首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The typology of temporary waterbodies in Saratov oblast has developed with a similarity in the composition of zooplankton species that serve as its foundation. Seven waterbody groups have been distinguished: waterbodies of flood lands, river valley terraces, steppe watersheds, brackish lagoons, brackish lagoons connected to irrigation networks, excavated ponds, and puddles. The specificity of zooplankton species composition in different types of temporary waterbodies is shown. A significant influence of waterbody lifetime on the number of zooplankton species has been revealed, with the waterbody capacity and surface area in the period of maximal water level also being of great importance.  相似文献   

2.
It is shown that, upon the flooding of ephemeral waterbodies in the coastal region and the formation of new warmer sites of the shoals due to the rising water level in Lake Sevan in 2011, species typical for temporary waterbodies and various shoals have been recorded in the zooplankton. Among them, Daphnia (Ctenodaphnia) magna Straus reached mass development, which was favored by the minimal control from “the top” and favorable trophic conditions. Owing to the abovementioned factors, the total lake zooplankton biomass and water transparency increased. The uneven distribution of D. (C.) magna was determined by the density of fish that prefer it as food.  相似文献   

3.
沈玉莹  程俊翔  徐力刚  李仁英  游海林  杨海 《生态学报》2023,43(24):10399-10412
2022年鄱阳湖流域发生了特大干旱事件,对鄱阳湖生态环境产生了严重影响。为揭示极端水文干旱年的鄱阳湖浮游动物群落结构特征及其主要影响因素,于2022年1月(冬季)、4月(春季)、7月(夏季)和10月(秋季)对鄱阳湖浮游动物进行了综合调查。本次调查共鉴定出浮游动物70种(轮虫40种、桡足类17种和枝角类13种),丰度和生物量范围分别为0—152.67个/L和0—1.52 mg/L。浮游动物群落结构具有较大的时空差异:在季节上,物种数夏季最多,丰度和生物量呈现夏季最高、秋季最低的特征,干旱季节的Shannon-Wiener多样性指数和优势种组成明显不同于非干旱季节;在空间上,南部湖区的物种数、丰度、生物量高于北部湖区,多样性指数在中部湖区最高、北部湖区最低。极端水文干旱年的物种数、丰度和生物量均明显低于往年同期,但空间上的差异较小。相关性分析和冗余分析结果表明,浮游动物群落结构在干旱季节和非干旱季节的主要影响因素存在明显差异,其中干旱季节浮游动物群落结构主要受水温、水位、硝态氮、氨氮等的共同影响,非干旱季节受化学需氧量和水位的影响较大。总体上,极端水文干旱使得鄱阳湖浮游动物群落结构稳定性较...  相似文献   

4.
The indices of the zooplankton of various waterbodies and watercourses of the Great Lakes Depression (Mongolia) are analyzed. The maximum quantity of zooplankton is registered in freshwater bodies. Irrespective of the waterbody type, the greatest number and biomass of zooplankton are recorded in the littoral zone, where communities are characterized by a high abundance of rotifers, including the indicator species of eutrophic waters. This indicates a high degree of organic load from the catchment area. In comparison with the data obtained by the end of 1970s, the zooplankton biomass decreased with a concomitant increases in the shares of rotifers and cladocerans. These changes are most pronounced in the freshwater ecosystem. The quantitative development of the zooplankton of watercourses depends on the character of the river head, the location of sampling stations along the watercourse’s channel, and the water current velocity.  相似文献   

5.
The results of studies on the zooplankton in the cooler reservoir of the Chernobyl Nuclear Power Plant following the 1986 disaster are presented. The study region also included the waterbodies and watercourses situated within the 30-km-wide right-of-way zone. Species composition, vertical and horizontal distribution, abundance, and biomass have been studied. A total of 101 species of invertebrates were found: 43 species of rotifers, 42 cladocerans, and 16 copepods. Among all the species found, almost 90% of the total zooplankton abundance and biomass were composed of indicator species: representatives of g. Brachionus, Asplanchna priodonta, Synchaeta spp., Euchlanis dilatata, Chydorus sphaericus, Bosmina longirostris, and Acanthocyclops americanus. The veligers of zebra mussel were found in the plankton of the investigated water-bodies. In the Kiev Reservoir, their abundance during the summer period may be high: >1 million spec./m3).  相似文献   

6.
The activities of beavers, even in the absence of construction, promote the increase of abundance and the change of community composition in zooplankton. Size of populations, biomass, abundance of copepods, number of species, and value of the Shannon biodiversity indices all increase in parts of the river with some water flow. Biomass and abundance of cladocerans increase in stagnant floodplain waterbodies, along with the reduction of the number of species and of the uniformity of communities.  相似文献   

7.
  1. The interest in understanding ecosystem functioning has grown in recent years due to the effects of species loss on ecosystem processes. Even though biotic and abiotic factors control ecosystem processes, their relative influence may vary according to ecosystem dynamics. In flood and coastal plains, these dynamics are mainly represented by flood pulses and hydroregime, respectively. The objective of this study was to investigate the importance of abiotic and biotic factors for the ecosystem processes represented by zooplankton secondary production (SP), biomass (ZB), and resource use efficiency (RUE) in lentic waterbodies subjected to different hydrological regimes. We hypothesised that abiotic factors would more strongly determine the ecosystem processes in temporary waterbodies and floodplain lakes, given their greater susceptibility to environmental changes. Biotic factors would be more relevant in coastal lagoons due to their greater temporal stability.
  2. Sampling was undertaken quarterly over 1 year in eight coastal lagoons, 10 temporary ponds and five floodplain lakes. The environments were characterised in relation to limnological variables, and zooplankton functional divergence, functional dispersion (FDis), functional evenness, functional richness, and taxonomic richness were measured. Analysis of variance (ANOVA) was used to verify seasonal changes in SP, ZB, RUE, functional diversity, richness, and abiotic factors. Linear mixed models were used to determine which abiotic and biotic factors were the most important for ZB, SP, and RUE.
  3. In the coastal lagoons, RUE differed over time. In the temporary ponds and floodplain lakes, no seasonal significant differences were observed for any of the zooplankton production variables. The linear mixed model analyses showed that models composed mainly of biotic factors were better fitted to the production variables. For coastal lagoons, phytoplankton density affected ZB, SP, and RUE increasing them by 9.9 mg DW/m3, 12.4 mg DW/m3, and 1.23, respectively. For temporary ponds, FDis lowered ZB by 6.9 mg DW/m3 and taxonomic richness increased SP and RUE by 14.2 mg DW/m3 and 1.17, respectively. For floodplain lakes, FDis lowered ZB it by 9.9 mg DW/m3 and functional divergence lowered RUE by 0.81.
  4. The present study demonstrates that biotic factors are the main determinants of ecosystem processes in neotropical lentic waterbodies, irrespective of their annual hydrological regimes. Complementarity effects and high functional diversity are more important in more stable environments, whereas redundancy and low functional diversity prevail in environments subject to more frequent environmental changes. Biotic factors play a major role in ensuring the functioning of aquatic ecosystems and indicate the important role of biodiversity in enabling ecosystem states to be maintained after disturbances and to prevent changes in ecosystem processes.
  相似文献   

8.
9.
1. Zooplankton density and biomass was examined in a Danube River floodplain section with highly variable hydrological dynamics. Temporal patterns were analysed to assess the effects of hydrological conditions on zooplankton community structure and the differential response of the two major zooplankton taxa, rotifers and crustaceans.
2. Calculated floodplain water age was used as an integrated parameter describing hydrological conditions and connectivity.
3. Total zooplankton biomass, crustacean biomass and crustacean species number were significantly positively related to water age. Rotifer biomass followed a hump-shaped relationship with water age, and rotifer species number decreased with increasing water age.
4. Rotifers dominated the community in periods of low to medium water ages. In periods of higher water ages the community was dominated by crustaceans.
5. We propose that the hydrological regime of floodplains is crucial for zooplankton biomass patterns and succession, through the alternation of washing-out effects, taxon-specific potential of reproduction and biological interactions. Flood events and high water levels reset the community to an early successional phase.  相似文献   

10.
Cremona  Fabien  Blank  Kätlin  Haberman  Juta 《Hydrobiologia》2021,848(18):4401-4418

We assessed long-term impacts of multiple stressors and their interaction on the zooplankton community of the large, eutrophic, cyanobacteria-dominated Lake Peipsi (Estonia, Russia). Stressor dataset consisted in time series (1997–2018) of temperature, nutrients, pH, water transparency, phytoplankton biomass and taxonomic richness. The best predictors were selected with random forests machine-learning algorithms and the subsequent models were constructed with generalized linear modeling. We also aimed to identify graphical thresholds representing non-linear, marked responses of abundance or biomass to stressors. Temperature was the dominant stressor for explaining zooplankton abundance and biomass, followed by cyanobacteria biomass, total nitrogen concentration and water transparency. The effect of water temperature was positive, whereas the effect of cyanobacteria became negative after their biomass exceeded a threshold of?~?2 mg l?1. However, the two stressors together had antagonistic effects on zooplankton, causing a decrease in biomass and abundance. For zooplankton, critical thresholds of total nitrogen (~?700 μg l?1), total phosphorus (~?70 μg l?1), and water transparency (~?1.4 m) after which zooplankton metrics changed drastically, were determined. These findings show that although lake warming alone could be positive for zooplankton, the necessity of reducing interacting stressors that influence harmful cyanobacteria growth and biomass, especially nitrogen loads, must be considered.

  相似文献   

11.
The relative strength of "top-down" versus "bottom-up" control of plankton community structure and biomass in two small oligotrophic lakes (with and without fish), located near the Polar circle (Russia), has been investigated for two years, 1996 and 1997. The comparative analyses of zooplankton biomass and species abundance showed strong negative effect of fish, stickeback (Pungitius pungitius L.), on the zooplankton community species, size structure and biomass of particular prey species but no effect on the biomass of the whole trophic level. An intensive predation in Verkhneye lake has lead to: 1) sixfold decline in biomass of large cladoceran Holopedium gibberum comparing to the lake lacking predator, 2) shift in the size mode in zooplankton community and the replacement of the typical large grazers by small species--Bosmina longirostris and rotifers. Their abundance and biomass even increased, demonstrating the stimulating effect of fish on the "inefficient" and unprofitable prey organisms. The analysis of contributions of different factors into the cladoceran's birth rate changes was applied to demonstrate the relative impact of predators and resources on zooplankton abundance. An occasional introduction of the stickleback to Vodoprovodnoye lake (the reference lake in 1996) in summer 1997 lead to drastic canges in this ecosystem: devastating decrease of zooplankton biomass and complete elimination of five previously dominant grazer species. The abundance of edible phytoplankton was slightly higher in the lake with fish in 1996 and considerably higher in the lake where fish has appeared in 1997 showing the prevailing "top-down" control of phytoplankton in oligotrophic ecosystem. The reasons of trophic cascade appearance in oligotrophic lakes are also discussed.  相似文献   

12.
Zooplankton are relatively small in size in the subtropical regions. This characteristic has been attributed to intense predation pressure, high nutrient loading and cyanobacterial biomass. To provide further information on the effect of predation and cyanobacteria on zooplankton size structure, we analyzed data from 96 shallow aquaculture lakes along the Yangtze River. Contrary to former studies, both principal components analysis and multiple regression analysis showed that the mean zooplankton size was positively related to fish yield. The studied lakes were grouped into three types, namely, natural fishing lakes with low nutrient loading (Type1), planktivorous fish-dominated lakes (Type 2), and eutrophic lakes with high cyanobacterial biomass (Type 3). A marked difference in zooplankton size structure was found among these groups. The greatest mean zooplankton size was observed in Type 2 lakes, but zooplankton density was the lowest. Zooplankton abundance was highest in Type 3 lakes and increased with increasing cyanobacterial biomass. Zooplankton mean size was negatively correlated with cyanobacterial biomass. No obvious trends were found in Type 1 lakes. These results were reflected by the normalized biomass size spectrum, which showed a unimodal shape with a peak at medium sizes in Type 2 lakes and a peak at small sizes in Type 3 lakes. These results indicated a relative increase in medium-sized and small-sized species in Types 2 and 3 lakes, respectively. Our results suggested that fish predation might have a negative effect on zooplankton abundance but a positive effect on zooplankton size structure. High cyanobacterial biomass most likely caused a decline in the zooplankton size and encouraged the proliferation of small zooplankton. We suggest that both planktivorous fish and cyanobacteria have substantial effects on the shaping of zooplankton community, particularly in the lakes in the eastern plain along the Yangtze River where aquaculture is widespread and nutrient loading is high.  相似文献   

13.
The relationship between species diversity and the stability and production of trophic levels continues to receive intense scientific interest. Though facilitation is commonly cited as an essential underlying mechanism, few studies have provided evidence of the impact that indirect facilitation may have on diversity–ecosystem functioning relationships. In this laboratory study, we examined the effect of zooplankton species diversity on trophic structure (total algal and zooplankton biomass) and temporal stability of total zooplankton biomass. We utilized four species of pond zooplankton grown in either monoculture or in polyculture. When comparing responses in polycultures with responses averaged across monocultures, a positive effect of diversity on total zooplankton biomass was observed. This occurred as a result of positive facilitative effects among competing zooplankton. Daphnia pulex , a biomass dominant in monoculture, was negatively affected by the presence of interspecific competitors. In contrast, Diaphanosoma brachyurum , a species that performed poorly in monoculture, was strongly and positively affected by the presence of interspecific competitors, driving positive diversity effects on total zooplankton biomass. Positive temporal covariances among zooplankton were detected in several polyculture replicates, increasing temporal variability of total zooplankton biomass. However, this destabilizing effect was weak relative to effects of high biomass yields in polyculture which caused temporal biomass variability (as measured by the coefficient of variation) to be lower in polyculture relative to monocultures. Zooplankton diversity effects on total algal biomass were not detected. However, increased zooplankton diversity significantly altered the size structure of algae, increasing the relative abundance of large, grazer-resistant algae.  相似文献   

14.
The diversity and longitudinal variation of zooplankton in the lower Vistula River were analyzed. Samples were taken from 40 stations located along a 272-km long section of the lower river course. During the study the unique technique of taking samples from “the same water” was used. The zooplankton community was dominated by rotifers and nauplii — larval stages of copepods. The most abundant species were: Brachionus angularis, Brachionus calyciflorus and Brachionus budapestiensis. The zooplankton species diversity in the main channel of the lower Vistula River was similar to other large European rivers; however, its abundance was lower. The diversity, abundance and biomass of potamoplankton steadily decreased downstream. This could be related both to scarcity of storage zones for potamoplankton development in the river due to the extensive regulation processes, and changes in hydrological conditions of the main channel (by the straightening of riverbed) where the samples were collected.  相似文献   

15.
The species composition,biomass,abundance,and species diversity of zooplankton were determined for samples collected from August 2002 to May 2003 from 14 stations in Yueqing Bay,China.Phytoplankton growth rate and microzooplankton grazing rate were obtained by using the dilution method developed by Landry and Hassett.The spatial and temporal variations of zooplankton and its relationship with environmental factors were also analyzed.The results showed that the zooplankton in the Yueqing Bay could be divided into four ecotypes,namely coastal low saline species,estuary brackish water species,offshore warm water species,and eurytopic species.A total of 75 species of zooplankton belonging to 56 genera and 17 groups of pelagic larva were identified in the Yueqing Bay.The coastal low saline species was the dominant ecotype in the study area,and the dominant species were Labidocera euchaeta,Acartia pacifica,Acrocalanus gibber,Pseudeuphausia sinica,and Sagitta bedoti among others.There was considerable seasonal variation in zooplankton biomass and abundance in the surveyed areas.The peak biomass appeared in August,descending in November and in May,and the lowest biomass appeared in February.Similarly,the highest abundance of zooplankton was observed in August,with the abundance descending in the following months:May,November,and February.There were similar horizontal distribution patterns for the biomass and the abundance of zooplankton.They both increased from the upper to the lower bay in February and May,but decreased from the upper to the lower bay in August.Biomass and abundance were evenly distributed in the Yueqing Bay in November.Moreover,there was marked seasonal variation in the species diversity of zooplankton,which conformed to the abundance of zooplankton.Results of the dilution experiments indicated that there was grazing pressure of microzooplankton on phytoplankton in the Yueqing Bay throughout the year though the rate of microzooplankton grazing on phytoplankton varied seasonally.Phytoplanktons were growing at 0.26-2.07/d and grazed by microzooplankton at a rate of 0.15--0.48/d in different seasons.  相似文献   

16.
巢湖及其支流浮游动物群落结构特征及水质评价   总被引:2,自引:0,他引:2  
2013年9月至2014年6月对巢湖及柘皋河、杭埠河、南淝河3条支流的浮游动物进行了调查,共检出浮游动物297种,其中,原生动物124种,轮虫135种,枝角类29种,桡足类9种。南淝河浮游动物物种数最多,为203种,巢湖最少,为130种;巢湖及3条支流均以原生动物和轮虫物种数最多。浮游动物总密度为644 223 ind/L,柘皋河浮游动物密度最高,巢湖浮游动物密度最低,巢湖及3条支流原生动物密度占浮游动物总密度的比例均为最高;四个季节柘皋河浮游动物密度均为最高。浮游动物总生物量为253.14 mg/L,南淝河浮游动物生物量最高,杭埠河和巢湖浮游动物生物量较低;春季和冬季柘皋河浮游动物生物量最高,夏季和秋季南淝河浮游动物生物量最高。相较3条支流,巢湖浮游动物优势种数最少。依据理化指标,巢湖及3条支流为富营养或超富营养水平,营养水平为:南淝河巢湖柘皋河杭埠河。浮游动物群落结构和环境因子的冗余分析(RDA)表明,巢湖及3条支流浮游动物群落结构在四个季节均未能明显区分开,浮游动物群落和环境理化因子的相关性较小。  相似文献   

17.
The results of an up-to-date study of littoral zooplankton of the downstream area of Kaniv Reservoir are presented. New approaches are applied to establish the monitoring stations, and state-of-the-art methods of sampling are used in regard to the type and size of the studied artificial waterbodies. The existing tendencies of developing the littoral zooplankton species diversity have been analyzed. Three zooplankton species have been registered for the first time for the fauna of Ukraine and 17 species for Kaniv Reservoir. The faunistic composition, biotope-related distribution, and abundance of the zooplankton were assessed.  相似文献   

18.
Long-term research in the Baltic Sea revealed the basic trends of zooplankton community variations depending on oceanographic processes. Alternation of the periods of increase and decrease in salinity of the Baltic Sea against the background of climate changes (temperature increase) and eutrophication affect the state of the entire Baltic ecosystem, including zooplankton. For these periods, the dynamics of zooplankton in the Baltic Sea were analyzed based on literature data and results of regular research in the southeastern Baltic Sea during 1998–2007. The changes in the hydrological situation were accompanied by significant changes in the zooplankton community. In the 1990s–2000s, the abundance and biomass of brackish-water and thermophilous species primarily of Cladocera and Copepoda increased markedly. The role of the previously dominant marine copepod Pseudocalanus elongatus decreased due to salinity reduction in the deep-water part of the Baltic Sea. Maximum development of zooplankton occurred in years of the greatest warming-up of the water (2001, 2005–2007) against the background of a general positive trend of zooplankton abundance in the last decade.  相似文献   

19.
The relative abundance of autotrophic (A) and heterotrophic (H) organisms in the microbial food web of temporary ponds and its relationship to environmental variables were analysed. Four localities (43 temporary ponds) were selected for study. They were located in unaltered, protected basins without intensive agriculture or strong human pressure. Because the supply of allochthonous organic matter is expected to be higher than inorganic nutrient inputs in temporary ponds, we hypothesized that the microbial food web in these unaltered basins was dominated by heterotrophic organisms. Our results showed that the log A:H biomass ratio (A/H) was always negative, indicating strong dominance by heterotrophic organisms in these ponds. Moreover, A/H was negatively related to DOC concentrations, but this relationship was weaker in the locality with the highest DOC concentration. No significant relationships were found between A/H and the other environmental variables analysed, namely inorganic nutrients, fulvic acids, chlorophyll-a concentrations, macrophyte biomass or total zooplankton biomass. However, when the different groups of zooplankton were considered separately, A/H correlated negatively with cladoreran biomass and positively with harpacticoid biomass. Thus, temporary ponds differ from deeper ecosystems, in which the greater importance of autochthonous energy inputs leads to microbial food web that is more dominated by autotrophs.  相似文献   

20.
The results of cladoceran crustaceans studies in the pelagial of the Ivankovo and Uglich water reservoirs were generalized. In the period of 1973–1995, both waterbodies were similar in terms of Cladocera species composition and the dominating complex. The list of species composition of pelagic cladocerans has increased since the 1950s. The highest abundance of cladocerans was observed in the Ivankovo water reservoir. Daphnia cucullata G. Sars has been stably dominant in zooplankton summary biomass, while Chydorus sphaericus (O.F. Müller) and Bosmina longirostris (O.F. Müller) prevailed in terms of abundance. Changes in the pelagic cladoceran complex composition is evidence of the waterbodies’ eutrophication. The share of Cladocera in the zooplankton’s total summer biomass was 68 and 53% in the Ivankovski and Shoshinski stretches of the Ivankovo water reservoir, correspondingly, and 60% in the Uglich water reservoir (on average for 1970s–1990s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号