共查询到20条相似文献,搜索用时 0 毫秒
1.
The structure of the complex formed between the 7H-pyridocarbazole monomer [[(2-piperidyl)-2,1-ethane-yl] [10-methoxy-7H-pyrido[4,3-c]carbazolium] dimethane sulfonate] and the autocomplementary hexanucleotide d(CpGpApTpCpG)2 in aqueous solution is analyzed by 270- and 400-MHz 1H-nmr. The large upfield shifts observed for both the drug and the self-complementary hexanucleotide protons provide evidence for intercalated complexes. The observation of intermolecular nuclear Overhauser effects between drug and the hexanucleotide protons gives a privileged orientation of the drug in the intercalation site with the quaternarizing ethyl piperidine chain protruding in the major groove. Moreover, the data suggest an intercalation based on the neighbor exclusion site principle in the three alternating sequences. 相似文献
2.
A Delbarre M Delepierre B Langlois d'Estaintot J Igolen B P Roques 《Biopolymers》1987,26(7):1001-1033
The structure of the complex formed in aqueous solution at pH 5.5 between ditercalinium, a potent antitumoral 7H-pyrido[4,3-c]carbazole rigid dimer, and the self-complementary tetranucleotide d[CpGpCpG], was investigated by 400-MHz 1H-nmr. For a 1:2.5 drug-to-helix ratio, the dimer was only found in bound form, whereas free and complexed tetranucleotide were in slow exchange. This allowed unambiguous assignment of the protons in the complex through exchange polarization transfer measurements. The tetranucleotide existed as a right-handed double helix in the complex. The strong upfield shifts measured on most aromatic protons on both drug and nucleobases as well as on DNA imino protons were consistent with bisintercalation of the dimer. According to the negative nuclear Overhauser effects generated to protons on the convex edge of the bound drug rings by saturation of sugar protons, it was concluded that ditercalinium was intercalated with its rigid bis-ethyl bispiperidine spacer fitting the major groove of the helix. Difference in antitumor activity of various pyridocarbazole dimers is discussed in relation to the binding kinetics and the complex geometry determined in this study. 相似文献
3.
J. William Lown Christopher C. Hanstock 《Journal of biomolecular structure & dynamics》2013,31(6):1097-1106
Abstract Complete 1H-nmr assignment has been achieved of the stoichiometric 1:1 complex of the antitumor agent mitoxantrone with the duplex oligomer [d(CpGpCpG)]2. The techniques used included 2D-COSY, 1D-NOE and 2D-HH-INADEQUATE. Comparisons of 1H and 13C chemical shift changes upon addition of drug suggest symmetrical intercalative binding to the center of the tetramer. NOE difference measurements and 31P studies suggest binding of the terminal OH groups of the side chains to the central phosphate groups such that the methylene groups are proximate to C(3)6, C(3)6 and G(4)8 base protons all in the major groove. The data suggest that the side chains bind to the neighboring base pairs from the intercalation site. This is in accord with independent evidence of G,C base preference for binding from spectroscopic and electron microscopy studies. 相似文献
4.
Bisintercalation of ditercalinium into a d(CpGpApTpCpG)2 minihelix: a 1H- and 31P-NMR study 总被引:2,自引:0,他引:2
The structure of the complex formed in aqueous solution between ditercalinium, a bisintercalating drug, and the self-complementary hexanucleotide d(CpGpApTpCpG)2 is investigated by 400-MHz 1H-nmr and 162-MHz 31P-nmr. Whatever the drug to helix ratio, ditercalinium occurred in the bound form, whereas free and complexed hexanucleotide are in slow exchange. This allows unambiguous resonance assignment through two-dimensional chemical exchange experiments. The strong upfield shifts measured on most aromatic protons on both drug and bases as well as on DNA imino protons are consistent with bisintercalation of the dimer. Nuclear Overhauser effects observed between drug and nucleotide protons give a defined geometry for complexation, and suggest a DNA conformational change upon drug binding. 相似文献
5.
High field 1H-NMR analysis of the 1:1 intercalation complex of the antitumor agent mitoxantrone and the DNA duplex [d(CpGpCpG) 总被引:3,自引:0,他引:3
Complete 1H-nmr assignment has been achieved of the stoichiometric 1:1 complex of the antitumor agent mitoxantrone with the duplex oligomer [d(CpGpCpG)]2. The techniques used included 2D-COSY, 1D-NOE and 2D-HH-INADEQUATE. Comparisons of 1H and 13C chemical shift changes upon addition of drug suggest symmetrical intercalative binding to the center of the tetramer. NOE difference measurements and 31P studies suggest binding of the terminal OH groups of the side chains to the central phosphate groups such that the methylene groups are proximate to C(3)6, C(3)6 and G(4)8 base protons all in the major groove. The data suggest that the side chains bind to the neighboring base pairs from the intercalation site. This is in accord with independent evidence of G,C base preference for binding from spectroscopic and electron microscopy studies. 相似文献
6.
Theoretical computations are performed of the intercalative binding to a model d(CpG)2 minihelix of 7-H pyrido[4.3C]carbazole, the precursor of the antitumor bisintercalating drug ditercalinium. The conformations of the intercalation site are generated by the AGNAS procedure (algorithm to generate nucleic acid structures) of Miller and co-workers. The ligand-nucleotide interactions and the nucleotide conformational energies are computed with the SIBFA procedures (sum of interactions between fragments ab initio computed), which use formulas of empirical origin that reproduce ab initio SCF (self-consistent field) computations. Among the candidate intercalation sites most favored energetically, one has a pattern of conformational angles related to the one determined crystallographically by Sobell et al. in a series of x-ray structural studies of small intercalator-dinucleotide monophosphate complexes. Optimal values of the unwinding angle, found in the range of -12 degrees to -14 degrees, are consistent with available experimental data on DNA. 相似文献
7.
The structure of the complexes formed between a 7H-pyridocarbazole dimer (ditercalinium) or the corresponding monomer and d[CpGpCpG] is analyzed in aqueous solution by 270 MHz 1H NMR. In both cases the strong upfield shifts observed on most aromatic resonances are assigned to the formation of intercalated complexes. Bisintercalation of the dimer in the tetranucleotide minihelix is then observed at pH 5.5. The observation of intermolecular negative NOEs induced to some drug resonances by irradiation of sugar protons confirms these conclusions. The orientation of the ligand in the intercalation site is discussed. 相似文献
8.
9.
The structure of the complex formed between ditercalinium, 2,2'-[4,4'-bipiperidine-1,1'-bis-(ethane-1,2-diyl)]bis(10-me thoxy-7H- pyrido[4,3-c]carbazolium) tetramethane sulfonate (NSC 366241), and the self-complementary tetranucleotide duplex d(CpGpCpG)2 has been investigated by means of a novel theoretical approach for modelling the conformational flexibility of nucleic acids. The methodology used is the JUMNA procedure, a molecular mechanics systematics capable of evaluating the internal energy and the interaction energy of a complex formed from a large number of fragments. In the best energy-minimized structures, the piperidinium chains of ditercalinium are located in the major groove of the right-handed oligonucleotide. Calculations show a distortion of the base-paired d(CpGpCpG)2 minihelix consisting of lateral dislocation of one base pair with respect to another along an axis parallel to the long axis; strong propeller twist and tilt of the end base pairs; a collective motion of all base pairs with respect to the helical axis towards the drug; and an overwinding at the exclusion site. The proposed structure of the complex is in good agreement with reported proton NMR data, supporting the feasibility of such model. 相似文献
10.
《Nucleosides, nucleotides & nucleic acids》2013,32(5-8):1677-1680
Abstract A NMR structural study of quadruplex [d(TGGGT)]4 containing a modified thymine is reported. The three dimensional structure of the complex is very similar to those of other parallel stranded quadruplexes. The modified thymines (T*) are able, at least in the minimised structures, to form a tetrad containing extra H-bonds through the hydroxyl groups. Nevertheless, in this new tetrad the modified thymines are slightly open towards the solvent respect to the unmodified T-tetrad. 相似文献
11.
Petraccone L Erra E Nasti L Galeone A Randazzo A Esposito V Mayol L Barone G Giancola C 《Nucleosides, nucleotides & nucleic acids》2003,22(5-8):1677-1680
A NMR structural study of quadruplex [d(TGGGT)]4 containing a modified thymine is reported. The three dimensional structure of the complex is very similar to those of other parallel stranded quadruplexes. The modified thymines (T*) are able, at least in the minimised structures, to form a tetrad containing extra H-bonds through the hydroxyl groups. Nevertheless, in this new tetrad the modified thymines are slightly open towards the solvent respect to the unmodified T-tetrad. 相似文献
12.
Two-dimensional (2D) 1H-NMR spectroscopy has been used to analyze the structure of d(GCTTAAGC)2 and its interaction with berenil in solution. Nuclear Overhauser enhancement connectivities enabled sequential assignments of nearly all proton resonances in the self-complementary octamer duplex and demonstrated that the oligonucleotide is primarily in a B-type conformation. No major conformational changes were observed by the addition of berenil, but proton resonances of the two adenosine nucleotides shifted substantially. Intermolecular nuclear Overhauser effects between berenil and the DNA duplex revealed that the drug binds via the minor groove of d(GCTTAAGC)2 in the A.T-base-pair region. At 18 degrees C the twofold symmetry of the duplex is preserved on berenil binding. However, strongly shifted proton resonances broadened significantly. A model is proposed for the berenil-d(GCTTAAGC)2 complex involving fast exchange of berenil between two equivalent symmetry-related binding sites, which span the 5'-TAA-3' region and are asymmetrically disposed with respect to the dyad axis of the duplex. These results are compared with previous studies on the berenil-d(GCAATTGC)2 complex. 相似文献
13.
1H NMR has been used to study the interactions of ellipticine and the ellipticine analogues 2-3-dimethyl-6-(2-dimethylaminoethyl)6H-indolo-[2,3-b]quinoxaline and 6-(2-dimethylaminoethyl)6H-indolo-[2,3-b]quinoxaline with the self-complementary decadeoxyribonucleotide d(CGCGATCGCG)2. The Watson-Crick H-bonded imino proton resonances were studied. The drugs were shown to bind to the duplex by intercalation involving slow exchange kinetics for the imino proton resonances on the NMR time scale (500 MHz). Ellipticine and the 2,3-dimethyl analogue were found not to show strong base preferences, while the other analogue was found to have a preferred primary binding site between the A.T base pairs with a probable minor secondary binding site between the A.T and adjacent G.C base pairs. The new drug-shifted imino proton resonances were assigned through saturation transfer experiments. The base-specific interactions were accompanied by drug-induced non-uniform broadening of the resonances (due to intermediate chemical exchange kinetics), in the spectral region of the non-exchangeable aromatic and sugar H1' proton resonances of the oligonucleotide at 25 degrees C. 相似文献
14.
N Dekker A R Peters A J Slotboom R Boelens R Kaptein R Dijkman G de Haas 《European journal of biochemistry》1991,199(3):601-607
One- and two-dimensional NMR studies were performed on the complexes of porcine pancreatic phospholipase A2 with substrate analogs bound to a micellar lipid-water interface of fully deuterated dodecylphosphocholine. The interactions between the inhibitor and the enzyme were localized by comparison of the two-dimensional NOE spectra recorded for the enzyme-inhibitor complex using both protonated and selectively deuterated inhibitors. These experiments led us to the following conclusions for the phospholipase-A2-micelle complex: (i) the 38-kDa phospholipase A2 complex gives NMR spectra with relatively narrow lines, which is indicative of high mobility of the enzyme; (ii) the residues Ala1, Trp3, Phe63 and Tyr69 located in the interface recognition site, as well as Phe22, Tyr75, Phe106 and Tyr111 are involved in the micelle-binding process; (iii) when present on the micelle, phospholipase A2 is stereospecific for the inhibitor binding; (iv) the inhibitor, (R)-dodecyl-2-aminohexanol-1-phosphoglycol, binds stoichiometrically to phospholipase A2 with high affinity (Kd less than or equal to 10 microM); (v) the inhibitor binds in the active site of the enzyme, which is evidenced by large chemical-shift differences for Phe5, Ile9, Phe22, His48, Tyr52 and Phe106; (vi) the acyl chain of the inhibitor makes hydrophobic contacts (less than 0.4 nm) near Phe5, Ile9, Phe22 and Phe106. Comparison of our results on the enzyme-inhibitor-micelle ternary complex with the crystal structure of the enzyme-inhibitor complex [Thunnissen, M. M. G. M., AB, E., Kalk, K. H., Drenth, J., Dijkstra, B. W., Kuipers, O. P., Dijkman, R., de Haas, G. H. & Verheij, H. M. (1990) Nature 347, 689-691] shows that the mode of inhibitor binding is similar. 相似文献
15.
Yassir Younis Roger Hunter Clare I. Muhanji Ian Hale Rajinder Singh Christopher M. Bailey Todd J. Sullivan Karen S. Anderson 《Bioorganic & medicinal chemistry》2010,18(13):4661-4673
Four double-drug HIV NRTI/NNRTI inhibitors 15a–d of the type [d4U]-spacer-[HI-236] in which the spacer is varied as 1-butynyl (15a), propargyl-1-PEG (15b), propargyl-2-PEG (15c) and propargyl-4-PEG (15d) have been synthesized and biologically evaluated as RT inhibitors against HIV-1. The key step in their synthesis involved a Sonogashira coupling of 5-iodo d4U’s benzoate with an alkynylated tethered HI-236 precursor followed by introduction of the HI-236 thiourea functionality. Biological evaluation in both cell-culture (MT-2 cells) as well as using an in vitro RT assay revealed 15a–c to be all more active than d4T. However, overall the results indicate the derivatives are acting as chain-extended NNRTIs in which for 15b–d the nucleoside component is likely situated outside of the pocket but with no evidence for any synergistic double binding between the NRTI and NNRTI sites. This is attributed, in part, to the lack of phosphorylation of the nucleoside component of the double-drug as a result of kinase recognition failure, which is not improved upon with the phosphoramidate of 15d incorporating a 4-PEG spacer. 相似文献
16.
C Rossi L Pogliani S Masi C Ceccarini N Niccolai 《Journal of biomolecular structure & dynamics》1984,2(2):481-485
The Glycopeptide Man5GlcNAc4Asn (ACCB2) in water solution has been studied by means of 1H NMR relaxation techniques in order to define molecular structure and dynamics. From the analysis of selective and non-selective proton relaxation rates of selected ACCB2 protons, a lack of internal mobility along the polysaccharide chain was observed. The presence of a conformationally well-defined molecular structure for ACCB2 is proposed. 相似文献
17.
All 1H-NMR resonances of d-[CATGGCCATG]2 and the 1:1 complex of lexitropsin 1 and the DNA were assigned by the NOE difference, COSY and NOESY methods. Addition of 1 causes the base and imino protons for the sequence 5'-CCAT to undergo the most marked drug-induced chemical shift changes, thereby indicating that 1 is located in this base pair sequence. NOEs confirmed the location and orientation of the drug in the 1:1 complex, with the amino terminus oriented to C(6). The van der Waals interaction between H12a,b of 1 and AH2(8) may be responsible for reading of the 3' A.T base pair in the 5'-CCAT sequence. Exchange NMR effects allow an estimate of approximately equal to 62 s-1 for the intramolecular "slide-swing" exchange of the lexitropsin between two equivalent binding sites with delta G = 58 +/- 5 kJ mol-1 at 301 degrees K. 相似文献
18.
Virno A Mayol L Ramos A Fraternali F Pagano B Randazzo A 《Nucleosides, nucleotides & nucleic acids》2007,26(8-9):1133-1137
The interest in DNA quadruplex structures has been fueled by the recognition that telomeres, the 3' single stranded guanine-rich overhangs found at the termini of chromosomes, are likely to form G-tetrads type structures important in cell senescence and cancer. In addition to their presence in telomeres, where they may play a role in maintaining the stability and integrity of chromosomes, guanine-rich regions are found in other region of the genome, amongst these is intron 6 of hTERT a gene codifying for the enzyme telomerase. Interestingly, the formation of G-quadruplexes in this region is involved in the down-regulation of telomerase activity caused by an alteration of the hTERT splicing pattern. Therefore, we have analyzed several sequences of that intron by (1)H-NMR and CD spectroscopy, and we have found that the sequence d(GGGGTGAAAGGGG) is able to fold in a single well-defined antiparallel quadruplex structure consisting of four G-tetrads, possessing a twofold symmetry, and containing four Gs in a syn glycosidic conformation. 相似文献
19.
A high-field 1H and 31P-NMR study of the oligomer d[CpGpApTpCpG]2 was carried out in H2O and water signal suppression was employed in all 1H NMR acquisitions. Particular attention was given to imino proton and 31P assignments. Two dimensional 31P-1H shift correlation contours were particularly useful in 31P assignments and confirming previous 1H assignments. Titrimetric addition of aliquots of the anticancer agent mitoxantrone resulted in selective and progressive chemical shifts with critical changes at stoichiometries of 1:1 and 2:1 drug to DNA ratios. The results indicate ultimate intercalative binding of the drug at both C.G. termini of the oligomer in accord with the previously determined C.G. preference and with non-nearest neighbor intercalation. 相似文献
20.
Hazel M. Holden Bruce L. Jacobson John K. Hurley Gordon Tollin Byung-Ha Oh Lars Skjeldal Young Kee Chae Hong Cheng Bin Xia John L. Markley 《Journal of bioenergetics and biomembranes》1994,26(1):67-88
The ability to overexpress [2Fe-2S] ferredoxins inEscherichia coli has opened up exciting research opportunities. High-resolution x-ray structures have been determined for the wild-type ferredoxins produced by the vegetative and heterocyst forms ofAnabaena strain 7120 (in their oxidized states), and these have been compared to structural information derived from multidimensional, multinuclear NMR spectroscopy. The electron delocalization in these proteins in their oxidized and reduced states has been studied by1H,2H,13C, and15N NMR spectroscopy. Site-directed mutagenesis has been used to prepare variants of these ferredoxins. Mutants (over 50) of the vegetative ferredoxin have been designed to explore questions about cluster assembly and stabilization and to determine which residues are important for recognition and electron transfer to the redox partnerAnabaena ferredoxin reductase. The results have shown that serine can replace cysteine at each of the four cluster attachment sites and still support cluster assembly. Electron transfer has been demonstrated with three of the four mutants. Although these mutants are less stable than the wild-type ferredoxin, it has been possible to determine the x-ray structure of one (C49S) and to characterize all four by EPR and NMR. Mutagenesis has identified residues 65 and 94 of the vegetative ferredoxin as crucial to interaction with the reductase. Three-dimensional models have been obtained by x-ray diffraction analysis for several additional mutants: T48S, A50V, E94K (four orders of magnitude less active than wild type in functional assays), and A43S/A45S/T48S/A50N (quadruple mutant). 相似文献