首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A surface active layer consisting mainly of phospholipids lines the human conducting airways. Dysfunction of this layer could play a role in the pathogenesis of chronic obstructive airway diseases like asthma and chronic bronchitis. Replacement therapy with exogenous surfactants is being considered in such conditions. The relationship between surfactants and mucus viscosity would be important for such an application. Respiratory mucus is composed of high molecular weight glycoprotein molecules which form temporary cross-links and entanglements to form a gel-like material. The present paper studies the interaction of three therapeutic surfactants — Exosurf, ALEC and Survanta; the main phospholipids of lung surfactant (1,2-dipalmitoyl phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylglycerol (PG)) as well as their binary mixtures (PCPE and PCPG) in a PC:(PE or PG) ratio of 2:3; on the viscosity of mucus gel simulants (MGS — a polymeric gel consisting mainly of gum tragacanth and simulating respiratory mucus). The surfactants were studied with respect to their ability to alter MGS viscosity at shear rates ranging from 0.1498 to 51.2 s−1 in a concentric cylinder viscometer at 37°C. The change in viscosity of the MGS on incubation with surfactant versus shear rate was found be non-Newtonian and to follow a power law model (coefficient of regression R2≥0.9). The shear rates experienced by a surfactant mixture, while passing through the tracheobronchial tree, were then calculated by modelling the tracheobronchial tree as cylindrical branching tubes. The equation governing the flow of a power law fluid through a cylindrical pipe was used to determine the shear experienced by a surfactant infusion as it passes through various mucus lined branches of the tracheobronchial tree. The surfactants were then compared based on their ability to alter MGS viscosity at shear rates corresponding to that of large, medium and small bronchi, as calculated by the study.  相似文献   

2.
While dipalmitoyl phosphatidylcholine (PC16:0/16:0) is essential for pulmonary surfactant function, roles for other individual molecular species of surfactant phospholipids have not been established. If any phospholipid species other than PC16:0/16:0 is important for surfactant function, then it may be conserved across animal species. Consequently, we have quantified, by electrospray ionisation mass spectrometry, molecular species compositions of phosphatidylcholine (PC), phosphatidylglycerol (PG) and phosphatidylinositol (PI) in surfactants from human, rabbit, rat and guinea pig lungs. While PC compositions displayed only relatively minor variations across the animal species studied, there were wide variations of PG and PI concentrations and compositions. Human surfactant PG and PI were enriched in the same three monounsaturated species (PG16:0/18:1, PG18:1/18:1 and PG18:0/18:1) with minimal amounts of PG16:0/16:0 or polyunsaturated species, while all animal surfactant PG contained increased concentrations of PG16:0/16:0 and PG16:0/18:2. Animal surfactant PIs were essentially monounsaturated except for a high content of PI18:0/20:4 (29%) in the rat. As these four surfactants all maintain appropriate lung function of the respective animal species, then all their varied compositions of acidic phospholipids must be adequate at promoting the processes of adsorption, film refinement, respreading and collapse characteristic of surfactant. We conclude that this effectively monounsaturated composition of anionic phospholipid molecular species is a common characteristic of mammalian surfactants.  相似文献   

3.
The aim of this study was to compare modulation of paclitaxel penetration in cancerous and normal cervical monolayers by four fluidizing agents: PCPG (9:1 DPPC:PG), PCPE (9:1 DPPC:DOPE), ALEC (7:3 DPPC:PG) and Exosurf (13.5:1.5:1.0 DPPC:hexadecanol:tyloxapol). Presence of the fluidizing agents improved drug penetration significantly. PCPG and PCPE were promising penetration enhancers. PCPG 0.1% caused 3.8– and 1.7-fold higher maximum increments in surface pressure due to drug penetration, (Δπ)max, than the control in cancerous and normal monolayers, respectively, at 20 mN/m. In cancerous monolayer at 20 mN/m, presence of 0.1%, 0.5%, 1%, 5% and 10% PCPE produced 3.4-, 5.7-, 7.4-, 9.6- and 9.8-fold higher drug penetration compared to the control monolayer without PCPE, respectively. In cancerous monolayer at 20 mN/m, PCPG and PCPE liposomes having 1 mg lipid gave 2.1 and 3.6 times higher (Δπ)max compared to the control, respectively. Further, the liposomal drug penetration was found to be directly proportional to the liposomal lipid content. The effect of the fluidizing agents was confirmed by increased calcein release from model cervical cancer liposomes. These results may have implications in using the above biocompatible lipids and surfactants as penetration enhancers along with anticancer drugs or as carriers for liposomal formulations of anticancer drugs for improved membrane penetration.  相似文献   

4.
The phospholipid fatty acid composition of Porphyridium purpureum grown on a solid medium was studied in the presence of Triton X-100 (TX) and sodium desoxycholate (SDC). The most common fatty acids in PC and PE were palmitic (16:0), stearic (18:0), linoleic (18:2ω6), arachidonic (20:4ω6) and eicosapentaenoic (20:5ω3) acids, 20:4ω6 being very abundant. In PG the most common acids were 16:0, trans-hexaenoic acid (tr16:1ω3), oleic acid (18:1) and 20:4ω6. Both detergents caused an increase in the saturation of PC and, to a lesser extent, of PE. The relative amounts of short chain fatty acids increased. Both detergents increased the amounts of 16:0 and, correspondingly, decreased the amounts of 20:4ω6. In PG the amounts of both 16:0 and tr 16:1ω3 increased and the amounts of 18:0, 18:2ω6 and 20:4ω6 decreased in the presence of detergents. The changes were always greatest at the concentrations of 5–10 ppm TX or SDC. At 20 ppm the fatty acid compositions, especially with SDC, were very similar to the controls, which suggests a change in the detergent effect between 10–20 ppm. The normal PC/PE ratio was 5.6 and the (PC+ PE)/PG ratio 39.0. Both detergents caused a marked decrease in these ratios. Because the detergent effects are not linear, it seems that even very low detergent concentrations have an important influence on algae in polluted waters.  相似文献   

5.
The phospholipid fatty acid composition of Porphyridium purpureum on a solid medium was studied in the presence of sodium dodecyl sulphate (SDS) and cetyl trimethylammonium bromide (CTAB). The most common fatty acids in phosphatidyl choline (PC) and phosphatidyl ethanolamine (PE) were palmitic (16:0), stearic (18: 0), linoleic (18:2ω 6), arachidonic (20:4ω 6) and eicosapentaenoic (20:5ω 3) acids, 20:4ω 6 being very abundant. In phosphatidyl glycerol (PG) the most common acids were 16:0, trans-hexadecenoic acid (tr 16:1ω 13), oleic acid (18:1) and 20:4ω 6. Both detergents increased the saturation grade of PC and PE by decreasing the relative amount of the polyunsaturated acids, especially 20:4ω 6. A corresponding increase in the amounts of saturated acids was observed in PC and PE. The changes in PG fatty acid composition were not very significant: a slight increase was observed in the amounts of 16:0 and tr 16:1ω 13 , with a corresponding decrease in the amounts of 20:4ω 6 and 20:5ω 3. Both detergents decreased the PC/PE and the (PC + PE)/PG ratios very markedly, most probably as a result of increases in the amounts of PE and PG. In the presence of CTAB the cells seemed to contain much more phospholipids than in the presence of SDS, perhaps as a result of the mucilage-precipitating effect of CTAB. The significance of the findings is discussed.  相似文献   

6.
Membrane-active peptides participate in many cellular processes, and therefore knowledge of their mode of interaction with phospholipids is essential for understanding their biological function. Here we present a new methodology based on electron spin-echo envelope modulation to probe, at a relatively high resolution, the location of membrane-bound lytic peptides and to study their effect on the water concentration profile of the membrane. As a first example, we determined the location of the N-terminus of two membrane-active amphipathic peptides, the 26-mer bee venom melittin and a de novo designed 15-mer D,L-amino acid amphipathic peptide (5D-L9K6C), both of which are antimicrobial and bind and act similarly on negatively charged membranes. A nitroxide spin label was introduced to the N-terminus of the peptides and measurements were performed either in H2O solutions with deuterated model membranes or in D2O solutions with nondeuterated model membranes. The lipids used were dipalmitoyl phosphatidylcholine (DPPC) and phosphatidylglycerol (PG), (DPPC/PG (7:3 w/w)), egg phosphatidylcholine (PC) and PG (PC/PG (7:3 w/w)), and phosphatidylethanolamine (PE) and PG (PE/PG, 7:3w/w). The modulation induced by the 2H nuclei was determined and compared with a series of controls that produced a reference "ruler". Actual estimated distances were obtained from a quantitative analysis of the modulation depth based on a simple model of an electron spin situated at a certain distance from the bottom of a layer with homogeneously distributed deuterium nuclei. The N-terminus of both peptides was found to be in the solvent layer in both the DPPC/PG and PC/PG membranes. For PE/PG, a further displacement into the solvent was observed. The addition of the peptides was found to change the water distribution in the membrane, making it "flatter" and increasing the penetration depth into the hydrophobic region.  相似文献   

7.
The biocatalytical potential of two new phospholipase D (PLD) isoenzymes from poppy seedlings (Papaver somniferum L.), PLD-A and PLD-B, was examined by comparing their activities in phospholipid transformation. Both enzymes showed the same ratio in rates of hydrolysis [phosphatidylcholine (PC):phosphatidylglycerol (PG):phosphatidylserine:phosphatidylinositol=1:0.5:0.3:0.1] and were inactive towards phosphatidylethanolamine (PE). PLD-A did not catalyze head group exchange whereas PLD-B showed a high transphosphatidylation potential in the conversion of PC into PG and PE. This enzyme also catalyzed the transesterification of octadecylphosphocholine into octadecylphosphoglycerol or octadecylphosphoethanolamine.  相似文献   

8.
The specificity of snake venom phospholipase A2(PLA2) towards a number of phospholipid (PL) substrates, e. g., phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and phosphatidylinositol (PI) organized in Triton X-100 mixed micelles, liposomes and proteoliposomes was studied. PC was shown to be more rapidly hydrolyzed in micelles. For other PLs, the rate of hydrolysis decreased in the following sequence: PC greater than PI greater than PE greater than PG. The incorporation into micelles of a non-hydrolyzable by PLA2 sphinogomyelin which, similar to PC, has a choline group, resulted in an increase of PLA2 specificity towards PL that are known to be devoid of this group: PE greater than PI greater than PG greater than PC. Quite a different picture was observed in bilayer liposomal structures: PI congruent to PE greater than PC greater than PG. The incorporation of cytochrome P-450 into liposomes caused the acceleration of PE and PG hydrolysis. The course of the PLA2-catalyzed hydrolysis in model membrane structures seems to be governed primarily by the supramolecular organization and localization of the substrate in the bilayer, but not by its chemical structure.  相似文献   

9.
The proposed in vitro model for studying the alveolar surface layer of the lungs enables one to investigate the surface intermolecular forces which influence the stability of the alveolus. The general role for the stability of the alveolus belongs to the phospholipids in the alveolar surfactant and predominantly to their main component dipalmitoylphosphatidylcholine (DPPC). The aim of the study was to investigate the rheological behavior of DPPC and exogenous surfactant preparations used in neonatal clinical practice. Data for the rheological behavior of the solutions of the commercially available surfactants, Infasurf, Exosurf and Survanta, as well as of DPPC (their main phospholipid component) at shear rates from 0.024 to 94.5 s(-1) under steady and transient flow conditions at 23 degrees C were obtained. Infasurf and Exosurf showed Newtonian rheological behavior, while Survanta revealed the shear-thinning behavior of a non-Newtonian pseudoplastic fluid. The rheological properties of aqueous solutions of DPPC containing 0.14 M NaCl at concentrations from 100 and 630 microg/ml of phospholipid (chosen from the dependence of the probability for bilayer film formation) were studied. Differences observed in the rheological properties of the exogenous surfactants were interpreted on the basis of their composition, the presence of other phospholipid components, certain additives and surfactant proteins, as well as the bulk structures formed from them. The relevance of the results for the delivery of exogenous surfactants and their spreading in replacement therapy is discussed.  相似文献   

10.
The activity of phospholipase C/sphingomyelinase HR2 (PlcHR2) from Pseudomonas aeruginosa was characterized on a variety of substrates. The enzyme was assayed on liposomes (large unilamellar vesicles) composed of PC:SM:Ch:X (1:1:1:1; mol ratio) where X could be PE, PS, PG, or CL. Activity was measured directly as disappearance of substrate after TLC lipid separation. Previous studies had suggested that PlcHR2 was active only on PC or SM. However we found that, of the various phospholipids tested, only PS was not a substrate for PlcHR2. All others were degraded, in an order of preference PC > SM > CL > PE > PG. PlcHR2 activity was sensitive to the overall lipid composition of the bilayer, including non-substrate lipids.  相似文献   

11.
水分逆境对吊兰叶片脂质组成的影响   总被引:1,自引:0,他引:1  
包宏 《植物学通报》1999,16(5):598-601
测定了吊兰( Chlorophytum comosum) 在干旱、正常浇水和渍水三种供水条件下叶片的磷脂组成、膜脂和总磷脂的脂肪酸组成,以及磷脂中4 种主要组分PG、PE、PC 和PI的脂肪酸组成,观察到干旱使磷脂中PE 的相对含量增加,PE 脂肪酸中16 :0 明显减少,而膜脂、总磷脂和PC、PI中饱和脂肪酸增加,但PG脂肪酸组成变化很小  相似文献   

12.
Hydrophobic pulmonary surfactant protein enriched in SP-C has been mixed in amounts up to 10% by weight with various phospholipids. The lipids used were dipalmitoyl phosphatidylcholine (DPPC), or DPPC plus unsaturated phosphatidylglycerol (PG), or phosphatidylinositol (PI) in molar ratios of 9:1 and 7:3. The protein enhanced the rate and extent of adsorption of each lipid preparation into the air-water interface, and its respreading after compression on a surface balance. Maximum surface pressures attained on compression of monolayers of mixtures of lipids were slightly higher in the presence of protein. The effects on rate and extent of adsorption were proportional to the amount of protein present. Mixtures containing 30 mol% PG or PI adsorbed more readily into the interface than those containing 10% acidic lipid or DPPC alone. Mixtures containing 30% PI were slightly more rapidly adsorbed than those containing 30% PG. The results suggest that mixtures of DPPC with either acidic lipid in the presence of surfactant protein could be effective in artificial surfactants.  相似文献   

13.
Major glycolipids [monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG)) and phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylglycerol (PG)] as well as betaine lipid 1,2-diacylglycero-O-4'-(N,N,N-tri-methyl)-homoserine (DGTS) were isolated from Anfeltia tobuchiensis (Rhodophyta), Laminaria japonica, Sargassum pallidum (Phaeophyta), Ulva fenestrata (Chlorophyta) and Zostera marina (Embriophyta), harvested in the Sea of Japan. GC analysis of their fatty acid (FA) composition revealed that the n-6 polyunsaturated FAs (PUFAs) shared the most part of the sum of n-6 and n-3 PUFAs in PC and PE compared with glycolipids and PG. In algae, it was related to the prevalence of 20:4n-6 over 20:5n-3 in non-photosynthetic lipids. Percentage of n-6 PUFAs as well as the sum of n-3 and n-6 PUFAs decreased in the following sequence: PC-->PE-->PG. The saturation increased in the lines of MGDG-->DGDG-->SQDG and PC-->PE-->PG. PG was close to SQDG by the level of saturation. Distribution of C(18) and C(20) PUFAs in polar lipids depended on taxonomic position of macrophytes. Balance between C(18) and C(20) PUFAs was preferably shifted to the side of C(20) PUFAs in PC and PE that was observed in contrast to glycolipids and PG from L. japonica containing both series of FAs. The set of major FAs of polar lipid classes can essentially differ from each other and from total lipids of macrophytes. For example, MGDG was found to accumulate characteristic fatty acids 16:4n-3, 16:3n-3, 18:3n-6 and 18:4n-3, 20:3n-6 in U. fenestrata, Z. marina, L. japonica and S. pallidum, respectively.  相似文献   

14.
包宏 《植物学报》1999,16(5):598-601
测定了吊兰(Chlorophytum comosum)在干旱、正常浇水和渍水三种供水条件下叶片的磷脂组成、膜脂和总磷脂的脂肪酸组成,以及磷脂中4种主要组分PG、PE、PC和PI的脂肪酸组成,观察到干旱使磷脂中PE的相对含量增加,PE脂肪酸中16:0明显减少,而膜脂,总磷脂和PC、PI中饱和脂肪酸增加,但PG脂肪酸组成变化很小。  相似文献   

15.
This study aimed to evaluate the effect of Cd exposure (100 μmol/L) on polar lipid composition, and to examine the level of fatty acid unsaturation in maize (Zea mays L.). In roots, the level of 16:0 and monounsaturated fatty acids (16:1 + 18:1) decreased in phosphatidylcholine (PC) and phosphatidylethanolamine (PE). In contrast, the proportion of unsaturated 18-C fatty acid species showed an opposite response to Cd. The content, on the other hand, of PC, PE, digalactosyldiacylglycerol (DGDG), and steryl lipids increased in roots (2.9-, 1.6-, 5.3-, and 1.7-fold increase, respectively). These results suggest that a more unsaturated fatty acid composition than found in control plants with a concomitant increase in polar lipids may favor seedling growth during Cd exposure. However, the observed increase in the steryl lipid (SL) : phospholipid (PL) ratio (twofold), the decrease in monogalactosyldiacylglycerol (MGDG) : DGDG ratio, as well as the induction of lipid peroxidation in roots may represent symptoms of membrane injury. In shoots, the unsaturation level was markedly decreased in PC and phosphatidylglycerol (PG) after Cd exposure, but showed a significant increase in sulfoquinovosyldiacylglycerol (SQDG), MGDG and DGDG. The content of PG and MGDG was decreased by about 65%, while PC accumulated to higher levels (4.4-fold increase). Taken together, these changes in the polar lipid unsaturation and composition are likely to be due to alterations in the glycerolipid pathway. These results also support the idea that the increase in overall unsaturation plays some role in enabling the plant to withstand the metal exposure.  相似文献   

16.
Lipids and fatty acids of Ectocarpus fasciculatus (Ectocarpales,Phaeophyceae) were analyzed. Major polar lipids are monogalactosyldiacylglycerol(MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol(SQDG), diacylglycerylhydroxymethyl-N,N,N-trimethyl-rß-alanine(DGTA), phosphatidylcholine (PC), phospha-tidylethanolamine(PE), phosphatidylglycerol (PG) and phosphatidylinositol (PI).Diphosphatidylglycerol (DPG), phosphatidic acid (PA) and phosphatidyl-O-[N-(2-hydroxy-ethyl)glycine](PHEG) were also present in small amounts. Nonpolar lipids mainlyconsist of triacylglycerol (TAG) and diacylglycerol (DAG). Majorfatty acids are 16:0,18:1, 18:3, 18:4, 20:4 and 20:5. The positionaldistribution of fatty acids showed that molecular species ofeukaryotic structure account for 99% in MGDG, 98% in DGDG, 62%in PG and 23% in SQDG. On incubation with [1-14C]18:1 for 30min, 33% of the total label was detected in TAG, 16% in PG,14% in PE, 10% in PC and 8% in MGDG. During 7 days of chase,the label in TAG, PG, PE and PC decreased and simultaneouslyincreased in MGDG up to 41% of the total. In SQDG, labelledfatty acids were found in prokaryotic as well as in eukaryoticmolecular species. During the experiment, the label shiftedfrom 18:1 to 18:2, 18:3, 18:4 and, to a minor extent, to 20:4and 20:5 acids indicating 18:1 to be processed by elongationand/or desaturation. These results suggest TAG to act as a majorprimary acceptor of exogenous oleate and to be involved in thetransfer of fatty acids to MGDG and other polar lipids. (Received March 24, 1997; Accepted June 11, 1997)  相似文献   

17.
1. The effects of age-dependent or liposome-induced alterations in the phospholipid composition of rat liver plasma and microsomal membranes on the phosphatidylethanolamine:ceramide-phosphoethanolamine (PE:Cer-PEt) and phosphatidylcholine:ceramide-phosphocholine (PC:Cer-PCh) transferase activities were studied. 2. In all cases under study the PE:Cer-PEt transferase activity was found to be several times higher than that of PC:Cer-PCh transferase in both plasma and microsomal rat liver membranes. 3. The presence of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) in plasma membranes was observed to enhance the PE:Cer-PEt transferase activity, while phosphatidylserine (PS) inhibited it.  相似文献   

18.
Phosphatidylcholine (PC) homeostasis is important for maintaining cellular growth and survival. Cellular growth and apoptosis may also be influenced by the PC to phosphatidylethanolamine (PE) ratio as a reduction in this ratio can result in a loss of membrane integrity. To investigate whether a reduced PC:PE ratio influences cellular growth and apoptosis, we utilized the MT58 cell line, which contains a thermo-sensitive mutation in CTP:phosphocholine cytidylyltransferase-α, the rate-limiting enzyme for PC biosynthesis. Incubation of MT58 cells at the restrictive temperature of 41°C results in a reduction of cellular PC and induces apoptosis. Furthermore, MT58 cells have a 50% reduction in the PC:PE ratio when incubated at 41°C. In an attempt to normalize the PC:PE ratio, which may stabilize cellular membranes and rescue MT58 cells from apoptosis, the cells were treated with either silencing RNA to impair PE biosynthesis or lysophosphatidylcholine to increase PC mass. Impairing PE biosynthesis in MT58 cells reduced cellular PE and PC concentrations by 30% and 20%, but did not normalize the PC:PE ratio. Loss of both phospholipids enhanced the onset of apoptosis in MT58 cells. Lysophosphatidylcholine normalized cellular PC, increased PE mass by 10%, restored cellular growth and prevented apoptosis of MT58 cells without normalizing the PC:PE ratio. Furthermore, total amount of cellular PC and PE, but not the PC:PE ratio, correlated with cellular growth (R(2)=0.76), and inversely with cellular apoptosis (R(2)=0.97). These data suggest the total cellular amount of PC and PE, not the PC:PE ratio, influences growth and membrane integrity of MT58 cells.  相似文献   

19.
A phycoerythrin (PE) and phycocyanin (PC) mixture was separated from allophycocyanin on calcium phosphate chromatography from completely dissociated phycobilisomes of the blue-green alga, Nostoc sp. After dialysis of the PE-PC mixture in 0.75 m potassium phosphate, pH 7, which allows reassociation of the dissociated pigment-proteins, complexes of PE and PC in a 2:1 m ratio (PE/PC complex) as well as complexes predominantly of PC (PC/PE complex) were then separated by sedimentation on linear sucrose gradients. These complexes resemble the rods of intact phycobilisomes and transfer energy efficiently from PE to PC. They contain the Group II colorless polypeptides described by Tandeau de Marsac and Cohen-Bazire (1977 Proc Natl Acad Sci USA 74: 1635 61639). Phycobilisomes can be reconstituted by combining the allophycocyanin pool with (a) the PE-PC mixture, (b) the PE/PC complex, or (c) the PC/PE complex. Successful reconstitution is measured by absorption, fluorescence, circular dichroism, and electron microscopy. The major requirement for reconstitution is the 29-kilodalton colorless polypeptide. In its absence, no phycobilisomes are formed. It is the only colorless polypeptide common to both the PE/PC complex and the PC/PE complex, and appears to be the polypeptide responsible for rod attachment to the allophycocyanin. In addition, high phosphate concentrations and 20 degrees C temperatures are needed for reconstitution.  相似文献   

20.
Bovine liver phosphatidylcholine transfer protein (PC-TP) has been expressed in Escherichia coli and purified to homogeneity from the cytosol fraction at a yield of 0.45 mg PC-TP per 10 mg total cytosolic protein. In addition, active PC-TP was obtained from inclusion bodies. An essential factor in the activation of PC-TP was phosphatidylcholine (PC) present in the folding buffer. PC-TP from the cytosol contains phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) with a preference for the di-monounsaturated species over the saturated species as determined by fast atom bombardment mass spectrometry (FAB-MS). By incubation with microsomal membranes the endogenous PE and PG were replaced by PC. Relative to the microsomal PC species composition, PC-TP bound preferentially C16:0/C20:4-PC and C16:0/C18:2-PC (twofold enriched) whereas the major microsomal species C18:0/C18:1-PC and C18:0/C18:2-PC were distinctly less bound. PC-TP is structurally homologous to the lipid-binding domain of the steroidogenic acute regulatory protein (Nat. Struct. Biol. 7 (2000) 408). Replacement of Lys(55) present in one of the beta-strands forming the lipid-binding site, with an isoleucine residue yielded an inactive protein. This suggests that Lys(55) be involved in the binding of the PC molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号