首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the branching enzyme (EC 2.4.1.18) is a member of the alpha-amylase family, the characteristics are not understood. The thermostable branching enzyme gene from Bacillus stearothermophilus TRBE14 was cloned and expressed in Escherichia coli. The branching enzyme was purified to homogeneity, and various enzymatic properties were analyzed by our improved assay method. About 80% of activity was retained when the enzyme was heated at 60 degrees C for 30 min, and the optimum temperature for activity was around 50 degrees C. The enzyme was stable in the range of pH 7.5 to 9.5, and the optimum pH was 7.5. The nucleotide sequence of the gene was determined, and the active center of the enzyme was analyzed by means of site-directed mutagenesis. The catalytic residues were tentatively identified as two Asp residues and a Glu residue by comparison of the amino acid sequences of various branching enzymes from different sources and enzymes of the alpha-amylase family. When the Asp residues and Glu were replaced by Asn and Gln, respectively, the branching enzyme activities disappeared. The results suggested that these three residues are the catalytic residues and that the catalytic mechanism of the branching enzyme is basically identical to that of alpha-amylase. On the basis of these results, four conserved regions including catalytic residues and most of the substrate-binding residues of various branching enzymes are proposed.  相似文献   

2.
1. Triosephosphate isomerase from Bacillus stearothermophilus is a dimeric enzyme comprising two chemically identical polypeptide chains. 2. The nearly complete amino acid sequence of the subunit polypeptide chain has been established from sequences of tryptic, chymotryptic and lysine-blocked tyrptic fragments of S-[2-14C]carboxymethylated enzyme. Overlaps not established by experimental data have been provisionally established from considerations of sequence homology with previously established sequences for the rabbit, chicken and coelacanth enzymes. The nearly complete sequence of the 249 residues is as follows. (See Text). 3. Comparison of the thermophile and chicken muscle enzymes shows that 40% of the residues are in identical sequence. 4. Correlation of the sequence of the thermophile enzyme with the three-dimensional structure of the muscle enzyme shows that residues in the catalytic site and in the subunit interface are strongly conserved. Possible correlations between sequence changes and thermal stabilisation of the dimeric structure are also noted.  相似文献   

3.
N Uozumi  T Matsuda  N Tsukagoshi  S Udaka 《Biochemistry》1991,30(18):4594-4599
Bacillus polymyxa beta-amylase contains three cysteine residues at positions 83, 91, and 323, which can react with sulfhydryl reagents. To determine the role of cysteine residues in the catalytic reaction, cysteine residues were mutated to construct four mutant enzymes, C83S, C91V, C323S, and C-free. Wild-type and mutant forms of the enzyme were expressed in, and purified to homogeneity from, Bacillus subtilis. A disulfide bond between Cys83 and Cys91 was identified by isolation of tryptic peptides bearing a fluorescent label, IAEDANS, from wild-type and C91 V enzymes followed by amino acid sequencing. Therefore, only Cys323 contains a free SH group. Replacement of cysteine residues with serine or valine residues resulted in a significant decrease in the kcat/Km value of the enzyme. C323S, containing no free SH group, however, retained a high specific activity, approximately 20% of the wild-type enzyme. None of the cysteine residues participate directly in the catalytic reaction.  相似文献   

4.
The gene for a new subtilisin from the alkaliphilic Bacillus sp. KSM-LD1 was cloned and sequenced. The open reading frame of the gene encoded a 97 amino-acid prepro-peptide plus a 307 amino-acid mature enzyme that contained a possible catalytic triad of residues, Asp32, His66, and Ser224. The deduced amino acid sequence of the mature enzyme (LD1) showed approximately 65% identity to those of subtilisins SprC and SprD from alkaliphilic Bacillus sp. LG12. The amino acid sequence identities of LD1 to those of previously reported true subtilisins and high-alkaline proteases were below 60%. LD1 was characteristically stable during incubation with surfactants and chemical oxidants. Interestingly, an oxidizable Met residue is located next to the catalytic Ser224 of the enzyme as in the cases of the oxidation-susceptible subtilisins reported to date.  相似文献   

5.
Shirai T  Hung VS  Morinaka K  Kobayashi T  Ito S 《Proteins》2008,73(1):126-133
The crystal structure of the GH13 alpha-glucosidase (GSJ) from deep-sea bacterium Geobacillus sp. strain HTA-462 was determined to a 2.0 A resolution. Comparisons of the GSJ structure with that of other GH13 enzymes with different catalytic activities revealed that the catalytic cleft of GSJ was widely opened when compared with the homologues. The wide opening of the catalytic cleft originated from conformational changes of active site residues and disorder of the regions close to the catalytic center. This structural feature of GSJ would explain the ability of this enzyme to accept a wide variety of nonsugar molecules as acceptors in the transglycosylation reaction.  相似文献   

6.
A thermostable aspartase gene (aspB) from Bacillus sp. YM55-1 was cloned and the gene sequenced. The aspB gene (1407 bp ORF) encodes a protein with a molecular mass of 51 627 Da, consisting of 468 amino-acid residues. An amino-acid sequence comparison revealed that Bacillus YM55-1 aspartase shared 71% homology with Bacillus subtilis aspartase and 49% with Escherichia coli and Pseudomonas fluorescens aspartases. The E. coli TK237/pUCASPB strain, which was obtained by transforming E. coli TK237 (aspartase-null strain) with a vector plasmid (pUCASPB) containing the cloned aspB gene, produced a large amount of the enzyme corresponding to > 10% of the total soluble protein. The over-expressed recombinant enzyme (native molecular mass: 200 kDa) was purified effectively and rapidly using heat treatment and affinity chromatography. In order to probe the catalytic residues of this enzyme, two conserved amino-acid residues, Lys183 and His134, were individually mutated to alanine. Although the tertiary structure of each mutant was estimated to be the same as that of wild-type aspartase in CD and fluorescence measurements, the Lys183Ala mutant lost its activity completely, whereas His134Ala retained full activity. This finding suggests that Lys183 may be involved in the catalytic activity of this thermostable Bacillus YM55-1 aspartase.  相似文献   

7.
A novel combination of two classic catalytic schemes   总被引:2,自引:0,他引:2  
The crystal structure of an alkaline Bacillus cellulase catalytic core, from glucoside hydrolase family 5, reveals a novel combination of the catalytic machinery of two classic textbook enzymes. The enzyme has the expected two glutamate residues in close proximity to one another in the active-site that are typical of retaining cellulases. However, the proton donor, glutamate 139 is also unexpectedly a member of a serine-histidine-glutamate catalytic triad, forming a novel combination of catalytic machineries. Structure and sequence analysis of glucoside hydrolase family 5 reveal that the triad is highly conserved, but with variations at the equivalent of the serine position. We speculate that the purpose of this novel catalytic triad is to control the protonation of the acid/base glutamate, facilitating the first step of the catalytic reaction, protonation of the substrate, by the proton donor glutamate. If correct, this will be a novel use for a catalytic triad.  相似文献   

8.
An exopolygalacturonase (exo-PGase; EC 3.2.1.82) was found in the culture broth of a Bacillus isolate. The gene encoding the exo-PGase, pehK, was cloned by polymerase chain reaction using mixed primers designed from N-terminal and internal amino acid (aa) sequences of the enzyme (PehK). The determined nucleotide (nt) sequence of pehK revealed a 2940 bp open reading frame (980 aa) that encoded a putative signal sequence (27 aa) and a mature protein (953 aa; 103810 Da). The recombinant enzyme was purified to homogeneity from a culture broth of Bacillus subtilis harboring a pehK-containing plasmid. It had a molecular mass of 105 kDa and a pI value of 5.0. The maximum activity was observed at pH 8 and 55 degrees C in Tris-HCl buffer. The degradation products from polygalacturonic or oligogalacturonic acids were digalacturonic acid, like the exo-PGases, PehX of Erwinia chrysanthemi and PehB of Ralstonia solanacearum. The deduced aa sequence of PehK exhibited moderate homology to those of PehX and PehB with approx. 30% identity for both. High homology was observed in a suitably aligned internal region of the three enzymes (65% identity), and some of the conserved aa residues appeared to form the catalytic core of the enzymes.  相似文献   

9.
The primary structure of the tyrosyl-tRNA synthetase (TyrTS) of Bacillus stearothermophilus has been deduced from the nucleotide sequence of the cloned gene and from the amino acid sequence of peptides isolated from the purified enzyme. TyrTS (B. stearothermophilus) has a molecular weight of 47316 and the sequence is 56% homologous with that of TyrTS (Escherichia coli). The binding domain for the substrate intermediate tyrosyl adenylate is located in the N-terminal portion of the polypeptide and is highly conserved in both enzymes. Several lysine residues, which are shielded from acetylation in the TyrTS-tRNATyr complex, are also located in a stretch of highly conserved sequence.  相似文献   

10.
The alpha-galactosidase gene aga36A of Clostridium stercorarium F-9 was cloned, sequenced, and expressed in Escherichia coli. The aga36A gene consists of 2,208 nucleotides encoding a protein of 736 amino acids with a predicted molecular weight of 84,786. Aga36A is an enzyme classified in family 36 of the glycoside hydrolases and showed sequence similarity with some enzymes of family 36 such as Geobacillus (formerly Bacillus) stearothermophilus GalA (57%) and AgaN (52%). The enzyme purified from a recombinant E. coli is optimally active at 70 degrees C and pH 6.0. The enzyme hydrolyzed raffinose and guar gum with specific activities of 3.0 U/mg and 0.46 U/mg for the respective substrates.  相似文献   

11.
An alkaliphilic Bacillus sp. strain, KSM-64, produces a mesophilic alkaline endo-1,4-beta-glucanase that is suitable for use in detergents. The deduced amino acid sequence of the enzyme showed very high homology to that of a thermostable alkaline enzyme from alkaliphilic Bacillus sp. strain KSM-S237. Analysis of chimeric enzymes produced from the genes encoding the mesophilic and thermostable enzymes suggested that the lysine residues at positions 137, 179, and 194 are responsible for their thermal stabilization. Replacing the corresponding Glu137, Asn179, and/or Asp194 with lysine by site-directed mutagenesis made the mesophilic enzyme more thermostable. Analyses of the hydrophilicity of deduced amino acid sequences and isoelectric focusing of the modified enzymes suggested that these three specific lysine residues and their replacements are all located on the surface of the enzyme molecule. This fact further suggested that specific ionic interaction is involved in the thermal stabilization of the enzyme.  相似文献   

12.
吴襟  张树政 《生物工程学报》2008,24(10):1740-1746
从巨大芽孢杆菌(Bacillus megaterium)的全基因组DNA文库中筛选出一个b-淀粉酶基因amyG, 分析测定了其核苷酸序列并进行了诱导表达; 其中amyG编码的蛋白有545个氨基酸、分子量为60.194 kD, 与已报道的巨大芽孢杆菌DSM319的b-淀粉酶序列有着94.5%的同源性。经氨基酸序列比较分析发现, AmyG从N末端到C末端依次由信号肽域、糖基水解酶催化功能域和淀粉结合域3个功能域组成。其中催化功能域里含有第14家族糖基水解酶常见的几个高度保守的酶催化活性区。经多步纯化, 重组酶的比活共提高了7.4倍, 获得凝胶电泳均一的蛋白样品; 经SDS-PAGE电泳测定, 酶AmyG的分子量为57 kD。该酶的最适反应温度为60oC, 最适反应pH为7.0; 在温度不超过60oC时, 酶活较稳定; AmyG能迅速降解淀粉生成麦芽糖, 属于外切b-糖苷酶。  相似文献   

13.
The glutamyl endopeptidase gene of Bacillus intermedius was cloned from a genomic library expressed in Bacillus subtilis and sequenced (EMBL accession number Y15136). The encoded preproenzyme contains 303 amino acid residues; the mature 23-kDa enzyme consists of 215 residues. The mature enzyme reveals 38% of identical residues when aligned with the glutamyl endopeptidase from Bacillus licheniformis, whereas only five invariant residues were found among all known glutamyl endopeptidases. The amino acid residues that form the catalytic triad (H47, D98, and S171) as well as H186 participating in the binding of the substrate carboxyl group were identified. It seems that the structural elements responsible for the function of glutamyl endopeptidases from various sources are highly variable.  相似文献   

14.
The sequence Gly-Asp-Met-Asp, spanning positions 189-192 of rat DNA polymerase beta, is similar to the sequence motif Gly-Asp-Thr-Asp that is highly conserved in a number of replicative DNA polymerases from eukaryotic cells, viruses, and phages. The role of this sequence in the catalytic function of rat DNA polymerase beta was investigated by individually changing each amino acid in this region by site-directed mutagenesis. The mutant enzymes DE190 and DE192, in which aspartic acid residues at positions 190 and 192, respectively, were replaced by glutamic acid, showed about 0.1% activity of the wild-type enzyme. On the other hand, the replacement of Gly-189 by alanine or Met-191 by isoleucine or threonine only slightly affected the enzyme activity. A gel mobility shift assay showed that DNA complexes with enzyme DE190 and especially with DE192 were less stable than the corresponding complex with the wild-type enzyme. Kinetic analysis with these mutant enzymes indicate that their Km's for primer DNA were about 10-fold higher than that of the wild type, while Km's for deoxyribonucleoside triphosphate were not changed. Since neither DE190 nor DE192 had any significant alteration in secondary structure, our results suggest that both Asp-190 and Asp-192 are located in the active site and are involved in the interaction of DNA polymerase beta with primer.  相似文献   

15.
Choi WC  Kim MH  Ro HS  Ryu SR  Oh TK  Lee JK 《FEBS letters》2005,579(16):3461-3466
Lipase L1 from Geobacillus stearothermophilus L1 contains an unusual extra domain, making a tight intramolecular interaction with the main catalytic domain through a Zn2+-binding coordination. To elucidate the role of the Zn2+, we disrupted the Zn2+-binding site by mutating the zinc-ligand residues (H87A, D61A/H87A, and D61A/H81A/H87A/D238A). The activity vs. temperature profiles of the mutant enzymes showed that the disruption of the Zn2+-binding site resulted in a notable decrease in the optimal temperature for maximal activity from 60 to 45-50 degrees C. The mutations also abolished the Zn2+-induced thermal stabilization. The wild-type enzyme revealed a 34.6-fold increase in stabilization with the addition of Zn2+ at 60 degrees C, whereas the mutant enzymes exhibited no response to Zn2+. Additional circular dichroism spectroscopy studies also confirmed the structural stabilizing role of Zn2+ on lipase L1 at elevated temperatures.  相似文献   

16.
alpha-L-Arabinofuranosidases (AFases; EC 3.2.1.55) are exo-type enzymes, which hydrolyze terminal nonreducing arabinose residues from various polysaccharides such as arabinan and arabinoxylan. Genome-wide BLAST search showed that various bacterial strains possess the putative AFase genes with well-conserved motif sequences at the nucleotide and amino acid sequence levels. In this study, two sets of degenerate PCR primers were designed and tested to detect putative AFase genes, based on their three highly conserved amino acid blocks (PGGNFV, GNEMDG, and DEWNVW). Among 20 Bacillus-associated species, 13 species were revealed to have putative AFase genes in their genome and they share over 67% of amino acid identities with each other. Based on the partial sequence obtained from an isolate, an AFase from Geobacillus sp. was cloned and expressed in E. coli. Enzymatic characterization has verified that the resulting enzyme corresponds to a typical AFase. Accordingly, degenerate PCR primers developed in this work can be used for fast, easy, and specific detection and isolation of putative AFase genes from bacterial cells.  相似文献   

17.
Identification of catalytic residues can help unveil interesting attributes of enzyme function for various therapeutic and industrial applications. Based on their biochemical roles, the number of catalytic residues and sequence lengths of enzymes vary. This article describes a prediction approach (PINGU) for such a scenario. It uses models trained using physicochemical properties and evolutionary information of 650 non-redundant enzymes (2136 catalytic residues) in a support vector machines architecture. Independent testing on 200 non-redundant enzymes (683 catalytic residues) in predefined prediction settings, i.e., with non-catalytic per catalytic residue ranging from 1 to 30, suggested that the prediction approach was highly sensitive and specific, i.e., 80% or above, over the incremental challenges. To learn more about the discriminatory power of PINGU in real scenarios, where the prediction challenge is variable and susceptible to high false positives, the best model from independent testing was used on 60 diverse enzymes. Results suggested that PINGU was able to identify most catalytic residues and non-catalytic residues properly with 80% or above accuracy, sensitivity and specificity. The effect of false positives on precision was addressed in this study by application of predicted ligand-binding residue information as a post-processing filter. An overall improvement of 20% in F-measure and 0.138 in Correlation Coefficient with 16% enhanced precision could be achieved. On account of its encouraging performance, PINGU is hoped to have eventual applications in boosting enzyme engineering and novel drug discovery.  相似文献   

18.
Signal peptide peptidases (SPPs) are enzymes involved in the initial degradation of signal peptides after they are released from the precursor proteins by signal peptidases. In contrast to the eukaryotic enzymes that are aspartate peptidases, the catalytic mechanisms of prokaryotic SPPs had not been known. In this study on the SPP from the hyperthermophilic archaeon Thermococcus kodakaraensis (SppA(Tk)), we have identified amino acid residues that are essential for the peptidase activity of the enzyme. DeltaN54SppA(Tk), a truncated protein without the N-terminal 54 residues and putative transmembrane domain, exhibits high peptidase activity, and was used as the wild-type protein. Sixteen residues, highly conserved among archaeal SPP homologue sequences, were selected and replaced by alanine residues. The mutations S162A and K214A were found to abolish peptidase activity of the protein, whereas all other mutant proteins displayed activity to various extents. The results indicated the function of Ser(162) as the nucleophilic serine and that of Lys(214) as the general base, comprising a Ser/Lys catalytic dyad in SppA(Tk). Kinetic analyses indicated that Ser(184), His(191) Lys(209), Asp(215), and Arg(221) supported peptidase activity. Intriguingly, a large number of mutations led to an increase in activity levels of the enzyme. In particular, mutations in Ser(128) and Tyr(165) not only increased activity levels but also broadened the substrate specificity of SppA(Tk), suggesting that these residues may be present to prevent the enzyme from cleaving unintended peptide/protein substrates in the cell. A detailed alignment of prokaryotic SPP sequences strongly suggested that the majority of archaeal enzymes, along with the bacterial enzyme from Bacillus subtilis, adopt the same catalytic mechanism for peptide hydrolysis.  相似文献   

19.
The mosquitocidal toxin (MTX) from Bacillus sphaericus and the apoptosis-inducing pierisin-1 from the cabbage butterfly Pieris rapae are two of the most intriguing members of the family of ADP-ribosyltransferases. They are both approximately 100 kDa proteins, composed of an N-terminal ADP-ribosyltransferase (approximately 27 kDa) and a C-terminal putative binding and translocation domain (approximately 70 kDa) consisting of four ricin-B-like domains. While they both share structural homologies, with an overall amino acid sequence identity of approximately 30% that becomes approximately 50% at the level of the catalytic core, and functional similarities, notably in terms of enzyme regulation, they seem to largely differ with regard to their targets or cell internalization mechanisms. MTX ADP-ribosylates numerous proteins in lysates of target insect cells at arginine residues, whereas pierisin-1 modifies DNA of insect and mammalian cells by ADP-ribosylation at 2'-deoxyguanosine residues resulting in DNA adducts, mutations and eventually apoptosis. This target specificity differentiates pierisin-1 from all other ADP-ribosyltransferases described so far, and implies that the enzyme must reach the nucleus of target cells. The recently solved crystal structure of MTX catalytic domain is helpful to reveal new insights into structural organization, catalytic mechanisms, proteolytic activation and autoinhibition of both enzymes. The uptake and processing of the ADP-ribosyltransferases is discussed.  相似文献   

20.
We are interested in constructing a model for the substrate-binding site of fatty acid elongase-1 3-ketoacyl CoA synthase (FAE1 KCS), the enzyme responsible for production of very long chain fatty acids of plant seed oils. Arabidopsis thaliana and Brassica napus FAE1 KCS enzymes are highly homologous but the seed oil content of these plants suggests that their substrate specificities differ with respect to acyl chain length. We used in vivo and in vitro assays of Saccharomyces cerevisiae-expressed FAE1 KCSs to demonstrate that the B. napus FAE1 KCS enzyme favors longer chain acyl substrates than the A. thaliana enzyme. Domains/residues responsible for substrate specificity were investigated by determining catalytic activity and substrate specificity of chimeric enzymes of A. thaliana and B. napus FAE1 KCS. The N-terminal region, excluding the transmembrane domain, was shown to be involved in substrate specificity. One chimeric enzyme that included A. thaliana sequence from the N terminus to residue 114 and B. napus sequence from residue 115 to the C terminus had substrate specificity similar to that of A. thaliana FAE1 KCS. However, a K92R substitution in this chimeric enzyme changed the specificity to that of the B. napus enzyme without loss of catalytic activity. Thus, this study was successful in identifying a domain involved in determining substrate specificity in FAE1 KCS and in engineering an enzyme with novel activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号