic disease recuperation: levels of proinflammatory TNF-alpha and IFN-gamma decreased and anti-inflammatory IL-10 increased significantly. Cyclooxygenase-2 (COX-2) and nitric oxide synthase (iNOS) protein expression were not modified by AM administration, although a reduction of nitric oxide (NO) production could be detected in the chronic model. These results support a role of AM as an anti-inflammatory factor with beneficial effects in intestinal inflammatory colitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号