首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A combined heat clearance method for tissue blood flow measurement.   总被引:3,自引:0,他引:3  
Tissue Blood Flow is measured by applying a combined procedure of two independent approaches based on heat clearance: the Pulse Decay Method and the Continuous Method. The Pulse Method allows absolute assessment of tissue BF with no need for calibration, and can be applied only if the tissue BF is steady during the period of measurement. On the other hand, the Continuous Method enables the observation of rapid changes in tissue BF, and can be applied under non steady-state conditions. Using the combined method, a continuous quantitative measurement of transient changes in tissue BF can be obtained. For this purpose, we have developed two experimental systems consisting of independent electronic units: a Pulse Unit and a Continuous Unit. A micro-computer with dedicated software controls the operation of the electronic units and calculates tissue BF on-line. In vitro measurements are performed and demonstrate the reliability of the methods. In vivo measurements in rat brain tissue are also performed and include physiological and pharmacological changes of local tissue BF. The results of the two heat clearance methods correlate well with tissue BF values measured by a third independent method, the Hydrogen Clearance Method.  相似文献   

2.
3.
The hydrogen clearance technique has been used for many years by investigators to determine brain blood flow and has been partially validated in this setting using other methods of blood flow measurement. The method has been modified to allow blood flow measurements in skin, but the accuracy of H2 clearance for measuring skin blood flow has not been determined. Multiple blood flow measurements were performed using H2 clearance and radioactive microspheres on skin flaps and control skin in pigs. On 12 pigs, a total of 117 flap and 42 control skin measurements were available for analysis. There was no significant difference between the two techniques in measuring mean control skin blood flow. In skin flaps, H2 clearance was significantly correlated to microsphere-measured blood flow, but it consistently gave an overestimate. Sources of error may include injury to the tissues by insertion of electrodes, consumption of H2 by the electrodes, or diffusion of H2 from the relatively ischemic flap to its well-vascularized bed. Further studies are necessary to determine the cause of this error and to measure the technique's accuracy in skeletal muscle and other flaps.  相似文献   

4.
5.
Ultrasound techniques for measurement of blood flow and tissue motion   总被引:2,自引:0,他引:2  
Hoskins PR 《Biorheology》2002,39(3-4):451-459
This article will review the ability of ultrasound techniques to provide 3D information on arterial geometry, blood flow and tissue motion.3D systems. 3D datasets can be obtained by sequential acquisition of 2D slices. Ideally a transducer is required in which there is full control of beam steering within a 3D volume. This requires a 2D array consisting of several thousand elements. Prototype 2D arrays have been built which provide several 3D datasets per second.Blood velocity measurement. Current Doppler systems estimate only the component of velocity in the direction of the Doppler beam. Lack of knowledge of the direction of blood motion and also other effects associated with 'spectral broadening' limit the accuracy of velocity measurement. Improved accuracy can be obtained using vector Doppler systems using 2 or 3 beam directions; this approach is referred to as 'vector Doppler'.Tissue motion. Doppler techniques can also be used to detect tissue motion (Tissue Doppler Imaging or TDI). Motion of the artery wall can be calculated from the TDI images. It is possible to estimate simultaneously motion for adjacent diameters within the longitudinal plane, and to visualise the relative motion at different parts of the wall.  相似文献   

6.
7.
The H2 clearance technique was used to determine the blood flow of the postulated respiratory chemosensitive areas near the ventrolateral surface of the medulla. In 12 pentobarbital sodium-anesthetized cats, flow (mean +/- SD) was measured from 25-micron Teflon-coated platinum wire electrodes implanted to a depth of 0.3-0.7 mm. Flow (in ml X min-1 X 100 g-1, n = 35) was 52.8 +/- 28.5 in hypocapnia [arterial CO2 partial pressure (PaCO2) = 21.8 +/- 1.6 Torr], 57.8 +/- 27.5 in normocapnia (PaCO2 = 31.9 +/- 2.2 Torr), and 75.0 +/- 31.7 in hypercapnia (PaCO2 = 44.5 +/- 3.0 Torr). Flow determined from 15 electrodes in adjacent pyramidal tracts (white matter) was less at all levels of CO2; 22.9 +/- 12.3 in hypocapnia, 29.1 +/- 15.9 in normocapnia, and 33.9 +/- 13.9 in hypercapnia. In hypoxia [arterial O2 partial pressure (PaO2) = 39.9 +/- 6.3 Torr] ventrolateral surface flow rose to 87.9 +/- 47.6, and adjacent white matter flow was 35.8 +/- 15.6. These results indicate that flow in the postulated central chemoreceptor areas exceeds that of white matter and is sensitive to variations in PaCO2 and PaO2.  相似文献   

8.
Practical approaches are elaborated as to application of the clearance method using electrochemical hydrogen generation to measure volume blood flow velocity in human and animal organs and tissues. Results from this elaboration and analysis of the obtained experimental data are presented. Some specific features of the method are described.  相似文献   

9.
Methods of determining blood flow in bone are described and compared. Those based on clearances of bone-seeking tracers are inaccurate because of the variation of extraction with flow. The use of radioactive microspheres is the best available technique for measurements in animals; applications of this method are given. The washout of diffusible tracers is of limited use.  相似文献   

10.
Organ blood flow is determined by perfusion pressure and vasomotor tone in the resistance vessels of the organ. Local factors that regulate vasomotor tone include myogenic and metabolic autoregulation, flow-mediated and conducted responses, and vasoactive substances released from red blood cells. The relative importance of each of these factors varies over time, from tissue to tissue, and among vessel generations.  相似文献   

11.
Testicular blood flow was measured in monkeys using a 133xenon clearance technique and a 141cerium microsphere entrapment technique. The clearance procedure provided values that tended to be lower than those obtained using the microspheres, was technically less difficult, and has the advantage of being a clinical tool. The microsphere entrapment technique provides the simultaneous evaluations in numerous tissue sites but requires the removal of the tissues to be evaluated. The xenon clearance technique appears to be better suited for evaluations in nonhuman primates.  相似文献   

12.
The effect of general anaesthesia on skin blood flow in the left hand, measured by a new non-invasive probe using the thermal clearance method was examined. A mercury silastic gauge was placed around the third left finger and the plethysmographic wave amplitude was recorded to measure changes in finger pulse amplitude. Heart rate (HR), mean arterial blood pressure (MABP) and skin temperature were also recorded. General anaesthesia was induced by droperidol and phenoperidine injection and propanidid infusion in eight female patients. Skin thermal clearance, plethysmographic wave amplitude, HR, MABP and skin temperature were 0.40 +/- 0.02 w X m-1 degree C-1, 9 +/- 1 mm, 98 +/- 5 beats X min-1, 12.50 +/- 0.93 kPa and 33.3 +/- 3.4 degrees C respectively. The minimal value of MABP was 9.58 +/- 1.06 kPa, whereas skin thermal clearance, plethysmographic wave amplitude, HR and skin temperature increased to 0.45 +/- 0.02 w X m-1 degree C-1, 29 +/- 3 mm, 110 +/- 4 beats X min-1 and 34.4 +/- 0.4 degrees C. Changes in skin thermal clearance correlated well with plethysmographic wave amplitude. Statistically significant changes in these two parameters occurred before significant change in HR, MABP or skin temperature. The results show that the new non-invasive probe using the thermal clearance method appears to be a useful device for measuring cutaneous microcirculation in anaesthetized humans, and responds more quickly than change in skin temperature, which is a delayed effect of skin blood flow change. Our results also show that the intensity of cutaneous vasodilatation induced by general anaesthesia did not relate to the vascular tone before anaesthesia.  相似文献   

13.
Near-infrared (NIR) spectroscopy is a noninvasive optical technique that is increasingly used to assess muscle oxygenation during exercise with the assumption that the contribution of skin blood flow to the NIR signal is minor or nonexistent. We tested this assumption in humans by monitoring forearm tissue oxygenation during selective cutaneous vasodilation induced by locally applied heat (n = 6) or indirect whole body heating (i.e., heating subject but not area surrounding NIR probes; n = 8). Neither perturbation has been shown to cause a measurable change in muscle blood flow or metabolism. Local heating (approximately 41 degrees C) caused large increases in the NIR-derived tissue oxygenation signal [before heating = 0.82 +/- 0.89 optical density (OD), after heating = 18.21 +/- 2.44 OD; P < 0.001]. Similarly, whole body heating (increase internal temperature 0.9 degrees C) also caused large increases in the tissue oxygenation signal (before heating = -0.31 +/- 1.47 OD, after heating = 12.48 +/- 1.82 OD; P < 0.001). These increases in the tissue oxygenation signal were closely correlated with increases in skin blood flow during both local heating (mean r = 0.95 +/- 0.02) and whole body heating (mean r = 0.89 +/- 0.04). These data suggest that the contribution of skin blood flow to NIR measurements of tissue oxygenation can be significant, potentially confounding interpretation of the NIR-derived signal during conditions where both skin and muscle blood flows are elevated concomitantly (e.g., high-intensity and/or prolonged exercise).  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号