首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Replication of kinetoplast DNA maxicircles   总被引:10,自引:0,他引:10  
S L Hajduk  V A Klein  P T Englund 《Cell》1984,36(2):483-492
The kinetoplast DNA of Crithidia fasciculata is a massive network composed of thousands of topologically interlocked circles. Most of these circles are minicircles (2.5 kb), and about 50 are maxicircles (37 kb). Previous studies showed that minicircles replicate, after release from the network, via Cairns (theta) intermediates. Here we show that maxicircles replicate, while attached to the network, by an entirely different mechanism involving rolling circle intermediates. After the network-bound maxicircle has finished replication, the branch of the rolling circle is apparently cleaved off to form a linear free maxicircle. A restriction map of the linearized free maxicircles shows that these molecules have unique termini, one of which presumably corresponds to the replication origin.  相似文献   

2.
Minicircle DNA, the major component of the mitochondrial DNA of trypanosomes (kinetoplast DNA), is linearized when living Trypanosoma equiperdum cells are treated with inhibitors of mammalian type II topoisomerases and then lysed with sodium dodecyl sulfate. A variety of intercalating and nonintercalating compounds (the epipodophyllotoxins, 4'-(9-acridinylamino)-methanesulfon-m-anisidine, 2-methyl-9-hydroxyellipticine, and acriflavine) are active, but novobiocin and specific gyrase inhibitors (the quinolones) are not. The linearized minicircles are in a DNA-protein complex, as their electrophoretic mobility is increased by Proteinase K treatment. They are digested by exonuclease III but not by lambda exonuclease, indicating that the protein must be linked to both 5' ends. Drug-induced cleavage sites vary with different compounds and are found throughout the minicircle sequence. These results indicate that trypanosome mitochondria contain a type II topoisomerase with some properties similar to those of type II topoisomerases in the nucleus of higher eukaryotes. A maximum of 12% of all minicircles is cleaved in the presence of VP16-213, indicating there are at least 600 molecules of mitochondrial type II topoisomerase/cell or about one enzyme/8 kilobases of minicircle DNA.  相似文献   

3.
Wang Z  Englund PT 《The EMBO journal》2001,20(17):4674-4683
We studied the function of a Trypanosoma brucei topoisomerase II using RNA interference (RNAi). Expression of a topoisomerase II double-stranded RNA as a stem-loop caused specific degradation of mRNA followed by loss of protein. After 6 days of RNAi, the parasites' growth rate declined and the cells subsequently died. The most striking phenotype upon induction of RNAi was the loss of kinetoplast DNA (kDNA), the cell's catenated mitochondrial DNA network. The loss of kDNA was preceded by gradual shrinkage of the network and accumulation of gapped free minicircle replication intermediates. These facts, together with the localization of the enzyme in two antipodal sites flanking the kDNA, show that a function of this topoisomerase II is to attach free minicircles to the network periphery following their replication.  相似文献   

4.
D S Ray  J C Hines    M Anderson 《Nucleic acids research》1992,20(13):3353-3356
The mitochondrial DNA of the trypanosomatid Crithidia fasciculata consists of thousands of copies of a 2.5 kb minicircle and a small number of 37kb maxicircles catenated into a single enormous network. Treatment of C. fasciculata with the type II DNA topoisomerase inhibitor VP16 produces cleavable complexes of a type II DNA topiosomerase with both minicircles and maxicircles. A combined Southern and Western blot analysis of the cleaved DNA species released from the network by SDS treatment has identified topollmt, the kinetoplast-associated topisomerase, in covalent complexes with linear forms of minicircle and maxicircle DNAs. These results directly implicate topollmt in the topological reactions required for the duplication of the kinetoplast network.  相似文献   

5.
The mitochondrial genome of Trypanosoma brucei, called kinetoplast DNA, is a network of topologically interlocked DNA rings including several thousand minicircles and a few dozen maxicircles. Kinetoplast DNA synthesis involves release of minicircles from the network, replication of the free minicircles and reattachment of the progeny. Here we report a new function of the mitochondrial topoisomerase II (TbTOP2mt). Although traditionally thought to reattach minicircle progeny to the network, here we show that it also mends holes in the network created by minicircle release. Network holes are not observed in wild‐type cells, implying that this mending reaction is normally efficient. However, RNAi of TbTOP2mt causes holes to persist and enlarge, leading to network fragmentation. Remarkably, these network fragments remain associated within the mitochondrion, and many appear to be appropriately packed at the local level, even as the overall kinetoplast organization is dramatically altered. The deficiency in mending holes is temporally the earliest observable defect in the complex TbTOP2mt RNAi phenotype.  相似文献   

6.
Etoposide, a nonintercalating antitumor drug, is a potent inhibitor of topoisomerase II activity. When Trypanosoma equiperdum is treated with etoposide, cleavable complexes are stabilized between topoisomerase II and kinetoplast DNA minicircles, a component of trypanosome mitochondrial DNA (T. A. Shapiro, V. A. Klein, and P. T. Englund, J. Biol. Chem. 264:4173-4178, 1989). Etoposide also promotes the time-dependent accumulation of small minicircle catenanes. These catenanes are radiolabeled in vivo with [3H]thymidine. Dimers are most abundant, but novel structures containing up to five noncovalently closed minicircles are detectable. Analysis by two-dimensional gel electrophoresis and electron microscopy indicates that dimers joined by up to six interlocks are late replication intermediates that accumulate when topoisomerase II activity is blocked. The requirement for topoisomerase II is particularly interesting because minicircles do not share the features postulated to make this enzyme essential in other systems: for minicircles, the replication fork is unidirectional, access to the DNA is not blocked by nucleosomes, and daughter circles are extensively nicked and (or) gapped.  相似文献   

7.
8.
9.
We have investigated the effect of 8-methoxycaffeine on the interaction between Drosophila DNA topoisomerase II and DNA. We have shown that 8-methoxycaffeine affected the enzyme strand-passing activity by inhibiting decatenation of kinetoplast DNA, and that it interfered with the breakage-reunion reaction by stabilizing a cleavable complex. Treatment of the cleavable complex with protein denaturant resulted in DNA breaks. High resolution mapping of the cleavage sites in the central spacer region of Tetrahymena rDNA revealed that, contrary to what was observed with clinically important DNA topoisomerase II inhibitors, 8-methoxycaffeine did not modify the cleavage pattern observed without the drug.  相似文献   

10.
11.
DNA topoisomerase activity detected in cell extracts of the trypanosomatid Crithidia fasciculata interlocks kinetoplast DNA duplex minicircles into huge catenane forms resembling the natural kinetoplast DNA networks found in trypanosomes. Catenation of duplex DNA circles is reversible and equilibrium is affected by ionic strength, and by spermidine. The reaction requires magnesium, is ATP dependent and is inhibited by high concentrations of novobiocin. Extensive homology between duplex DNA rings was not required for catenane formation since DNA circles with unrelated sequences could be interlocked into mixed network forms. Covalently sealed catenaned DNA circles are specifically used as substrates for decatenation. No such preference for covalently sealed duplex DNA rings was observed for catenate formation. Its catalytic properties and DNA substrate preference, suggest a potential role for this eukaryotic topoisomerase activity in the replication of kinetoplast DNA.  相似文献   

12.
Wang Z  Drew ME  Morris JC  Englund PT 《The EMBO journal》2002,21(18):4998-5005
Trypanosome mitochondrial DNA is a network containing thousands of interlocked minicircles. Silencing of a mitochondrial topoisomerase II by RNA interference (RNAi) causes progressive network shrinking, allowing assessment of the minimal network size compatible with viability. We cloned surviving cells after short-term RNAi and found, as expected, that the number of surviving clones decreased with the duration of RNAi. Unexpectedly, a clonal cell line contained heterogeneously sized networks, some being very small. Several experiments showed that cells survived network shrinkage by asymmetrical division of replicated networks, sacrificing daughters with the small progeny network. Therefore, the average network size gradually increased. During the network shrinkage and early stages of recovery, there were changes in the minicircle repertoire.  相似文献   

13.
The macroscopic curvature induced in the double helical B-DNA by regularly repeated adenine tracts (A-tracts) plays an exceptional role in structural studies of DNA because this effect presents the most well documented example of sequence specific conformational modulations. Recently, a new hypothesis of its physical origin has been put forward. According to it, the intrinsic bends in B-DNA may represent one of the consequences of the compressed frustrated state of its backbone. The compressed backbone hypothesis agrees with many data and explains some controversial experimental observations. The original arguments of this theory came out from MD simulations of a DNA fragment with a strong bending propensity. Its sequence, however, was not experimental. It was constructed empirically so as to maximize the magnitude of bending in calculations. To make sure that our computations reproduce the experimental effect we carried out similar simulations with an A-tract repeat of a natural base pair sequence found in a bent locus of a minicircle DNA. We demonstrate spontaneous development of static curvature in the course of MD simulations excluding any initial bias except the base pair sequence. Its direction and magnitude agree with experimental estimates. The results confirm earlier qualitative conclusions and agree with the hypothesis of a compressed backbone as the origin of static bending in B-DNA.  相似文献   

14.
Ciprofloxacin (CF), a fluoroquinolone widely used as a potent antimicrobial drug, was evaluated in vivo in mouse bone marrow cells for its ability to induce clastogenicity and DNA damage in terms of increased sister-chromatid exchange (SCE) frequencies. Doses of 0.6, 6 and 20 mg/kg body weight of CF given intraperitoneally induced a positive dose-dependent significant clastogenicity (trend test α ⩽ 0.05), though the effects were not specific for specific phases of the cell cycle.The DNA-damaging effect observed as increased SCE frequencies using doses of 0.15, 0.30, 0.60, 1.2 and 6 mg/kg body weight showed a significant dose-dependent increase (trend test α ⩽ 0.05; lowest effective concentration 1.2 mg/kg of body weight).Compared to a potent eukaryotic DNA topoisomerase type II poison, etoposide (VP-16, 0.5, 1 and 5 mg/kg body weight, given intraperitoneally), ciprofloxacin produced comparable dose-dependent SCE frequency increases. Ciprofloxacin was postulated to be specific for the target DNA gyrase, the prokaryotic homologue of DNA topoisomerase type II enzyme. The present paper along with the existing earlier data strongly suggest that topoisomerase type II and DNA gyrase are physiological targets for the drug action. In view of the present significant in vivo mammalian DNA topoisomerase type II-mediated genotoxicity and clastogenicity data, ciprofloxacin should be administered with caution.  相似文献   

15.
We have examined the level of incorporation of 32P into DNA topoisomerase II in vivo in chicken lymphoblastoid cells that were fractionated into the various cell cycle phases by centrifugal elutriation. We find that topoisomerase II is phosphorylated in vivo, with the level of incorporation being approximately 3.5-fold higher in the G2 + M fraction than earlier in the cell cycle. Our antibody studies have revealed that topoisomerase II antigen exists as a number of discrete polypeptide species in these cells. Of these, the 170-kDa intact polypeptide is phosphorylated approximately 4.5-fold more than several antigenic fragments that actually comprise the bulk of the topoisomerase II antigen in these cells at mitosis. Phosphorylation of the 170-kDa form of the enzyme may be involved in activation of the enzyme for its role in the disjunction of sister chromatids at anaphase.  相似文献   

16.
We have identified two classes of in vivo topoisomerase II cleavage sites in the Drosophila histone gene repeat. One class co-localizes with DNase I-hypersensitive regions and another novel class maps to a subset of consecutive nucleosome linker sites in the scaffold-associated region (SAR) of the histone gene loop. Prominent topoisomerase II cleavage is also observed in one of the linker regions of the two nucleosomes spanning satellite III, a centromeric SAR-like DNA sequence with a repeat length of 359 bp. At the sequence level, in vivo topoisomerase II cleavage is highly site specific. Comparison of 10 nucleosome linker sites defines an in vivo cleavage sequence whose major characteristic is a prominent GC-rich core. These GC-rich cleavage sites are flanked by extensive arrays of oligo(dA).oligo(dT) tracts characteristic of SAR sequences. Treatment of cells with distamycin selectively enhances cleavage at nucleosome linker sites of the SAR and satellite regions, suggesting that AT-rich sequences flanking cleavage sites may be involved in determining topoisomerase II activity in the cell. These observations provide evidence for the association of topoisomerase II with SARS in vivo.  相似文献   

17.
Trypanosomes possess a unique mitochondrial genome called the kinetoplast DNA (kDNA). Many kDNA genes encode pre-mRNAs that must undergo guide RNA-directed editing. In addition, alternative mRNA editing gives rise to diverse mRNAs and several kDNA genes encode open reading frames of unknown function. To better understand the mechanism of RNA editing and the function of mitochondrial RNAs in trypanosomes, we have developed a reverse genetic approach using artificial site-specific RNA endonucleases (ASREs) to directly silence kDNA-encoded genes. The RNA-binding domain of an ASRE can be programmed to recognize unique 8-nucleotide sequences, allowing the design of ASREs to cleave any target RNA. Utilizing an ASRE containing a mitochondrial localization signal, we targeted the extensively edited mitochondrial mRNA for the subunit A6 of the F0F1 ATP synthase (A6) in the procyclic stage of Trypanosoma brucei. This developmental stage, found in the midgut of the insect vector, relies on mitochondrial oxidative phosphorylation for ATP production with A6 forming the critical proton half channel across the inner mitochondrial membrane. Expression of an A6-targeted ASRE in procyclic trypanosomes resulted in a 50% reduction in A6 mRNA levels after 24 h, a time-dependent decrease in mitochondrial membrane potential (ΔΨm), and growth arrest. Expression of the A6-ASRE, lacking the mitochondrial localization signal, showed no significant growth defect. The development of the A6-ASRE allowed the first in vivo functional analysis of an edited mitochondrial mRNA in T. brucei and provides a critical new tool to study mitochondrial RNA biology in trypanosomes.  相似文献   

18.
It has been proposed that polyploid cells that arise during a variety of pathological conditions and as a result of exposure to genotoxicants, typically in the liver, become aneuploid through genetic instability. Aneuploidy contributes to, or even drives, tumour development. We have assessed the capacity of the drug cisplatin, one of the most commonly used compounds for the treatment of malignancies, to induce endoreduplication, a particular type of polyploidy, in cultured Chinese hamster AA8 cells. Taking into account that any interference with DNA topoisomerase II (topo II) function leads to endoreduplication, we have found that treatment of the cells with this platinum compound results in a dose-dependent inhibition of the catalytic activity of the enzyme. These observations are discussed on the basis of a possible dual action of cisplatin leading to a combined negative effect on normal segregation of chromosomes. On the one hand, through the drug capacity to efficiently inhibiting the catalytic activity of topo II itself and, on the other hand, as a consequence of changes in DNA such as base modifications and cross-links that result from cisplatin treatment, likely leading to a lack of recognition/binding of DNA by the enzyme. These observations support a model in which the involvement of topo II in different pathways leading to induced endoreduplication has been proposed, and seem to bear significance as to the possible origin of the development of secondary tumours as a result of cisplatin treatment of primary malignancies.  相似文献   

19.
20.
T Melendy  C Sheline  D S Ray 《Cell》1988,55(6):1083-1088
A type II DNA topoisomerase (topollmt), purified to near homogeneity from the trypanosomatid C. fasciculata has been shown to be localized to the single mitochondrion of these kinetoplastid protozoa. Immunoblots show at least a 10-fold higher level of topollmt (per milligram of protein) in preparations of partially purified mitochondria as compared with those from whole cells. Analyses of type I and type II topoisomerase activities in both mitochondrial and whole cell extracts show a 4- to 5-fold higher specific activity of topollmt in mitochondrial extracts while a nuclear type I topoisomerase has a 4- to 5-fold lower specific activity in the same extract. Immunolocalizations using anti-topollmt antibodies show the enzyme to be present in close association with the mitochondrial DNA networks (kinetoplast DNA or kDNA). This association appears at two distinct locations on opposite sides of the kDNA network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号