首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

To evaluate the prevalence and associated factors of steep cornea/keratoconus in the adult Chinese population.

Methods

The population-based Beijing Eye Study 2011 included 3468 individuals with a mean age of 64.6±9.8 years (range: 50–93 years). A detailed ophthalmic examination was performed including optical low-coherence reflectometry. Steep cornea/keratoconus were defined as an anterior corneal refractive power exceeding 48 diopters.

Results

Mean refractive power of the cornea was 43.16±1.45 diopters (range: 36.51 to 48.46 diopters; flattest meridian) and 43.98±1.52 diopters (range: 37.00 to 52.88 diopters; steepest meridian). A steep cornea/keratoconus defined as corneal refractive power of ≥48 diopters and ≥49 diopters was detected in 27 subjects (prevalence rate: 0.9±0.2%) and 6 (0.2± 0.1%) subjects, respectively. Presence of steep cornea/keratoconus was associated with shorter axial length (P<0.001), smaller interpupillary distance (P = 0.038), lower best corrected visual acuity (P = 0.021), higher cylindrical refractive error (P<0.001) and more myopic refractive error (P<0.001). It was not significantly associated with gender, body height, psychic depression, cognitive function, blood concentrations of glucose, lipids, creatinine and C-reactive protein, blood pressure and quality of life score, nor with intraocular pressure, dry eye feeling, and lens thickness.

Conclusions

A steep cornea/keratoconus defined as corneal refractive power of 48+ diopters has a prevalence of 0.9±0.2% among Chinese aged 50 years and above. Its prevalence was significantly associated with the ocular parameters of shorter axial length, smaller interpupillary distance, higher cylindrical and myopic refractive error and lower best corrected visual acuity, however, with none of the systemic parameters tested.  相似文献   

2.
Summary Refractive states of three species of penguins (Rockhopper, Gentoo and King) were measured in air and water. Little or no refractive error, with a trend toward slight myopia (less than two dioptres), was found in air in each case. Moderate hyperopia (8–13 dioptres) exists in water. The refractive findings of this study are similar to those of a preliminary study made with the Blackfoot penguin. The relatively small alteration of refractive state associated with the change from air to water (in contrast to an approximate change of 40 dioptres for the human eye) is attributed to the flattened shape of the cornea. The chromatic aberration measured in these species is insufficient to account for the hyperopia found underwater. The maximum reduction of hyperopia resulting from a monochromatic (blue, blue-green) aquatic habitat would only amount to two dioptres. It is speculated that the remaining hyperopia is nullified by an accommodative mechanism.This research was supported by a grant from the National Research Council of Canada. The authors are grateful for the cooperation of the Scottish National Zoological Park, Edinburgh. In particular, the authors would like to thank Mr. Kennedy for assistance in handling the penguins. The authors would like to acknowledge the original observation by Barbara Sivak concerning the flattened appearance of the penguin cornea.  相似文献   

3.
Vision of the Humboldt penguin (Spheniscus humboldti) in air and water   总被引:1,自引:0,他引:1  
Refractive states measured by retinoscopy and photorefraction indicate that the eyes of the Humboldt penguin, Spheniscus humboldti, are approximately emmetropic in air and water. Extensive myopia in air, as predicted by earlier authors and by a recent anatomical study, is non-existent. Photorefractive measurements of the refractive state, in water, of the Humboldt penguin indicate that it can accommodate sufficiently to make up the loss of the refractive power of the cornea. The cornea of the Humboldt penguin is flattened relative to the overall size of the eye. In all these respects (corneal flattening, and accommodation in air and water) the eyes of Humboldt penguins are like those of gentoo, (Pygoscelis papua), rockhopper (Eudyptes crestatus), Magellanic (Spheniscus magellanicus), and king penguins (Aptenodytes patagonica).  相似文献   

4.

Purpose

In eyes with a preoperative plano refractive cylinder, it would appear that there is no rationale for astigmatic treatment. The aim of this retrospective, cross-sectional data analysis was to determine the amount of topographic astigmatism in refractive plano eyes that results in reduced efficacy after myopic laser in situ keratomileusis (LASIK).

Methods

This study included 267 eyes from 267 consecutive myopic patients with a refractive plano cylinder. Receiver operating characteristic analysis was used to find the cut-off values of preoperative ocular residual astigmatism (= topographic astigmatism) that can best discriminate between groups of efficacy and safety indices in preoperative plano refractive cylinder eyes.

Results

Preoperative ocular residual astigmatism (ORA) (or topographic astigmatism) of ≤0.9 diopters (D) resulted in an efficacy index of at least 0.8 statistically significantly more frequently than eyes with a preoperative ORA of >0.9 D. Eyes with a high ORA preoperatively also had a high ORA postoperatively. Regression analysis showed that each diopter of preoperative ORA reduced efficacy by 0.07.

Conclusion

A preoperative corneal astigmatism of ≥0.9 D could (partially) be taken into account in the LASIK design, even if the subjective refractive astigmatism is neutral.  相似文献   

5.
The optimal shape of the corneal lens of the water bug backswimmer (Notonecta glauca) and the optimal shape and position of the thin transition layer between the distal and proximal units of its cornea are theoretically determined. Using a geometric optical method, first the shape of a geometric interface between the lens units is determined, which eliminates the longitudinal spherical aberration. This interface is investigated for differently formed thick lenses when the medium in contact with the entrance surface of the lens is water or air. The optimal transition layer for the amphibious backswimmer is that, the boundaries of which are the theoretical interfaces for water and air, and the refractive index varies continuously in it. The optimal shape of the corneal lens is determined, with the disadvantageous lenses, with respect to the possible minimal spherical aberration and amount of reflected light from the transition layer, being rejected. The optimal position of the transition layer in the cornea can be obtained from the minimization of the amount of diffracted light on the marginal connection of the layers. The optimal corneal lens for backswimmer has ellipsoid boundary surfaces; the optimal transition layer in it is thin bell-shaped, at the marginal connection of which there is no dimple, the maximum of the layer is on the margin of the cornea. The shape of the theoretically optimal corneal lens, the shape and position of the theoretically optimal transition layer agree well with those of Notonecta glauca. The question posed, the geometric optical method used and the results presented are of general importance, and not only with respect to vision in the bug Notonecta, but also in the fossil trilobites, or in the wave guide theories which have been employed in similar modelling problems, in design of system of lenses without spherical aberration, for example.  相似文献   

6.
An analytical model has been developed for the localized corneal deformation produced in the region of the head of a pterygia. Astigmatism results when this localized deformation enters the central region or optical zone of the cornea. The amount and direction of the pterygia-induced astigmatism may be predicted from the values of the corneal curvature within the optical zone. The analytical solution of Lur'e based on the Papkovich-Neuber theory was applied to the anatomical and mechanical conditions affecting the cornea and conjunctiva. The force exerted by the head of a pterygia was measured experimentally for the first time. This force is of the order of that produced by the extraocular muscles in primary gaze. Using this model it is possible to predict that 2.35 diopters of the pterygia-induced astigmatism would result from a pterygia exerting 5 g of force along a meridian passing through the center of the cornea, and whose head is located 2.38 millimeters from the optical center of the cornea of an eye having a 4 mm pupillary diameter.  相似文献   

7.
Summary We have investigated the role of changes in corneal radius of curvature in effecting accommodation in the bird's eye. It was found that in natural accommodation (measured by IR photoretinoscopy) changes of corneal radius of curvature (measured by IR photokeratometry) play an important role in both the chick and the pigeon. In the adult pigeon the cornea is indeed responsible for the largest part of natural accommodation (up to approx. 9 D). In this animal the corneal diameter (as seen from the optical axis of the eye) decreases in accommodation which can be taken to explain the change of corneal radius of curvature. In the chicken, corneal accommodation is combined with other mechanisms (total accommodative range 15–17 D, corneal accommodation about 8 D). The chicken's cornea is aspherical within the pupil area leading to large measurement variation in photokeratometry if the Purkinje images are not symmetrical to the pupillary axis.Abbreviation IR infrared  相似文献   

8.
While larval sea lampreys exist as eyeless filter feeders for several years, they transform into free-swimming juveniles (transformers) that attach parasitically to prey fish as they develop sexual maturity. This study examines lamprey lens development and optics and, since the lens is often the only refractive component of an aquatic eye, the data also provide an indication of visual ability during transformer and adult periods of life. Seven adult sea lampreys (0.40–0.55 m) and eight transformers (0.15–0.18 m) were sacrificed, the eyes removed and lenses dissected, measured, and placed in an automated laser scanning instrument. Back vertex focal length (spherical aberration) was measured for 14 beam positions across each lens by using a digital camera to record the position of the refracted beam. Transformer lenses exhibit positive spherical aberration, with average focal lengths varying from about 2.40 mm near the lens center and 1.06 mm at the lens periphery. On the other hand, the lenses from adults are largely corrected for spherical aberration, with average focal lengths varying from 2.19 mm to 2.44 mm. This result indicates that the younger lenses do not have a gradient refractive index necessary to mitigate the aberration and that further study of this model may reveal the relation between lens embryology and the development of such a gradient.  相似文献   

9.
PurposeTo determine the effects of optically imposed astigmatism on early eye growth in chicks.Methods5-day-old (P5) White Leghorn chicks were randomly assigned to either wear, monocularly, a “high magnitude” (H: +4.00DS/-8.00DC) crossed-cylindrical lens oriented at one of four axes (45, 90, 135, and 180; n = 20 in each group), or were left untreated (controls; n = 8). Two additional groups wore a “low magnitude” (L: +2.00DS/−4.00DC) cylindrical lens orientated at either axis 90 or 180 (n = 20 and n = 18, respectively). Refractions were measured at P5 and after 7 days of treatment for all chicks (P12), whereas videokeratography and ex-vivo eyeshape analysis were performed at P12 for a subset of chicks in each group (n = 8).ResultsCompared to controls, chicks in the treatment groups developed significant amounts of refractive astigmatism (controls: 0.03±0.22DC; treatment groups: 1.34±0.22DC to 5.51±0.26DC, one-way ANOVAs, p≤0.05) with axes compensatory to those imposed by the cylindrical lenses. H cylindrical lenses induced more refractive astigmatism than L lenses (H90 vs. L90: 5.51±0.26D vs. 4.10±0.16D; H180 vs. L180: 2.84±0.44D vs. 1.34±0.22D, unpaired two-sample t-tests, both p≤0.01); and imposing with-the-rule (H90 and L90) and against-the-rule astigmatisms (H180 and L180) resulted in, respectively, steeper and flatter corneal shape. Both corneal and internal astigmatisms were moderately to strongly correlated with refractive astigmatisms (Pearson’s r: +0.61 to +0.94, all p≤0.001). In addition, the characteristics of astigmatism were significantly correlated with multiple eyeshape parameters at the posterior segments (Pearson’s r: -0.27 to +0.45, all p≤0.05).ConclusionsChicks showed compensatory ocular changes in response to the astigmatic magnitudes imposed in this study. The correlations of changes in refractive, corneal, and posterior eyeshape indicate the involvement of anterior and posterior ocular segments during the development of astigmatism.  相似文献   

10.
Summary The existence of structural asymmetries has been quantitatively demonstrated in the crayfish compound eye. Variations in the size of the rhabdomes and corneal facets, as well as the size and extent of the accessory reflecting pigment cells, have been found. It was determined that the mean rhabdome diameter within a 70° arc in the dorsal quadrant of the retina is 11–19% smaller than the mean rhabdome diameter in the remaining areas of the eye. Also, the extent of the accessory reflecting pigment cells is diminished over an area corresponding generally to the dorsal region of smaller rhabdomes. Corneal facet size and shape vary over the surface of the cornea, with smaller facets occurring in the dorsal region. Both the mean rhabdome diameter and the mean corneal facet area for whole eyes increases linearly in animals ranging in size from 3.9–12 cm. The estimated number of corneal facets, and therefore the number of rhabdomes, increases from an average of 4700 in the 3–6.9 cm size range to about 6000 in 7–12 cm animals. These data indicate that structural asymmetries and various size-related parameters exist in the crayfish eye and should be considered in any quantitative analysis of this structure.Supported by a grant from the National Science Foundation (BNS 80-04587)  相似文献   

11.
Tenascin-X has been studied in developing and adult rat eye and in foetal and adult human eyes, using immunohistochemistry and frozen sections. The data were compared with the distribution of tenascin-C. The immunoreactivity for tenascin-X was seen in a basement membrane-like feature in different structures of embryonic (E) day 16–17 rat eyes. Postnatal (P) day 2 and older rat eyes showed immunoreactivity for tenascin-X in different connective tissues. In the epithelial basement membrane zone of the cornea, immunostaining was positive in P5 eyes, negative in P10 and P15 eyes and again positive in P30 and adult eyes. In the 20-week-old human foetus, immunoreactivity for the tenascin was seen in the posterior parts of the conjunctival stroma adjacent to the sclera and in a basement membrane-like fashion in anterior conjunctiva. In the adult human eye, immunoreactivity for tenascin-X was seen in the anterior one-third stroma of cornea as thin fibrils, in the stroma of the limbus and conjunctiva, and in blood vessels. Immunostaining for tenascin-C was seen in the posterior aspect of the further cornea, and in mesenchyme adjacent to cornea in E16–17 rat eyes. Corneal keratocytes and Descemet's membrane showed immunoreactivity for tenascin-C in P2–P15 rat eyes. Sclera and the junction of the cornea, and sclera expressed tenascin-C in P2 and older rat eyes. In human foetal eyes, immunostaining for tenascin-C was seen in the anterior parts of the corneal stroma, in the basement membrane zone and Bowman's membrane of the corneal epithelium, in the posterior one-fifth of the corneal stroma and the sclera starting from the junction of the cornea and sclera. In normal human adult eyes, immunostaining for tenascin-X was seen in the anterior one-third stroma of cornea, in the stroma of limbus and conjunctiva, and in blood vessels. The association of tenascin-X and basement membranes in early development evokes a question of its potential function in the development of the basement membrane. The results also suggest the association of tenascin-X with connective tissue development as well as the association of tenascin-C with the migration of keratocytes during the development of the corneal stroma.  相似文献   

12.
The aim of this study was to test the use of BioCornea, a fish scale-derived collagen matrix for sealing full-thickness corneal perforations in mini-pigs.Two series of experiments were carried out in 8 Lan-Yu and 3 Göttingen mini-pigs, respectively. A 2mm central full thickness corneal perforation was made with surgical scissors and 2mm trephines. The perforations were sealed immediately by suturing BioCornea to the wounded cornea. The conditions of each patched cornea were followed-up daily for 3 or 4 days. Status of operated eyes was assessed with slit lamp examination or optical coherence tomography (OCT). Animals were sacrificed after the study period and the corneas operated were fixated for histological examination.Both OCT imaging and handheld slit lamp observations indicated that a stable ocular integrity of the perforated corneas was maintained, showing no leakage of aqueous humor, normal depth of anterior chamber and only mild swelling of the wounded cornea. Hematoxylin and eosin staining of the patched cornea showed no epithelial ingrowths to the perforated wounds and no severe leucocyte infiltration of the stroma.The fish scale-derived BioCornea is capable to seal full-thickness corneal perforation and stabilize the integrity of ocular anterior chamber in pre-clinic mini-pig models. BioCornea seems to be a safe and effective alternative for emergency treatment of corneal perforations.  相似文献   

13.

Purpose

To assess the intraocular pressure (IOP) and its association in children in a population living in an oasis in the Gobi Desert.

Methods

The cross-sectional school-based study included all schools in the Ejina region. The children underwent an ophthalmic examination, non-contact tonometry and measurement of blood pressure and body height and weight.

Results

Out of eligible 1911 children, 1565 (81.9%) children with a mean age of 11.9±3.5 years (range: 6–21 years) participated. Mean spherical refractive error was −1.58±2.00 diopters. In multivariate analysis, higher IOP (right eye) was associated with younger age (P<0.001; standardized coefficient beta: −0.13; regression coefficient B: −0.13; 95% Confidence interval (CI):−0.18, −0.07), higher diastolic blood pressure (P<0.001;beta:0.13;B:0.05;95%CI:0.03,0.07), higher corneal refractive power (P<0.001;beta:0.11;B:0.23;95%CI:0.12,0.34), more myopic refractive error (P = 0.035;beta: −0.06;B: −0.10;95%CI: −0.19, −0.001), and Han Chinese ethnicity of the father (P = 0.03;beta:0.06;B:0.42;95%CI:0.04,0.89). If age and diastolic blood pressure were dropped, higher IOP was associated with higher estimated cerebrospinal fluid pressure (CSFP) (P<0.001;beta:0.09; B:0.13;95%CI:0.06,0.21) after adjusting for higher corneal refractive power (P<0.001) and Han Chinese ethnicity of the father (P = 0.04). Correspondingly, higher IOP of the left eye was associated with younger age (P<0.001;beta: −0.15;B: −0.16;95%CI: −0.21, −0.10), female gender (P<0.001;beta:0.09;B:0.65;95%CI:0.30,1.01), higher corneal refractive power (P<0.001;beta:0.08;B:0.19;95%CI:0.06,0.32), more myopic refractive error (P = 0.03;beta: −0.06;B: −0.12;95%CI: −0.22, −0.01), and higher estimated CSFP (P<0.001;beta:0.11;B:0.17;95%CI:0.09,0.24).

Conclusions

In school children, higher IOP was associated with steeper corneal curvature and with younger age and higher blood pressure, or alternatively, with higher estimated CSFP. Corneal curvature radius should be included in the correction of IOP measurements. The potential association between IOP and CSFP as also assumed in adults may warrant further research.  相似文献   

14.
Summary Plasmin activity in the tear fluid of the rabbit eye was examined during the wearing of soft contact lenses (SCL) and compared with the occurrence of corneal disturbances assessed in cryostat sections. Plasmin activity was determined with a semiquantitative method using dry punches of filter paper previously soaked in 0.1 M Tris-HCl buffer solution containing mmol/l d-Val-Leu-Lys-FCA (trifluoromethylaminocoumarine), pH 7.2. Punches were applied to the corneal surface for 5 s (tear collection) and incubated in wet chamber. The time of appearance of the bright yellow fluorescence in UV light was recorded and taken as a measure of plasmin activity. For calibration punches soaked in solutions containing plasmin in various concentrations, and processed in the same manner were used. Changes in the cornea were examined histochemically using methods of choice for acid glycosidases, proteases, dehydrogenases, and Na+-K+-ATPase. SCL with high and low water content were worn in rabbits in 1, 2, 4, 7, 14, 21 and 28 days.Decreased activity of Na+-K+-ATPase, GGT, and SDH in the corneal endothelium and epithelium were not accompanied by detectable plasmin activity in the tear fluid. Pronounced damage of the corneal epithelium (increased activities of acid glycosidases, acid proteases, LDH, markedly decreased activity of SDH) was accompanied by low concentration of plasmin (0.4–1.0 g/ml) in the tear fluid. Middle activity of plasmin (1.0–2.0 g/ml) was detectable when PMNs were present in the corneal stroma. High plasmin activity (2.0–3.0 g/ml) correlated with corneal ulceration and vascularization. The occurrence of both — plasmin activity and corneal disturbances was highly dependent on the water content of SCL (which goes parallel with oxygen permeability), duration of SCL wear, mechanical stress, and bacterial contamination. Mechanical irritation is considered to be the main factor leading to the appearance of plasmin activity in the tear fluid. The local application of aprotinin which inhibits plasmin and some other serine proteases, enables us to prolong the harmless wear of SCLH (approximately one week). The combination of aprotin-in with leukocyte elastase inhibitors (elastatinal and particularly PC5), prevents ulceration of the cornea and inhibits corneal vascularization after SCLL wear. Vascularization of the cornea does not occur if protease inhibitors are combined with flurbiprofen, an anti-inflammatory drug of cyclooxygenase pathway of arachidonic acid. Protease inhibitors also improved the course of bacterial keratitis.  相似文献   

15.
The sandlance, Limnichthyes fasciatus (Creediidae, Teleostei), behaves like a marine chameleon, with independent movements of its turret-like eyes, highly-effective camouflage and rapid strikes for isolated, mobile prey at close quarters. The optical system has a fixed circular pupil, a deep pit fovea and a flattened lens unlike any other teleost lens so far described. The convex, laminated structure of the cornea is also unparalleled in a teleost which suggests that the cornea may play a refractive role that might compensate for the reduced power of the flattened lens. This suggestion has been supported in the present investigation by four independent sets of observations:- i. Purkinje images formed underwater by the cornea; ii. Measurements of the magnification of intra-corneal iridophores viewed through the corneal lenticle; iii. Measurements of the magnification produced by the dissected corneal lenticle and lens when viewed over a grating; iv. Ray tracing experiments comparing the degree of refraction produced by the lens and by the corneal lenticle. All experimental observations confirm that the cornea of the sandlance has a significant refractive role, with a power of approximately 200 D compared with a power of 550 D for the lens. This is the first report of a significant refractive role played by the cornea in a teleost. The optical system of lens plus cornea, in combination with a deep pit fovea, may be more suitable for the detection and visual localisation of small, moving, underwater prey than the conventional wide-field spherical lens system of other teleosts. The evolutionary convergence of this marine optical system and lifestyle with those of the chameleon is remarkable, given the constraints imposed by underwater optics.  相似文献   

16.
The collagen microstructure of the peripheral cornea is important in stabilizing corneal curvature and refractive status. However, the manner in which the predominantly orthogonal collagen fibrils of the central cornea integrate with the circumferential limbal collagen is unknown. We used microfocus wide-angle x-ray scattering to quantify the relative proportion and orientation of collagen fibrils over the human corneolimbal interface at intervals of 50 μm. Orthogonal fibrils changed direction 1–1.5 mm before the limbus to integrate with the circumferential limbal fibrils. Outside the central 6 mm, additional preferentially aligned collagen was found to reinforce the cornea and limbus. The manner of integration and degree of reinforcement varied significantly depending on the direction along which the limbus was approached. We also employed small-angle x-ray scattering to measure the average collagen fibril diameter from central cornea to limbus at 0.5 mm intervals. Fibril diameter was constant across the central 6 mm. More peripherally, fibril diameter increased, indicative of a merging of corneal and scleral collagen. The point of increase varied with direction, consistent with a scheme in which the oblique corneal periphery is reinforced by chords of scleral collagen. The results have implications for the cornea's biomechanical response to ocular surgeries involving peripheral incision.  相似文献   

17.
This study examined the effects of BMP7 gene transfer on corneal wound healing and fibrosis inhibition in vivo using a rabbit model. Corneal haze in rabbits was produced with the excimer laser performing -9 diopters photorefractive keratectomy. BMP7 gene was introduced into rabbit keratocytes by polyethylimine-conjugated gold nanoparticles (PEI2-GNPs) transfection solution single 5-minute topical application on the eye. Corneal haze and ocular health in live animals was gauged with stereo- and slit-lamp biomicroscopy. The levels of fibrosis [α-smooth muscle actin (αSMA), F-actin and fibronectin], immune reaction (CD11b and F4/80), keratocyte apoptosis (TUNEL), calcification (alizarin red, vonKossa and osteocalcin), and delivered-BMP7 gene expression in corneal tissues were quantified with immunofluorescence, western blotting and/or real-time PCR. Human corneal fibroblasts (HCF) and in vitro experiments were used to characterize the molecular mechanism mediating BMP7’s anti-fibrosis effects. PEI2-GNPs showed substantial BMP7 gene delivery into rabbit keratocytes in vivo (2×104 gene copies/ug DNA). Localized BMP7 gene therapy showed a significant corneal haze decrease (1.68±0.31 compared to 3.2±0.43 in control corneas; p<0.05) in Fantes grading scale. Immunostaining and immunoblot analyses detected significantly reduced levels of αSMA (46±5% p<0.001) and fibronectin proteins (48±5% p<0.01). TUNEL, CD11b, and F4/80 assays revealed that BMP7 gene therapy is nonimmunogenic and nontoxic for the cornea. Furthermore, alizarin red, vonKossa and osteocalcin analyses revealed that localized PEI2-GNP-mediated BMP7 gene transfer in rabbit cornea does not cause calcification or osteoblast recruitment. Immunofluorescence of BMP7-transefected HCFs showed significantly increased pSmad-1/5/8 nuclear localization (>88%; p<0.0001), and immunoblotting of BMP7-transefected HCFs grown in the presence of TGFβ demonstrated significantly enhanced pSmad-1/5/8 (95%; p<0.001) and Smad6 (53%, p<0.001), and decreased αSMA (78%; p<0.001) protein levels. These results suggest that localized BMP7 gene delivery in rabbit cornea modulates wound healing and inhibits fibrosis in vivo by counter balancing TGFβ1-mediated profibrotic Smad signaling.  相似文献   

18.
Refractive errors in vision can be caused by aberrant axial length of the eye, irregular corneal shape, or lens abnormalities. Causes of eye length overgrowth include multiple genetic loci, and visual parameters. We evaluate zebrafish as a potential animal model for studies of the genetic, cellular, and signaling basis of emmetropization and myopia. Axial length and other eye dimensions of zebrafish were measured using spectral domain-optical coherence tomography (SD-OCT). We used ocular lens and body metrics to normalize and compare eye size and relative refractive error (difference between observed retinal radial length and controls) in wild-type and lrp2 zebrafish. Zebrafish were dark-reared to assess effects of visual deprivation on eye size. Two relative measurements, ocular axial length to body length and axial length to lens diameter, were found to accurately normalize comparisons of eye sizes between different sized fish (R2 = 0.9548, R2 = 0.9921). Ray-traced focal lengths of wild-type zebrafish lenses were equal to their retinal radii, while lrp2 eyes had longer retinal radii than focal lengths. Both genetic mutation (lrp2) and environmental manipulation (dark-rearing) caused elongated eye axes. lrp2 mutants had relative refractive errors of −0.327 compared to wild-types, and dark-reared wild-type fish had relative refractive errors of −0.132 compared to light-reared siblings. Therefore, zebrafish eye anatomy (axial length, lens radius, retinal radius) can be rapidly and accurately measured by SD-OCT, facilitating longitudinal studies of regulated eye growth and emmetropization. Specifically, genes homologous to human myopia candidates may be modified, inactivated or overexpressed in zebrafish, and myopia-sensitizing conditions used to probe gene-environment interactions. Our studies provide foundation for such investigations into genetic contributions that control eye size and impact refractive errors.  相似文献   

19.
OCT (optical coherence tomography) of corneal layers was generated to analyze the remodeling of the epithelium and stroma after photorefractive keratectomy (PRK). Myopic PRK was performed in 15 patients. One eye underwent manual scraping of epithelium while the other was treated with Epi clear. Epi clear allowed a gentler removal of the epithelium compared to manual scraping. Scheimpflug (Pentacam, OCULUS Optikgerate Gmbh, Wetzlar, Germany) and OCT (RTVue, Optovue Inc., Fremont, California, USA) scans of the cornea were performed before and after PRK (3 months). The OCT scanner and Pentacam acquired 8 and 25 radial 2‐D scans of the cornea, respectively. The results showed similar topographic changes on the anterior corneal surface between Scheimpflug and OCT imaging. The curvature of the underlying anterior surface of the stroma after PRK was similar to the anterior corneal surface (air‐epithelium interface), when measured with OCT. Aberrometric changes were mostly similar between Scheimpflug and OCT. However, Scheimpflug imaging reported greater changes in spherical aberration and corneal higher order aberrations than OCT after PRK. This is the first study to quantify the curvatures of the stromal layers with OCT after PRK. New insights were gained, which could be useful for refinement of surgical ablation algorithms, refractive procedures and detection of ectasia.   相似文献   

20.
This study is designed to evaluate the visual outcomes, accuracy, and predictability of corneal flaps with different thicknesses created by 60-kHz femtosecond laser according to different corneal thicknesses in the patients with low and moderate refractive error. A total of 182 eyes were divided according to the central corneal thickness (470μm–499 μm in Group A, 500μm–549 μm in Group B, and 550μm–599 μm in Group C) and underwent femtosecond laser-assisted LASIK for a target corneal flap thickness (100 μm for Group A, 110 μm for Group B, and 120 μm for Group C). Uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), and refractive status were examined. The flap thickness of each eye was measured by anterior segment optical coherence tomography (AS-OCT) on 30 points at 1-month follow-up to assess the accuracy and predictability. Postoperatively, at least 75% of eyes had a UDVA of 20/16 or better, less than 2% of eyes lost one line, over 30% of eyes gained one or more lines in CDVA, at least 95% of eyes had astigmatism of less than 0.25 D, all eyes achieved a correction within ±1.00 D from the target spherical equivalent refraction. The visual and refractive outcomes did not differ significantly in all groups (P >0.05). The mean flap thickness was 100.36± 4.32 μm (range: 95–113 μm) in Group A, 111.64 ± 3.62 μm (range: 108–125 μm) in Group B, and 122.32 ± 2.88 μm (range: 112–128 μm) in Group C. The difference at each measured point among the three groups was significant (P < 0.05). The accuracy and predictability were satisfactory in all three groups. In conclusion, this customized treatment yielded satisfactory clinical outcomes with accurate and predictable flap thickness for patients with low and moderate refractive error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号