首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
Palmitoylation is a key post-translational modification mediated by a family of DHHC-containing palmitoyl acyl-transferases (PATs). Unlike other lipid modifications, palmitoylation is reversible and thus often regulates dynamic protein interactions. We find that the mouse hair loss mutant, depilated, (dep) is due to a single amino acid deletion in the PAT, Zdhhc21, resulting in protein mislocalization and loss of palmitoylation activity. We examined expression of Zdhhc21 protein in skin and find it restricted to specific hair lineages. Loss of Zdhhc21 function results in delayed hair shaft differentiation, at the site of expression of the gene, but also leads to hyperplasia of the interfollicular epidermis (IFE) and sebaceous glands, distant from the expression site. The specific delay in follicle differentiation is associated with attenuated anagen propagation and is reflected by decreased levels of Lef1, nuclear β-catenin, and Foxn1 in hair shaft progenitors. In the thickened basal compartment of mutant IFE, phospho-ERK and cell proliferation are increased, suggesting increased signaling through EGFR or integrin-related receptors, with a parallel reduction in expression of the key differentiation factor Gata3. We show that the Src-family kinase, Fyn, involved in keratinocyte differentiation, is a direct palmitoylation target of Zdhhc21 and is mislocalized in mutant follicles. This study is the first to demonstrate a key role for palmitoylation in regulating developmental signals in mammalian tissue homeostasis.  相似文献   

3.
E-cadherin is thought to mediate intercellular adhesion in the mammalian epidermis and in hair follicles as the adhesive component of adherens junctions. We have tested this role of E-cadherin directly by conditional gene ablation in the mouse. We show that postnatal loss of E-cadherin in keratinocytes leads to a loss of adherens junctions and altered epidermal differentiation without accompanying signs of inflammation. Overall tissue integrity and desmosomal structures were maintained, but skin hair follicles were progressively lost. Tumors were not observed and beta-catenin levels were not strongly altered in the mutant skin. We conclude that E-cadherin is required for maintaining the adhesive properties of adherens junctions in keratinocytes and proper skin differentiation. Furthermore, continuous hair follicle cycling is dependent on E-cadherin.  相似文献   

4.
5.
Skin from 36 hairless deer mice (Peromyscus maniculatus) homozygous for the recessive hr-2 mutation were analyzed for structural defects in hair and hair loss. Comparison of mutant to wild-type hairs demonstrated characteristic abnormalities in cellular organization, hair shape, length, and fragility. Matings between mutants homozygous for the hr-2 gene and for a second mutation producing hairlessness in deer mice, hr-1, showed that these two genes were nonallelic. Structural abnormalities in hairs associated with the expression of this gene suggest that its primary effect may be on the epidermis.  相似文献   

6.
We previously showed that Arabidopsis thaliana histone acetyltransferase TAF1/HAF2 is required for the light regulation of growth and gene expression, and we show here that histone acetyltransferase GCN5 and histone deacetylase HD1/HDA19 are also involved in such regulation. Mutation of GCN5 resulted in a long-hypocotyl phenotype and reduced light-inducible gene expression, whereas mutation of HD1 induced opposite effects. The double mutant gcn5 hd1 restored a normal photomorphogenic phenotype. By contrast, the double mutant gcn5 taf1 resulted in further loss of light-regulated gene expression. gcn5 reduced acetylation of histones H3 and H4, mostly on the core promoter regions, whereas hd1 increased acetylation on both core and more upstream promoter regions. GCN5 and TAF1 were both required for H3K9, H3K27, and H4K12 acetylation on the target promoters, but H3K14 acetylation was dependent only on GCN5. Interestingly, gcn5 taf1 had a cumulative effect mainly on H3K9 acetylation. On the other hand, hd1 induced increased acetylation on H3K9, H3K27, H4K5, and H4K8. GCN5 was also shown to be directly associated with the light-responsive promoters. These results suggest that acetylation of specific histone Lys residues, regulated by GCN5, TAF1, and HD1, is required for light-regulated gene expression.  相似文献   

7.
When beta-catenin signalling is disturbed from mid-gestation onwards lineage commitment is profoundly altered in postnatal mouse epidermis. We have investigated whether adult epidermis has the capacity for beta-catenin-induced lineage conversion without prior embryonic priming. We fused N-terminally truncated, stabilised beta-catenin to the ligand-binding domain of a mutant oestrogen receptor (DeltaNbeta-cateninER). DeltaNbeta-cateninER was expressed in the epidermis of transgenic mice under the control of the keratin 14 promoter and beta-catenin activity was induced in adult epidermis by topical application of 4-hydroxytamoxifen (4OHT). Within 7 days of daily 4OHT treatment resting hair follicles were recruited into the hair growth cycle and epithelial outgrowths formed from existing hair follicles and from interfollicular epidermis. The outgrowths expressed Sonic hedgehog, Patched and markers of hair follicle differentiation, indicative of de novo follicle formation. The interfollicular epidermal differentiation program was largely unaffected but after an initial wave of sebaceous gland duplication sebocyte differentiation was inhibited. A single application of 4OHT was as effective as repeated doses in inducing new follicles and growth of existing follicles. Treatment of epidermis with 4OHT for 21 days resulted in conversion of hair follicles to benign tumours resembling trichofolliculomas. The tumours were dependent on continuous activation of beta-catenin and by 28 days after removal of the drug they had largely regressed. We conclude that interfollicular epidermis and sebaceous glands retain the ability to be reprogrammed in adult life and that continuous beta-catenin signalling is required to maintain hair follicle tumours.  相似文献   

8.
Integrin-linked kinase (ILK) links integrins to the actin cytoskeleton and is believed to phosphorylate several target proteins. We report that a keratinocyte-restricted deletion of the ILK gene leads to epidermal defects and hair loss. ILK-deficient epidermal keratinocytes exhibited a pronounced integrin-mediated adhesion defect leading to epidermal detachment and blister formation, disruption of the epidermal-dermal basement membrane, and the translocation of proliferating, integrin-expressing keratinocytes to suprabasal epidermal cell layers. The mutant hair follicles were capable of producing hair shaft and inner root sheath cells and contained stem cells and generated proliferating progenitor cells, which were impaired in their downward migration and hence accumulated in the outer root sheath and failed to replenish the hair matrix. In vitro studies with primary ILK-deficient keratinocytes attributed the migration defect to a reduced migration velocity and an impaired stabilization of the leading-edge lamellipodia, which compromised directional and persistent migration. We conclude that ILK plays important roles for epidermis and hair follicle morphogenesis by modulating integrin-mediated adhesion, actin reorganization, and plasma membrane dynamics in keratinocytes.  相似文献   

9.
10.
Mammalian epidermis is maintained by stem cells that have the ability to self-renew and generate daughter cells that differentiate along the lineages of the hair follicles, interfollicular epidermis and sebaceous gland. As stem cells divide infrequently in adult mouse epidermis, they can be visualised as DNA label-retaining cells (LRC). With whole-mount labelling, we can examine large areas of interfollicular epidermis and many hair follicles simultaneously, enabling us to evaluate stem cell markers and examine the effects of different stimuli on the LRC population. LRC are not confined to the hair follicle, but also lie in sebaceous glands and interfollicular epidermis. LRC reside throughout the permanent region of the hair follicle, where they express keratin 15 and lie in a region of high alpha6beta4 integrin expression. LRC are not significantly depleted by successive hair growth cycles. They can, nevertheless, be stimulated to divide by treatment with phorbol ester, resulting in near complete loss of LRC within 12 days. Activation of Myc stimulates epidermal proliferation without depleting LRC and induces differentiation of sebocytes within the interfollicular epidermis. Expression of N-terminally truncated Lef1 to block beta-catenin signalling induces transdifferentiation of hair follicles into interfollicular epidermis and sebocytes and causes loss of LRC primarily through proliferation. We conclude that LRC are more sensitive to some proliferative stimuli than others and that changes in lineage can occur with or without recruitment of LRC into cycle.  相似文献   

11.
12.
Hair induction in the adult glabrous epidermis by the embryonic dermis was compared with that by the adult dermis. Recombinant skin, composed of the adult sole epidermis and the embryonic dermis containing dermal condensations (DC), was transplanted onto the back of nude mice. The epidermis of transplants formed hairs. Histology on the induction process demonstrated the formation of placode-like tissues, indicating that the transplant produces hair follicles through a mechanism similar to that underlying hair follicle development in the embryonic skin. An isolated adult rat sole skin piece, inserted with either an aggregate of cultured dermal papilla (DP) cells or an intact DP between its epidermis and dermis, was similarly transplanted. The transplant produced hair follicles. Histology showed that the epidermis in both cases surrounded the aggregates of DP cells. The epidermis never formed placode-like tissues. Thus, it was concluded that the adult epidermal cells recapitulate the embryonic process of hair follicle development when exposed to DC, whereas they get directly into the anagen of the hair cycle when exposed to DP. The expression pattern of Edar and Shh genes, and P-cadherin protein during the hair follicle development in the two types of transplants supported the above conclusion.  相似文献   

13.
Abstract. Involucrin is a precursor of the keratinocyte cornified envelope that is specifically expressed in the suprabasal layers of the epidermis and other stratifying squamous epithelia. To study involucrin gene expression and the function of involucrin, we expressed a 6 kb DNA fragment of the human involucrin gene, containing approximately 2.5 kb of upstream sequence and 0.5 kb of downstream sequence, in transgenic mice. The transgene produces a 68 kDa protein that is detected by a human involucrin-specific antibody, and is expressed in a tissuespecific and differentiation-appropriate manner (i.e., expression is confined to the suprabasal layers of the epidermis, extocervix, trachea, esophagus and conjunctiva).
Soluble involucrin levels are two to four times higher in transgenic epidermal keratinocytes compared to human foreskin keratinocytes. Newborn heterozygous animals have a normal birth weight and a normal appearing epidermis and hair growth begins at 4 to 5 days of age (i.e., the same time as hair growth in non-transgenic animals). In a subpopulation of the newborn homozygous animals birth weight is reduced, the epidermis is scaly and hair growth begins late, at around 9 to 10 days of age. In addition, the hair tends to stand erect on both heterozygous and homozygous adult animals giving the appearance of diffuse alopecia.
Immunofluorescent and electron microscopy localize involucrin in the hair follicle and cornified envelope, respectively. These results suggest that overexpression of involucrin may cause abnormalities in hair follicle structure/function and cornified envelope structure. These animals provide a new model for the study of cornified envelope structure and function.  相似文献   

14.
Rac1 is a small GTPase that regulates the actin cytoskeleton but also other cellular processes. To investigate the function of Rac1 in skin, we generated mice with a keratinocyte-restricted deletion of the rac1 gene. Rac1-deficient mice lost nearly all of their hair within a few weeks after birth. The nonpermanent part of mutant hair follicles developed constrictions; lost expression of hair follicle-specific keratins, E-cadherin, and alpha6 integrin; and was eventually removed by macrophages. The permanent part of hair follicles and the sebaceous glands were maintained, but no regrowth of full-length hair follicles was observed. In the skin of mutant mice, epidermal keratinocytes showed normal differentiation, proliferation, cell-cell contacts, and basement membrane deposition, demonstrating no obvious defects of Rac1-deficient epidermis in vivo. In vitro, Rac1-null keratinocytes displayed a strong spreading defect and slightly impaired adhesion. These data show that Rac1 plays an important role in sustaining the integrity of the lower part of hair follicles but not in maintenance of the epidermis.  相似文献   

15.
16.
In order to model squamous cell carcinoma development in vivo, researchers have long preferred hairless mouse models such as SKH-1 mice that have traditionally been classified as 'wild-type' mice irrespective of the genetic factors underlying their hairless phenotype. The work presented here shows that mutations in the Hairless (Hr) gene not only result in the hairless phenotype of the SKH-1 and Hr(-/-) mouse lines but also cause aberrant activation of NFκB and its downstream effectors. We show that in the epidermis, Hr is an early UVB response gene that regulates NFκB activation and thereby controls cellular responses to irradiation. Therefore, when Hr expression is decreased in Hr mutant animals there is a corresponding increase in NFκB activity that is augmented by UVB irradiation. This constitutive activation of NFκB in the Hr mutant epidermis leads to the stimulation a large variety of downstream effectors including the cell cycle regulators cyclin D1 and cyclin E, the anti-apoptosis protein Bcl-2, and the pro-inflammatory protein Cox-2. Therefore, Hr loss results in a state of uncontrolled epidermal proliferation that promotes tumor development, and Hr mutant mice should no longer be considered merely hairless 'wild-type' mice. Instead, Hr is a crucial UVB response gene and its loss creates a permissive environment that potentiates increased tumorigenesis.  相似文献   

17.
18.
Integrin-linked kinase (ILK) is key for normal epidermal morphogenesis, but little is known about its role in hair follicle stem cells and epidermal regeneration. Hair follicle stem cells are important contributors to newly formed epidermis following injury. We inactivated the Ilk gene in the keratin 15--expressing stem cell population of the mouse hair follicle bulge. Loss of ILK expression in these cells resulted in impaired cutaneous wound healing, with substantially decreased wound closure rates. ILK-deficient stem cells produced very few descendants that moved toward the epidermal surface and into the advancing epithelium that covers the wound. Furthermore, those few mutant cells that homed in the regenerated epidermis exhibited a reduced residence time. Paradoxically, ILK-deficient bulge stem cells responded to anagen growth signals and contributed to newly regenerated hair follicles during this phase of hair follicle growth. Thus ILK plays an important modulatory role in the normal contribution of hair follicle stem cell progeny to the regenerating epidermis following injury.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号