首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Body size is an important determinant of fitness in many organisms. While size will typically change over the lifetime of an individual, heritable components of phenotypic variance may also show ontogenetic variation. We estimated genetic (additive and maternal) and environmental covariance structures for a size trait (June weight) measured over the first 5 years of life in a natural population of bighorn sheep Ovis canadensis. We also assessed the utility of random regression models for estimating these structures. Additive genetic variance was found for June weight, with heritability increasing over ontogeny because of declining environmental variance. This pattern, mirrored at the phenotypic level, likely reflects viability selection acting on early size traits. Maternal genetic effects were significant at ages 0 and 1, having important evolutionary implications for early weight, but declined with age being negligible by age 2. Strong positive genetic correlations between age-specific traits suggest that selection on June weight at any age will likely induce positively correlated responses across ontogeny. Random regression modeling yielded similar results to traditional methods. However, by facilitating more efficient data use where phenotypic sampling is incomplete, random regression should allow better estimation of genetic (co)variances for size and growth traits in natural populations.  相似文献   

2.
Alternative models of the maintenance of genetic variability, theories of life-history evolution, and theories of sexual selection and mate choice can be tested by measuring additive and nonadditive genetic variances of components of fitness. A quantitative genetic breeding design was used to produce estimates of genetic variances for male life-history traits in Drosophila melanogaster. Additive genetic covariances and correlations between traits were also estimated. Flies from a large, outbred, laboratory population were assayed for age-specific competitive mating ability, age-specific survivorship, body mass, and fertility. Variance-component analysis then allowed the decomposition of phenotypic variation into components associated with additive genetic, nonadditive genetic, and environmental variability. A comparison of dominance and additive components of genetic variation provides little support for an important role for balancing selection in maintaining genetic variance in this suite of traits. The results provide support for the mutation-accumulation theory, but not the antagonistic-pleiotropy theory of senescence. No evidence is found for the positive genetic correlations between mating success and offspring quality or quantity that are predicted by “good genes” models of sexual selection. Additive genetic coefficients of variation for life-history characters are larger than those for body weight. Finally, this set of male life-history characters exhibits a very low correspondence between estimates of genetic and phenotypic correlations.  相似文献   

3.
The correlation between 99 clone female and male fertilities in a first generation seed orchard of Pinus densiflora was studied over 6 years. The effective number of the parent (Np) and the variance effective population number [Ne(v)] were used to assess the impact of total (OT), female (Nf) and male (Nm) fertility variation. A theoretical framework was developed to account for female and male fertility correlations as well as the impact of possible pollen contamination. Total fertility variation was described by the sibling coefficient (OT: the probability that two genes randomly chosen from the gamete gene pool originate from the same parent), which was further subdivided into Nf and Nm. These parameters were compared under various conditions including the total seed harvest, imposing on equal seed harvest among the orchard's clones and two contamination scenarios (M = 0 and 20%). Fertility variations among females, males and clones were observed within and among years. Sibling coefficients (OT) were lower, but the effective number of parent (Np) and variance effective population number (Ne(v)) were higher in years with moderate female and good male strobilus production. Np for female and male reproductive outputs varied from 49 to 82 and from 57 to 93, respectively. Np was higher for males than females. When the crop of the 6 years was pooled, Np for female, male and the clone were 73, 87 and 85, respectively. The impact of female-male fertility correlation for conditions with no-, positive- and negative-correlations were assessed and their impact on OT, Np and Ne(v) was also evaluated. It was demonstrated that the practice of equal seed harvesting from every clone, or the mixing of seeds from several years, would substantially improve the genetic diversity and the genetic representation of the seed orchard population when a positive correlation between gender fertilities was observed. The relevance of these results to supplemental-mass-pollination was discussed under two cases where equal- and un-equal amounts of pollen from clones were included in the pollen mixes.  相似文献   

4.
PETER MEDAWAR proposed that senescence arises from an age-related decline in the force of selection, which allows late-acting deleterious mutations to accumulate. Subsequent workers have suggested that mutation accumulation could produce an age-related increase in additive genetic variance (V(A)) for fitness traits, as recently found in Drosophila melanogaster. Here we report results from a genetic analysis of mortality in 65,134 D. melanogaster. Additive genetic variance for female mortality rates increases from 0.007 in the first week of life to 0.325 by the third week, and then declines to 0.002 by the seventh week. Males show a similar pattern, though total variance is lower than in females. In contrast to a predicted divergence in mortality curves, mortality curves of different genotypes are roughly parallel. Using a three-parameter model, we find significant V(A) for the slope and constant term of the curve describing age-specific mortality rates, and also for the rate at which mortality decelerates late in life. These results fail to support a prediction derived from MEDAWAR's ``mutation accumulation' theory for the evolution of senescence. However, our results could be consistent with alternative interpretations of evolutionary models of aging.  相似文献   

5.
Growth trajectories are a biological process important to plant and animal breeding, and to evolutionary genetic studies. In this article, we report the detection of quantitative trait loci (QTLs) responsible for growth trajectories in poplars that are used as a model system for the study of forest biology. These QTLs were localized on a genetic linkage map of polymorphic markers using a statistical mapping method incorporating growth-curve models. The effects of the QTLs on growth are described as a function of age, so that age-specific changes in QTL effects can be readily projected throughout the entire growth process. The QTLs identified display increased effects on growth when trees age, yet the timing of QTL activation is earlier for stem height than diameter, which is consistent with the ecological viewpoint of canopy competition. The implications of the results for breeding and silviculture are discussed.  相似文献   

6.
Genetic variances and selection efficiencies for growth traits of white spruce (Picea glauca (Moench) Voss) were estimated from clonally replicated full-sib progeny tests established both in nursery and field environments in New Brunswick, Canada. The available data included heights at 4, 5, and 6 years in the nursery test; height at 9 years, height, DBH, and volume at 14 years in the field test. Estimated variance components were interpreted according to an additive-dominance-epistasis model. For heights in the nursery test, while both non-additive and additive variances were important sources of genetic variation, the former decreased but the latter increased with age; among the non-additive genetic variance, the epistatic variance was much more important than the dominance variance. Different from the nursery traits, for traits in the field test, additive variance accounted for an average of 81% of the total genetic variance, whereas dominance variance explained most of the remaining genetic variance. Genetic parameters and selection efficiencies for three vegetative deployment strategies: deploying half-sib families (VD_FAMHS), full-sib families (VD_FAMFS), and multi-varietal forestry (MVF), were compared. Heritability estimates were moderate for VD_FAMHS and VD_FAMFS (0.61–0.72), high for MVF (>0.82) for the nursery heights, and high (>0.79) for the field traits for all strategies. Genetic correlations of volume at age 14 in the field test, the target trait for improvement, were strong (>0.85) with other field traits. Genetic correlations of VOL14 with the nursery heights were also strong (>0.71) at the half-sib and full-sib family levels, but were only moderate (>0.59) for MVF. Overall, practicing MVF is the most effective deployment strategy, yielding the highest genetic gains, followed by VD_FAMFS and VD_FAMHS, regardless of traits and selection methods. Furthermore, early selections for HT9 or for HT4–HT6 were very encouraging, resulting in higher gain in volume at age 14 on a per year basis.  相似文献   

7.
The mixing behaviour of the liquid phase in concentric-tube airlift bioreactors of different scale (RIMP: VL=0.070 m3; RIS-1: VL=2.50 m3; RIS-2: VL=5.20 m3) in terms of mixing time was investigated. This mixing parameter was determined from the output curves to an initial Dirac pulse, using the classical tracer response technique, and analyzed in relation to process and geometrical parameters, such as: gas superficial velocity, xSGR; top clearance, hS; bottom clearance, hB, and ratio of the resistances at downcomer entrance, Ad/AR. A correlation between the mixing time and the specified operating and geometrical parameters was developed, which was particularized for two flow regimes: bubbly and transition (xSGRА.08 m/s) and churn turbulent flow (xSGR> 0.08 m/s) respectively. The correlation was applied in bioreactors of different scale with a maximum error of ᆲ%.  相似文献   

8.
A rapid and efficient micropropagation method has been established for six European poplar cultivars of economic interest - four Populus 2 interamericana and two Populus 2 euramericana. Using a three-step procedure, we were able to regenerate plantlets from callus and acclimate them within 4 months. In the first step, callogenesis was induced when explants were cultured for 25 days on culture medium supplemented with 10 µM !-naphthaleneacetic acid and 5 µM N6(2-isopentenyl)adenine. Bud regeneration followed by shoot elongation was then obtained from callus tissue by combining the cytokinin-like compound thidiazuron with the surfactant Pluronic F-68 at concentrations adjusted for each cultivar. The usefulness of this procedure in the area of genetic engineering is discussed.  相似文献   

9.
Elite white maize lines W506 and M37W were transformed with a selectable marker gene (bar) and a reporter gene (uidA) or the polygalacturonase-inhibiting protein (pgip) gene after bombardment of cultured immature zygotic embryos using the particle inflow gun. Successful transformation with this device did not require a narrow range of parameters, since transformants were obtained from a wide range of treatments, namely pre-culture of the embryos for 4-6 days, bombardment at helium pressures of 700-900 kPa, selection-free culture for 2-4 days after bombardment and selection on medium containing bialaphos at 0.5-2 mg l-1. However, bombardments with helium pressures below 700 kPa yielded no transformants. The culture of immature zygotic embryos of selected elite white maize lines on medium containing 2 mg l-1 2,4-dichlorophenoxyacetic acid and 20 mM L-proline proved to be most successful for the production of regenerable embryogenic calli and for the selection of putative transgenic calli on bialaphos-containing medium after transformation. Transgenic plants were obtained from four independent transformation events as confirmed by Southern blot analysis. Transmission of the bar and uidA genes to the T4 progeny of one of these transformation events was demonstrated by Southern blot analysis and by transgene expression. In this event, the transgenes bar and uidA were inserted in tandem.  相似文献   

10.
Namkoong G  Matzinger DF 《Genetics》1975,81(2):377-386
The cumulative growth of a plant is the result of interrelated processes, and response to selection for changes in the annual growth curve requires many physiological adjustments. Selection to modify the entire annual growth curve may therefore not be as effective as linear models may predict. Periodic growth of a population of Nicotiana tabacum L. was estimated to have heritabilities increasing from 7% up to 31% for successive heights, with positive genetic and phenotypic correlations among all periods. Two selection experiments on this population indicate the difficulties of using simple index selection to raise the entire growth curve. A selection index of eight periodic heights resulted in a gain in all periods for the first cycle of selection but mixed losses and gains in subsequent cycles for a small net gain after four cycles of selection. A selection index of three parameters of a nonlinear height growth function resulted in a consistent change in the growth curves over the four cycles of selection but a net loss in early growth and a large net gain in late-season growth.  相似文献   

11.
Specific conductivity (ks, m2s-1MPa-1) describes the permeability of xylem and is determined by all aspects of xylem anatomy that create resistance to the flow of water. Here we test the hypothesis that ks is a function of radial and vertical position within the stem, rather than solely a function of cambial age (ring number from the pith), by measuring ks on samples excised from 35-year-old Douglas-fir [Pseudotsuga menziesii var. menziesii (Mirb.) Franco] trees at six heights and two or three radial positions. Sapwood ks decreased from the cambium to the heartwood boundary, and the difference between outer and inner sapwood increased with height in the tree. Beneath the live crown, inner sapwood had 80-90% the ks of outer sapwood, but only 55% just 10 m higher in the stem (about 10 nodes down from the tree top). Outer sapwood ks peaked near the base of the crown and declined toward both the base and top of the stem. These patterns can be explained by two superimposed effects: the effect of cambial age on the dimensions of tracheids as they are produced, and the effect of xylem aging, which may include accumulation of emboli and aspiration of bordered pits. Tracheid lumen diameter and earlywood and latewood density and width, all factors known to vary with cambial age, were measured on different trees of the same age and from the same stand. Lumen diameter increased with cambial age, whereas the proportion of latewood and growth ring density increased after an initial decrease in the first 5 years. Our results suggest that the effect of cambial age on xylem anatomy is not sufficient to explain variation in ks. Instead, physical position (both vertical and radial) in the stem and cambial age must be considered as determinants of conductivity.  相似文献   

12.
The photosynthetic induction response under constant and fluctuating light was examined in naturally occurring saplings (about 0.5-2 m in height) of three shade-tolerant tree species, Pourouma bicolor spp digitata, Dicorynia guianensis, and Vouacapoua americana, growing in bright gaps and in the shaded understorey in a Neotropical rain forest. Light availability to saplings was estimated by hemispherical photography. Photosynthetic induction was measured in the morning on leaves that had not yet experienced direct sunlight. In Dicorynia, the maximum net photosynthesis rate (Amax) was similar between forest environments (ca 4 µmol m-2 s-1), whereas for the two other species, it was twice as high in gaps (ca 7.5) as in the understorey (ca 4.5). However, the time required to reach 90% of Amax did not differ among species, and was short, 7-11 min. Biochemical induction was fast in leaves of Pourouma, as about 3 min were needed to reach 75% of maximum carboxylation capacity (Vcmax); the two other species needed 4-5 min. When induction continued after reaching 75% of Vcmax, stomatal conductance increased in Pourouma only (ca 80%), causing a further increase in its net photosynthesis rate. When fully induced leaves were shaded for 20 min, loss of induction was moderate in all species. However, gap saplings of Dicorynia had a rapid induction loss (ca 80%), which was mainly due to biochemical limitation as stomatal conductance decreased only slowly. When leaves were exposed to a series of lightflecks separated by short periods of low light, photosynthetic induction increased substantially and to a similar extent in all species. Although Amax was much lower in old than in young leaves as measured in Dicorynia and Vouacapoua, variables of the dynamic response of photosynthesis to a change in light tended to be similar between young and old leaves. Old leaves, therefore, might remain important for whole-plant carbon gain, especially in understorey environments. The three shade-tolerant species show that, particularly in low light, they are capable of efficient sunfleck utilization.  相似文献   

13.
An earliness per se gene, designated Eps-Am1, was mapped in diploid wheat in F2 and single-seed descent mapping populations from the cross between cultivated (DV92) and wild (G3116) Triticum monococcum accessions. A QTL with a peak on RFLP loci Xcdo393 and Xwg241, the most distal markers on the long arm of chromosome 1Am, explained 47% of the variation in heading date (LOD score 8.3). Progeny tests for the two F2:3 families with critical recombination events between Xcdo393 and Xwg241 showed that the gene was distal to Xcdo393 and linked to Xwg241. Progeny tests and replicated experiments with line #3 suggested that Eps-Am1 was distal to Xwg241. This gene showed a large effect on heading date in the controlled environment experiments, and a smaller, but significant, effect under natural conditions. Eps-Am1 showed significant epistatic interactions with photoperiod and vernalization treatments, suggesting that the different classes of genes affecting heading date interact as part of a complex network that controls the timing of flowering induction. Besides its interactions with other genes affecting heading date, Eps-Am1 showed a significant interaction with temperature. The effect of temperature was larger in plants carrying the DV92 allele for late flowering than in those carrying the G3116 allele for early flowering. Average differences in heading date between the experiments performed at 16 °C and 23 °C were approximately 11 days (P < 0.001) for the lines carrying the Eps-Am1 allele for early flowering but approximately 50 days (P < 0.0001) for the lines carrying the allele for late flowering. The large differences in heading time (average 80 days) observed between plants carrying the G3116 and DV92 alleles when grown at 16 °C, suggest that it would be possible to produce very detailed maps for this gene to facilitate its future positional cloning.  相似文献   

14.
A procedure for producing pineapple [Ananas comosus (L.) Merr.] transgenic plants was developed that involved selection by micropropagation in temporary immersion bioreactors (TIBs). Pineapple calluses ranging in size from 1.5 mm to 2.0 mm that were co-cultivated with Agrobacterium tumefaciens strains AT2260 (pIG121Hm) and LBA4404 (pTOK233) for 24 h produced the highest percentage (40%) of GUS+ calluses. Phosphinothricin and hygromycin, but not kanamycin, were effective selection markers in TIBs. Large-scale transformation experiments with AT2260 (pHCA58) and AT2260 (pHCG59) resulted in up to a 6.6% efficiency of transgenic plant recovery. TIB technology was found to be more efficient for transgenic plant selection than conventional micropropagation. Polymerase chain reaction and genomic Southern blot analyses confirmed the non-chimeric nature of the transgenic plants recovered from TIBs.  相似文献   

15.
The effects of fermentation time and temperature of grape pomace on the number of bacteria and yeasts were assessed using ANOVA of experimentally generated data, as well as analysis of models derived from first principles and fitted by non-linear regression to such data. Specific rates of death of yeasts and bacteria were experimentally obtained at different fermentation times (pilot scale), and at different fermentation times and different temperatures (laboratory scale) for pomace of Alvarinho and Loureiro grape varieties obtained after vinification at two different locations. Viable numbers of yeasts and bacteria in grape pomace were high, especially in the first 3 week of fermentation; for bacteria, there was an increase of their levels during the first 3 week, followed by a significant decrease towards 9 week; for yeasts there was a monotonic decrease throughout such whole period. The numbers of viable microorganisms were mathematically correlated with time and temperature for both wineries using mechanistic models and following a methodology of increasing model complexity. After having checked the validity of underlying assumptions of normal distribution and constant variance of residuals of the experimental data, determination of the best nested model was based on an F-test; such model considered that the behavior of the microbial population is well described by a constant specific growth rate and an increasing specific death rate, both of which vary with temperature following Arrhenius relationships. Activation energies for the specific death rates of yeasts and bacteria were (1.469-1.560)᎒4 and (2.584-4.152)᎒4 cal/mol, respectively, for the temperature range 20-35 :C. Prediction of the time profile of viable numbers of the major families in the adventitious microflora of grape pomace, as a function of fermentation parameters that are easily manipulated is important in attempts to eventually standardize this solid-state, ill-defined fermentation and so eventually optimize the manufacture of marcs obtained by steam distillation of such fermented pomaces.  相似文献   

16.
Understanding the population dynamics of savanna elephants depends on estimating population parameters such as the age at first reproduction, calving interval and age-specific survival rates. The generation of these parameters, however, relies on the ability to accurately determine the age of individuals, but a reliable age estimation technique for free-ranging elephants is presently not available. Shoulder heights of elephants were measured in 10 populations in five countries across southern and eastern Africa. Data included shoulder height measurements from two populations where the age of each individual was known (i.e. Addo Elephant National Park, South Africa and Amboseli National Park, Kenya). From the known-age data, Von Bertalanffy growth functions were constructed for both male and female elephants. Savanna elephants were found to attain similar asymptotic shoulder heights in the 10 populations, while individuals in the two known-age populations grew at the same rate. The Von Bertalanffy growth curves allowed for the accurate age estimation of females up to 15 years of age and males up to 36 years of age. The results indicate that shoulder height can serve as an indicator of chronological age for elephants below 15 years of age for females and 36 years of age for males. Ages derived from these growth curves can then be used to generate age-specific population variables, which will help assess the demographic status of savanna elephant populations across Africa.  相似文献   

17.
Photosynthetic gas exchange, chlorophyll fluorescence, nitrogen use efficiency, and related leaf traits of native Hawaiian tree ferns in the genus Cibotium were compared with those of the invasive Australian tree fern Sphaeropteris cooperi in an attempt to explain the higher growth rates of S. cooperi in Hawaii. Comparisons were made between mature sporophytes growing in the sun (gap or forest edge) and in shady understories at four sites at three different elevations. The invasive tree fern had 12-13 cm greater height increase per year and approximately 5 times larger total leaf surface area per plant compared to the native tree ferns. The maximum rates of photosynthesis of S. cooperi in the sun and shade were significantly higher than those of the native Cibotium spp (for example, 11.2 and 7.1 µmol m-2 s-1, and 5.8 and 3.6 µmol m-2 s-1 respectively for the invasive and natives at low elevation). The instantaneous photosynthetic nitrogen use efficiency of the invasive tree fern was significantly higher than that of the native tree ferns, but when integrated over the life span of the frond the differences were not significant. The fronds of the invasive tree fern species had a significantly shorter life span than the native tree ferns (approximately 6 months and 12 months, respectively), and significantly higher nitrogen content per unit leaf mass. The native tree ferns growing in both sun and shade exhibited greater photoinhibition than the invasive tree fern after being experimentally subjected to high light levels. The native tree ferns recovered only 78% of their dark-acclimated quantum yield (Fv/Fm), while the invasive tree fern recovered 90% and 86% of its dark-acclimated Fv/Fm when growing in sun and shade, respectively. Overall, the invasive tree fern appears to be more efficient at capturing and utilizing light than the native Cibotium species, particularly in high-light environments such as those associated with high levels of disturbance.  相似文献   

18.
The ability to cope with environmental change is fundamental to a species' evolution. Organisms can respond to seasonal environmental variation through phenotypic plasticity. The substantial plasticity in body mass of temperate species has often been considered a simple consequence of change in environmental quality, but could also have evolved as an adaptation to seasonality. We investigated the genetic basis of, and selection acting on, seasonal plasticity in body mass for wild bighorn sheep ewes (Ovis canadensis) at Ram Mountain, Alberta, under two contrasting environmental conditions. Heritability of plasticity, estimated as mass-specific summer and winter mass changes, was low but significant. The additive genetic variance component of relative summer mass change was greater under good environmental conditions (characterized by a population increase and high juvenile survival) than under poor conditions (population decrease and low juvenile survival). Additive genetic variance of relative winter mass change appeared independent of environmental conditions. We found evidence of selection on summer (relative) and winter (relative and absolute) mass change. For a given mass, more plastic individuals (with greater seasonal mass changes) achieve greater fitness through reproduction in the following year. However, genetic correlations between mass parameters were positive. Our study supports the hypothesis that seasonal plasticity in body mass in vertebrates is an adaptation that evolved under natural selection to cope with environmental variation but genetic correlations with other traits might limit its evolutionary potential.  相似文献   

19.
Teak (Tectona grandis Linn. f.) has been planted extensively in the tropics for its highly valued timber. We analysed data from a 3.5-year-old teak progeny test with clonal replication located in northern Australia. Additive and non-additive genetic variances were estimated for commercially important traits. Trees originating from seedlings were on average 2% taller and 4% straighter than those of the same genotype originating from cuttings. Non-additive genetic variance represented 35–50% of total genetic variance for growth traits and 63% of total genetic variance for incidence of flowering. Narrow-sense heritability was 0.22 for diameter, 0.18 for height and volume, 0.07 for stem straightness, 0.05 for insect defoliation, 0.03 for epicormic sprouts and 0.30 for incidence of flowering (estimated on an assumed underlying continuous scale). Broad-sense heritability was 0.37 for diameter, 0.28 for height, 0.35 for volume, 0.12 for stem straightness, 0.06 for insect defoliation, 0.12 for epicormic sprouts and 0.71 for incidence of flowering. Positive correlations were found between tree volume and flowering and between tree volume and stem straightness. The presence of sizeable non-additive variance supports the selection and deployment of clones to capture the full extent of genetic variation in commercially important traits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号