首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract An ultrastructural study has been performed to elucidate the effect of active polypeptide(s) from neo-peptone on heterocyst induction in Anabaena cylindrica [1]. There was an immediate aggregation of A. cylindrica cells and a clumping of filamentous appendages in the mucilaginous sheath on the addition of active polypeptide(s) from neo-peptone. However, there was no change in the cell wall and cell membrane ultrastructure. An increase in cell length, contortion and disintegration of thylakoids, disappearance of polyphosphate bodies and an accumulation of polyglucose bodies were observed after 18 h of treatment. The double heterocysts induced show a normal heterocyst ultrastructure with well-developed polar nodules between the heterocysts and the vegetative cells, as well as between two heterocysts.
It appears that the inductive effect of active polypeptide(s) from neo-peptone is mediated through their specific binding to filamentous appendages in the mucilaginous sheath.  相似文献   

2.
Addition of the arginine analogue, canavanine, to cultures of nitrogen-fixing Anabaena cylindrica at the onset of akinete formation, resulted in the development of akinetes randomly distributed within the filament, in addition to those adjacent to heterocysts. The total frequency of akinetes increased up to five-fold. A feature of akinetes is their increased content of cyanophycin granules (an arginine-aspartic acid polymer) and addition of canavanine to cultures at an earlier stage resulted in entire filaments becoming agranular and containing agranular akinetes. The effects on akinete pattern appeared to be specific for canavanine since other amino acid analogues, although increasing the frequency of akinetes (approximately two-fold), had no effect on their position relative to heterocysts. In ammonia-grown, stationary phase cultures of A. cylindrica, akinetes were observed adjacent to proheterocysts and in positions more than 20 cells from any heterocyst. These observations indicate that nitrogen fixation and heterocysts are not essential for akinete formation in A. cylindrica, although the availability of a source of fixed nitrogen does appear to be a requirement.These results suggest that during exponential growth some aspect of the physiology of vegetative cells suppresses their development into akinetes and that the role of the heterocyst may not be one of direct stimulation of adjacent vegetative cells to form akinetes, but the removal or negation of the inhibition within them. A model for akinete formation and the involvement of canavanine is given.  相似文献   

3.
Distribution pattern and levels of nitrogenase (EC 1.7.99.2) and glutamine synthetase (GS, EC 6.3.1.2) were studied in N2-, NO3? and NH4+ grown Anabaena cylindrica (CCAP 1403/2a) using immunogold electron microscopy. In N2- and NO3? grown cultures, heterocysts were formed and nitrogenase activity was present. The nitrogenase antigen appeared within the heterocysts only and showed an even distribution. The level of nitrogenase protein in the heterocysts was identical with both nitrogen sources. In NO3? grown cells the 30% reduction in the nitrogenase activity was due to a corresponding decrease in the heterocyst frequency and not to a repressed nitrogenase synthesis. In NH4? grown cells, the nitrogenase activity was almost zero and new heterocysts were formed to a very low extent. The heterocysts found showed practically no nitrogenase protein throughout the cytoplasm, although some label occurred at the periphery of the heterocyst. This demonstrates that heterocyst differentiation and nitrogenase expression are not necessarily correlated and that while NH4+ caused repression of both heterocyst and nitrogenase synthesis, NO3? caused inhibition of heterocyst differentiation only. The glutamine synthetase protein label was found throughout the vegetative cells and the heterocysts of all three cultures. The relative level of the GS antigen varied in the heterocysts depending on the nitrogen source, whereas the GS level was similar in all vegetative cells. In N2- and NO3+ grown cells, where nitrogenase was expressed, the GS level was ca 100% higher in the heterocysts compared to vegetative cells. In NH4+ grown cells, where nitrogenase was repressed, the GS level was similar in the two cell types. The enhanced level of GS expressed in heterocysts of N2 and NO3? grown cultures apparently is related to nitrogenase expression and has a role in assimilation of N2derived ammonia.  相似文献   

4.
Activities of enzymes of photosynthesis and photorespiration have been measured in extracts of vegetative cells and heterocysts from the filamentous cyanobacterium Anabaena cylindrica. Phosphoribulokinase, d-ribulose 1,5-bisphosphate carboxylase/oxygenase, phosphoglycollate phosphatase and glycollate dehydrogenase activities were readily measured in vegetative cell extracts, but were undetectable or negligible in heterocyst preparations. The data help to explain why heterocysts are unable to perform photosynthetic CO2 fixation. They also exemplify the co-ordinate compartmentation of enzymes of photosynthesis and photorespiration which occur in a differentiated phototrophic prokaryote.Abbreviations Ru5P d-ribulose 5-phosphate - RuBP d-ribulose 1,5-bisphosphate - DCPIP 2,6-dichlorophenolindophenol - TES N-tris(hydroxymethyl)methyl-2-aminoethanesulphonate  相似文献   

5.
To investigate the role of ammonium-assimilating enzyme in heterocyst differentiation, pattern formation and nitrogen fixation, MSX-resistant and GS-impaired mutants of Anabaena 7120 were isolated using transposon (Tn5-1063) mutagenesis. Mutant Gs1 and Gs2 (impaired in GS activity) exhibited a similar rate of nitrogenase activity compared to that of the wild type under dinitrogen aerobic conditions in the presence and absence of MSX. Filaments of Gs1 and Gs2 produced heterocysts with an evenly spaced pattern in N2-grown conditions, while addition of MSX altered the interheterocyst spacing pattern in wild type as well as in mutant strains. The wild type showed complete repression of heterocyst development and nitrogen fixation in the presence of NO3 or NH4 +, whereas the mutants Gs1 and Gs2 formed heterocysts and fixed nitrogen in the presence of NO3 and NH4 +. Addition of MSX caused complete inhibition of glutamine synthetase activity in wild type but Gs1 and Gs2 remained unaffected. These results suggest that glutamine but not ammonium is directly involved in regulation of heterocyst differentiation, interheterocyst spacing pattern and nitrogen fixation in Anabaena.  相似文献   

6.
Structures which may establish cytoplasmic continuity between adjacent cells of filamentous cyanobacteria have been observed by freeze-fracture electron microscopy. They are visible in the septum region of the plasma membrane as pits on the E-face (EF) and corresponding protrusions on the P-face (PF). Between 100 and 250 of these structures, termed microplasmodesmata, were present between adjacent vegetative cells in all four strains of heterocyst-forming filamentous cyanobacteria, Anabaena cylindrica Lemm, A. variabilis (IUCC B377), A. variabilis Kütz. (ATCC 29413) and Nostoc muscorum, examined. Only 30–40 microplasmodesmata were observed between adjacent cells in two species, Phormidium luridum and Plectonema boryanum, that do not form heterocysts. The results suggest that in species that form heterocysts a greater degree of cytoplasmic continuity is established, presumably to facilitate the exchange of metabolites. In species capable of forming heterocysts, the number of microplasmodesmata per septum between two adjacent vegetative cells remained constant whether the filaments were grown in the presence of NH4 and lacked heteroxysts or under N2-fixing conditions and contained heterocysts. When a vegetative cell differentiates into a heterocyst, about 80% of the existing microplasmodesmata are destroyed as the poles of the cell become constricted into narrow necks leaving smaller areas of contact with the adjacent vegetative cells.  相似文献   

7.
The question of whether the vegetative cells of Anabaena cylindrica synthesize nitrogenase under anaerobic conditions was studied by immunoferritin labelling of the Fe-Mo protein (Component I). Differentiating cultures, incubated under an argon atmosphere, were treated with DCMU 12 h following initiation of induction. DCMU inhibited photosynthetic O2 production, thus insuring strict anaerobic conditions, but had no effect on nitrogenase induction. Fe-Mo protein levels, as determined by rocket immunoelectrophoresis, increased 5-fold within 24h of DCMU treatment. Immunoferritin labelling of aldehyde fixed, ultrathin cryosections of anaerobically induced filaments showed that the Fe-Mo protein was restricted to the heterocyst. Ferritin labelling was shown to be specific by the following criteria: (a) substituting preimmune goat serum for the anti-Fe-Mo protein IgG prevented ferritin labelling; (b) ferritin-conjugated, non-homologous rabbit anti-goat IgG did not bind; (c) incubation of anti-Fe-Mo protein IgG treated sections with rabbit anti-goat IgG prior to the treatment with the ferritin label also prevented labelling. The results provide direct immunochemical evidence that nitrogenase is restricted to the heterocysts even under strictly anaerobic conditions.  相似文献   

8.
The effect of ammonia and sulfide on rifampicin-induced heterocyst differentiation was studied in the nitrogen-fixing cyanobacteriumNostoc linckia. Aerobic growth with nitrogen gas of the cyanobacterium was greatly affected by rifampicin with formation of multiple heterocysts in chains in the filaments whereas ammonia in the medium reversed the rifampicin inhibition of growth and prevented the induction of heterocysts. In a sulfide medium the suppression exerted by rifampicin on aerobic growth with nitrogen gas and heterocyst induction was found to be considerably reduced. The results suggest two interesting points,viz. that (i) rifampicin interferes with the nitrogen-fixing function of heterocysts, and (ii) it checks the synthesis of an unknown heterocyst, inhibitor and thus permits the adjacent vegetative cells to differentiate into heterocysts in chains.  相似文献   

9.
A method is described for the preparation of cyanobacterial heterocysts with high nitrogen-fixation (acetylene-reduction) activity supported by endogenous reductants. The starting material was Anabaena variabilis ATCC 29413 grown in the light in the presence of fructose. Heterocysts produced from such cyanobacteria were more active than those from photoautotrophically-grown A. variabilis, presumably because higher reserves of carbohydrate were stored within the heterocysts. It proved important to avoid subjecting the cyanobacteria to low temperatures under aerobic conditions, as inhibition of respiration appeared to lead to inactivation of nitrogenase. Low temperatures were not harmful in the absence of O2. A number of potential osmoregulators at various concentrations were tested for use in heterocyst isolation. The optimal concentration (0.2M sucrose) proved to be a compromise between adequate osmotic protection for isolated heterocysts and avoidance of inhibition of nitrogenase by high osmotic strength. Isolated heterocysts without added reductants such as H2 had about half the nitrogen-fixation activity expected on the basis of intact filaments. H2 did not increase the rate of acetylene reduction, suggesting that the supply of reductant from heterocyst metabolism did not limit nitrogen fixation under these conditions. Such heterocysts had linear rates of acetylene reduction for at least 2 h, and retained their full potential for at least 12 h when stored at 0°C under N2.  相似文献   

10.
Summary The symbiotic heterocystous cyanobacteriumAnabaena azollae present in the leaf cavities of the water fernAzolla spp. was studied. The cyanobacteria extracted from the leaf cavities showed differences in pigment composition in three species ofAzolla, i.e A.pinnata var.pinnata, A.caroliniana and A.filiculoides, as observed by pigment absorption and epifluorescence tests. These differences suggest that of these species the cyanobiont ofA. pinnata is the most actively nitrogenfixing form. This has been confirmed by nitrogen fixation (acetylene reduction) tests. Heterocysts of the symbiont ofA. pinnata were characterized by high chlorophylla and low phycocyanin content, a low fluorescence yield of chlorophyll in the heterocysts compared to vegetative cells and a gradient of phycocyanin concentration in the vegetative cells adjacent to heterocysts. This indicates that only photosystem I is present in the heterocyst. In the two otherAzolla species quantitative shifts in the pigment composition occurred suggesting a lower nitrogen fixation activity.In the cyanobiontAnabaena azollae the heterocyst frequency could reach a value of 44–45%. It is argued that there are two generations of heterocysts in a matureAzolla plant, which are concomitant with two peaks of nitrogen fixation activity correlated with leaf age,i.e. leaf number along the main axis of the plant. At both peaks of maximal N2-ase activity, only 20–25% of the heterocysts present are metabolically active as demonstrated by the reduction of Neotetrazolium chloride (NTC) in the heterocysts and darkening of nuclear emulsions by silver salt reduction. Vegetative cells of the cyanobiont reduce Neotetrazolium chloride (NTC) to formazan more rapidly than has been observed in the free-living heterocystous cyanobacteriumAnabaena cylindrica tested in parallel experiments. This feature may be due to a more permeable cell wall of the vegetative cells of the cyanobiont compared to the free-living form, since the vegetative cells of the symbiont play a role in cross-feeding of the host (Azolla).Evidence is obtained that only the heterocysts of the cyanobiont ofAzolla are involved in the nitrogen fixation process as in free-living heterocystous cyanobacterium species. This situation is different from other cyanobacterial symbioses such as inGunnera, Blasia andAnthoceros, where physiological modifications are reported in the symbiosis with another photosynthetic partner such as the absence of O2 evolution and the absence of photo-fixation of CO2 in the cyanobionts.Pigment composition and N2-ase activity in the symbiotic cyanobacteria of three Azolla species have indicated the superiority of theA. pinnata symbiont.A. pinnata var.pinnata is a semidomesticated form used in S.E. Asia for agricultural purposes (irrigated rice culture) to increase soil fertility.It is suggested that by selection (domestication) more efficient strains (clones) can be obtained, and further that with more advanced techniques such as gene mutation and genetic manipulation even more efficient and for agriculture more beneficial clones can be obtained.  相似文献   

11.
Various electron donors were found to stimulate C2H2 reduction (N2 fixation) by isolated heterocysts from Anabaena variabilis and Anabaena cylindrica. Intermediates of glycolysis and the tricarboxylic acid cycle as well as unphosphorylated sugars like glucose, fructose and erythrose were among these electron donors. The transfer of electrons from donors like H2, NADH, glyoxylate and glycollate was strictly light-dependent, whereas others like NADPH or pyruvate plus coenzyme A supported C2H2 reduction also in the dark. In all cases, the overall activity was enhanced by light. The stimulation by light was more distinct with heterocysts from A. variabilis than with heterocysts from A. cylindrica.The present communication establishes that pyruvate supports C2H2 reduction by heterocysts from either A. variabilis or A. cylindrica with rates comparable to those with other electron donors. Pyruvate could, however, support C2H2 reduction only in the presence of coenzyme A, and the concentrations of both coenzyme A and pyruvate were crucial. A pyruvate-dependent reduction of ferredoxin by extracts from heterocysts was recorded spectrophotometrically. Glyoxylate, which is an inhibitor of thiamine pyrophosphate-dependent decarboxylations, inhibited pyruvate-dependent C2H2 reduction. This result supports the conclusion that pyruvate is metabolised by pyruvate: ferredoxin oxidoreductase in heterocysts. High concentrations of pyruvate and other electron donors inhibited C2H2 reduction which suggests that nitrogenase activity in heterocysts may be controlled by the availability of electron donors.Dedicated to Professor Norbert Pfennig, Konstanz, on the occasion of his 60th birthday  相似文献   

12.
A comparative study of the development of uptake hydrogenase and nitrogenase activities in cells of the cyanobacterium Anabaena variabilis was performed. The induction of heterocysts is followed by the induction of both in vivo hydrogen uptake and nitrogenase activities. Interestingly, a low but significant H2-uptake [2–7 μmoles of H2 · mg−1 (Chl a) · h−1] occurs in cultures with no heterocysts and with no nitrogenase activity. A slight stimulatory effect (30–40%) of H2 on in vivo H2-uptake was observed during the early stages of nitrogenase induction. However, exogenous H2 does not further stimulate the induction of in vivo hydrogen uptake observed during heterocyst differentiation. Similarly, organic carbon (fructose) did not influence the induction of either in vivo hydrogen uptake or nitrogenase activities. Exogenous fructose supports higher in vivo hydrogen uptake and nitrogenase activities when the cells enter late exponential phase of growth. Received: 22 November 1995 / Accepted: 22 December 1995  相似文献   

13.
The mechanism of O2 protection of nitrogenase in the heterocysts of Anabaena cylindrica was studied in vivo. Resistance to O2 inhibition of nitrogenase activity correlated with the O2 tension of the medium in which heterocyst formation was induced. O2 resistance also correlated with the apparent Km for acetylene, indicating that O2 tension may influence the development of a gas diffusion barrier in the heterocysts. The role of respiratory activity in protecting nitrogenase from O2 that diffuses into the heterocyst was studied using inhibitors of carbon metabolism. Reductant limitation induced by 3-(3,4-dichlorophenyl)-1, 1-dimethylurea increased the O2 sensitivity of in vivo acetylene reduction. Azide, at concentrations (30 mM) sufficient to completely inhibit dark nitrogenase activity (a process dependent on oxidative phosphorylation for its ATP supply), severely inhibited short-term light-dependent acetylene reduction in the presence of O2 but not in its absence. After 3 h of aerobic incubation in the presence of 20 mM azide, 75% of cross-reactive component I (Fe-Mo protein) in nitrogenase was lost; less than 35% was lost under microaerophilic conditions. Sodium malonate and monofluoroacetate, inhibitors of Krebs cycle activity, had only small inhibitory effects on nitrogenase activity in the light and on cross-reactive material. The results suggest that oxygen protection is dependent on both an O2 diffusion barrier and active respiration by the heterocyst.  相似文献   

14.
The polysaccharides from the envelopes of heterocysts of Cylindrospermum licheniforme Kütz., and of heterocysts and spores of Anabaena variabilis Kütz., like those from the differentiated cells of Anabaena cylindrica Lemm., have a 1,3-linked backbone consisting of glucosyl and mannosyl residues in a molar ratio of approximately 3:1. As is the case with A. cylindrica the polysaccharides from A. variabilis and from the heterocysts of C. licheniforme have terminal xylosyl and galactosyl residues as side branches. In addition, the polysaccharide from C. licheniforme resembles that from A. cylindrica in having terminal mannosyl residues as side branches (absent from A. variabilis). The polysaccharides from A. variabilis resemble that from A. cylindrica in having glucose-containing side branches (absent from the heterocyst polysaccharide from C. licheniforme), but in contrast to the polysaccharides from the other two species they also have terminal arabinosyl residues as side branches. All of the polysaccharides mentioned appear to be structurally related; we present tentative structures for those not previously investigated. In contrast, the envelope of spores of C. licheniforme contains only a largely 4-linked galactan. The bulk of this envelope is not polysaccharide in nature, and contains aromatic groups.  相似文献   

15.
Nitrosoguanidine induced mutants of Anabaena cylindrica have been obtained, which are altered in heterocyst spacing. In the wild type organism the pattern is composed of single intercalary heterocysts. The mutant patterns fall into several classes: those with only terminal heterocysts, with both terminal and intercalary heterocysts, with groups of heterocysts and those totally lacking heterocysts. The mutants are described in detail, and the various pattern modifications are interpreted in terms of a model we have proposed.  相似文献   

16.
The addition of exogenous L-methionine-DL-sulphoximine (MSO) to N2-fixing cultures of the blue-green alga Anabaena cylindrica results in over half of the newly fixed NH3 being released into the medium. MSO also inhibits glutamine synthetase (GS) activity, has negligible effect on alanine dehydrogenase activity, and glutamate dehydrogenase activity under N2-fixing conditions is negligible. In the presence of MSO, intracellular pools of glutamate and glutamine decrease, those of aspartate and alanine + glycine show little change, and the NH3 pool increases. MSO alleviates the inhibitory effect of exogenous NH4+ on nitrogenase synthesis and heterocyst production. The results suggest that in N2-fixing cultures of A. cylindrica the primary NH3 assimilating pathway involves GS, and probably glutamate synthase (GOGAT), and that the repressor of nitrogenase synthesis and heterocyst production is not NH4+ but is GS, GOGAT, or a product of their reactions.  相似文献   

17.
FOGG  G. E. 《Annals of botany》1951,15(1):23-36
A study has been made of the cytology of the heterocysts ofAnabaena cylindrica Lemm. at different stages during the growthof this alga in culture. The techniques used include that ofFeulgen, a modified Sakaguchi test for arginine derivatives,ultra-violet photomicrography, and micro-incineration. It hasbeen shown that the formation of a heterocyst begins with themobilization of material so that its protoplasm becomes homogeneous.The protoplast eubquently becomes depleted of all materialademonstrable by the methods used. At intermediate stages indevelopment substances become concentrated near the connexionsof the heterocyst and a central transverse zone, retaining materiallonger than the reat of the protoplasm, becomes apparent. Thestructure and development of heterocysts is discussed.  相似文献   

18.
Earth's atmospheric composition has changed significantly over geologic time. Many redox active atmospheric constituents have left evidence of their presence, while inert constituents such as dinitrogen gas (N2) are more elusive. In this study, we examine two potential biological indicators of atmospheric N2: the morphological and isotopic signatures of heterocystous cyanobacteria. Biological nitrogen fixation constitutes the primary source of fixed nitrogen to the global biosphere and is catalyzed by the oxygen‐sensitive enzyme nitrogenase. To protect this enzyme, some filamentous cyanobacteria restrict nitrogen fixation to microoxic cells (heterocysts) while carrying out oxygenic photosynthesis in vegetative cells. Heterocysts terminally differentiate in a pattern that is maintained as the filaments grow, and nitrogen fixation imparts a measurable isotope effect, creating two biosignatures that have previously been interrogated under modern N2 partial pressure (pN2) conditions. Here, we examine the effect of variable pN2 on these biosignatures for two species of the filamentous cyanobacterium Anabaena. We provide the first in vivo estimate of the intrinsic isotope fractionation factor of Mo‐nitrogenase (εfix = ?2.71 ± 0.09‰) and show that, with decreasing pN2, the net nitrogen isotope fractionation decreases for both species, while the heterocyst spacing decreases for Anabaena cylindrica and remains unchanged for Anabaena variabilis. These results are consistent with the nitrogen fixation mechanisms available in the two species. Application of these quantifiable effects to the geologic record may lead to new paleobarometric measurements for pN2, ultimately contributing to a better understanding of Earth's atmospheric evolution.  相似文献   

19.
A Mastigocladus species was isolated from the hot spring of Jakrem (Meghalaya) India. Uptake and utilization of nitrate, nitrite, ammonium and amino acids (glutamine, asparagine, arginine, alanine) were studied in this cyanobacterium grown at different temperatures (25°C, 45°C). There was 2–3 fold increase in the heterocyst formation and nitrogenase activity in N-free medium at higher temperature (45°C). Growth and uptake and assimilation of various nitrogen sources were also 2–3 fold higher at 45°C indicating that it is a thermophile. The extent of induction and repression of nitrate uptake by NO3 and NH4 +, respectively, differed from that of nitrite. It appeared that Mastigocladus had two independent nitrate/nitrite transport systems. Nitrate reductase and nitrite reductase activitiy was not NO3 -inducible and ammonium or amino acids caused only partial repression. Presence of various amino acids in the media partially repressed glutamine synthetase activity. Ammonium (methylammonium) and amino acid uptake showed a biphasic pattern, was energy-dependent and the induction of uptake required de novo protein synthesis. Ammonium transport was substrate (NH4 +)-repressible, while the amino acid uptake was substrate inducible. When grown at 25°C, the cyanobacterium formed maximum akinetes that remained viable upto 5 years under dry conditions.  相似文献   

20.
Hemoproteins were localized in the cyanobacteriumAnabaena cylindrica with diaminobenzidine (DAB). Incubation of whole cells in the light with DAB resulted in deposition of oxidized DAB on the lamellae of the vegetative cells and central heterocyst region. This reaction was greatest at pH 7.5, light-dependent, insensitive to 3-(3,4-dichlorophenyl)-1, 1-dimethyl urea, and abolished by glutaraldehyde fixation. A light-independent oxidation of DAB was also observed with light and electron microscopy in the honeycomb region and periphery of heterocysts. This reaction was greatest at pH 7.5, enhanced by H2O2, and active in glutaraldehyde-fixed frozen sections. Inhibitors such as sodium cyanide, sulfide, and hydroxylamine severely reduced DAB oxidation and nitrogenase activity under aerobic but not anaerobic conditions. These results indicate that the heme proteins, localized in heterocysts by light-independent DAB oxidation, are involved in the oxygen-protection mechanism of the O2-labile nitrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号