首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent work, we described the excision of a large genomic region from Enterococcus faecium D344R in which the sequence from "joint" regions suggested that excision resulted from the interaction of conjugative transposon Tn916 and the related mobile element Tn5386. In the present study, we examined the ability of integrases and integrase-excisase combinations from Tn916 and Tn5386 to promote the excision of constructs consisting of the termini of Tn916, Tn5386, and the VanB mobile element Tn5382. Integrases alone from either Tn916 or Tn5386 promoted the circularization of constructs from the three different transposons, even when the different termini used in the constructs were discordant in their transposon of origin. The termini of Tn916 and Tn5382 found in all joints were consistent with previously identified Tn916 and Tn5382 termini. Substantial variation was seen in the integrase terminus of Tn5386 used to form joints, regardless of the integrase that was responsible for circularization. Variability was observed in joints formed from Tn5386 constructs, in contrast to joints observed with the termini of Tn916 or Tn5382. The coexpression of excisase yielded some variability in the joint regions observed. These data confirm that integrases from some Tn916-like elements can promote circularization with termini derived from heterologous transposons and, as such, could promote excision of large genomic regions flanked by such elements. These findings also raise interesting questions about the sequence specificities of the C terminals of Tn916-like integrases, which bind to the ends and facilitate strand exchange.  相似文献   

2.
We describe Tn5386, a novel ca.-29-kb Tn916-like mobile element discovered to occur in ampicillin-resistant, Tn916-containing Enterococcus faecium D344R. PCR amplification experiments after overnight growth with or without tetracycline revealed "joint" regions of circularized Tn5386 composed of 6-bp sequences linking different transposon termini. In one case (no tetracycline), the termini were consistent with those derived by target site analysis of the integrated element. In the other case, the termini were virtually identical in distance from the integrase binding regions, as seen with Tn916. These data are consistent with a model in which one PCR product results from the action of Tn5386 integrase, whereas the other results from the action of the Tn916 integrase on Tn5386. Spontaneous conversion of D344R to an ampicillin-susceptible phenotype (D344SRF) was associated with a 178-kb deletion extending from the left end of Tn5386 to the left end of Tn916. Examination of the Tn5386 junction after the large deletion event suggests that the deletion resulted from an interaction between the nonintegrase ends of Tn5386 and Tn916. The terminus of Tn5386 identified in this reaction suggested that it may have resulted from the activity of the Tn916 integrase (Int(Tn916)). The "joint" of the circular element resulting from this excision was amplifiable from D344R, the sequence of which revealed a heteroduplex consistent with Int(Tn916)-mediated excision. In contrast, Tn5386 joints amplified from ampicillin-susceptible D344SRF revealed ends consistent with Tn5386 integrase activity, reflecting the absence of Tn916 from this strain. Tn5386 represents a new member of the Tn916 transposon family. Our data suggest that excision of Tn5386 can be catalyzed by the Tn916 integrase and that large genomic deletions may result from the interaction between these heterologous elements.  相似文献   

3.
A 58.7-kb nonconjugative plasmid (pKQ1) previously reported in a clinical isolate of Enterococcus faecium was found to contain both a tetM and an erythromycin resistance (erm) determinant. The plasmid contained a region homologous to the A, F, H, and G HincII fragments of Tn916. However, the 4.8-kb B fragment of Tn916 which contained the tetM determinant was replaced by a 7.3-kb fragment, and the 3.6-kb HincII C fragment of Tn916 was missing. An element homologous to Tn917 was juxtaposed to the truncated Tn916-like element. The Tn917-like element was similar in size to the erm transposon Tn917 as determined by a ClaI restriction digest which spanned approximately 99% of the transposon. When Bacillus subtilis or Streptococcus sanguis were transformed with pKQ1, no zygotically induced transposition of the tetM element was detected. Similarly no transposition of the Tn917-like element was detected.  相似文献   

4.
Tn3701, carried by Streptococcus pyogenes A454, is the first chromosomal composite element to be described; it contains in its central region Tn3703, a transposon similar to Tn916. A comparison by DNA-DNA hybridization of Tn3701 with omega(cat-tet) and Tn3951, carried by Streptococcus pneumoniae BM6001 and by Streptococcus agalactiae B109, respectively, revealed that the two latter structures are also Tn3701-like composite elements. The DNAs of 27 other antibiotic-resistant group A, B, C, and G streptococci and of S. pneumoniae BM4200 showed sequence homologies to Tn3701 (14 strains, including BM4200), to the regions of Tn3701 outside of Tn3703 (5 strains), and to Tn916 alone (8 strains). The DNAs of five strains did not detectably hybridize with any probe. The tetM gene was identified in most chromosomal genetic elements coding for tetracycline-minocycline resistance. Since Tn3701-like elements are widely disseminated among antibiotic-resistant streptococci (47% of the 34 strains studied), we propose that Tn3701 be considered the prototype of chromosomal composite elements.  相似文献   

5.
Transfer of Tn1545 and Tn916 to Clostridium acetobutylicum   总被引:4,自引:0,他引:4  
Tn1545, a conjugative transposon originally discovered in Streptococcus pneumoniae, has been transferred from Enterococcus faecalis and Bacillus subtilis to Clostridium acetobutylicum NCIB 8052. Transfer between different strains of C. acetobutylicum has also been observed. Insertion of Tn1545 into the C. acetobutylicum chromosome occurred at multiple sites, as shown by Southern hybridization. Although ermAM (erythromycin-resistance) was the most satisfactory marker for primary selection of transconjugants, all three Tn1545-encoded antibiotic resistance genes (aphA-3, ermAM, and tetM) were apparently expressed in C. acetobutylicum. Our results indicate that Tn1545 is potentially useful for undertaking mutagenesis and mutational cloning in this industrially important organism. Transfer of another conjugative transposon, Tn916, from E. faecalis to C. acetobutylicum NCIB 8052 was also apparently detected. Circumstantial evidence suggests that there may be a hot spot for Tn916 insertion in the C. acetobutylicum NCIB 8052 chromosome.  相似文献   

6.
Aims:  To screen for the existence and determine the structure of Tn 916 -like element in Streptococcus parauberis serotype II strains isolated from cultured Japanese flounder in western Japan.
Methods and Results:  In this study, the structure of Tn 916 -like element and the flanking regions were characterized by polymerase chain reaction (PCR) and inverse PCR, followed by cloning and sequencing. The Tn 916 -like element is 18 031 bp in length and composed of 22 ORFs. Southern blot hybridization analysis showed that the Hin cII-digested internal structures of Tn 916 -like elements yielded two patterns among S. parauberis serotype II strains. The flanking sequences were identical with the corresponding region of S. parauberis serotype I strain except for the addition of 6-bp coupling sequence (ATCATA) being adjacent to the upstream of the element.
Conclusion:  The Tn 916 -like element exhibited high homology (more than 99%) with Tn 916 observed in other streptococci and enterococci and was integrated in the same site of chromosome for all of the tested S. parauberis serotype II strains.
Significance and Impact of the Study:  The results indicate that the Tn 916- like element encoding tet (M) gene is present in all of the tested S. parauberis serotype II strains, which are disseminated in the flounder-culturing areas in western Japan.  相似文献   

7.
We have identified two 19-kb conjugative transposons (Tn5381 and Tn5383) in separate strains of multiply resistant Enterococcus faecalis. These transposons confer resistance to tetracycline and minocycline via a tetM gene, are capable of both chromosomal and plasmid integration in a Rec- environment, and transfer between strains in the absence of detectable plasmid DNA at frequencies ranging from < 1 x 10(-9) to 2 x 10(-5) per donor CFU, depending on the donor strain and the growth conditions. Hybridization studies indicate that these transposons are closely related to Tn916. We have identified bands of ca. 19 kb on agarose gel separations of alkaline lysis preparations from E. faecalis strains containing chromosomal copies of Tn5381, which we have confirmed to be a circularized form of this transposon. This phenomenon has previously been observed only when Tn916 has been cloned in Escherichia coli. Overnight growth of donor strains in the presence of subinhibitory concentrations of tetracycline results in an approximately 10-fold increase in transfer frequency of Tn5381 into enterococcal recipients and an increase in the amount of the circular form of Tn5381 as detectable by hybridization. These results suggest that Tn5381 is a Tn916-related conjugative transposon for which the appearance of a circular form and the conjugative-transfer frequency are regulated by a mechanism(s) affected by the presence of tetracycline in the growth medium.  相似文献   

8.
9.
Transposon-916-like elements in clinical isolates of Enterococcus faecium   总被引:3,自引:0,他引:3  
Tetracycline (Tc) resistance was found in nine out of ten clinical isolates of Enterococcus faecium. Conjugative transposons, designated Tn5031, Tn5032 and Tn5033, were present in the chromosome of three isolates. The transposons were similar both structurally and functionally to Tn916 containing the tetM determinant. A large non-conjugative plasmid found in a fourth isolate contained an element homologous to Tn916. The four isolates containing the element showing homology to Tn916 exhibited a substantially higher level of Tc resistance than the remaining five Tc-resistant isolates. Tc-resistance genes which have not been identified are apparently responsible for the low-level Tc resistance in five clinical isolates.  相似文献   

10.
11.
The rumen bacterium Butyrivibrio proteoclasticus B316(T) has a 4.4-Mb genome composed of four replicons (approximately 3.55 Mb, 361, 302 and 186 kb). Mutagenesis of B316(T) was performed with the broad host-range conjugative transposon Tn916 to screen for functionally important characteristics. The insertion sites of 123 mutants containing a single copy of Tn916 were identified and corresponded to 53 different insertion points, of which 18 (34.0%), representing 39 mutants (31.7%), were in ORFs and 12 were where transposition occurred in both directions (top and bottom DNA strand). Up to eight mutants from several independent conjugation experiments were found to have the same integration site. Although transposition occurred in all four replicons, the number of specific insertion sites, transposition frequency and the average intertransposon distance between insertions varied between the four replicons. In silico analysis of the 53 insertion sites was used to model a target consensus sequence for Tn916 integration into B316(T) . A search of the B316(T) genome using the modelled target consensus sequence (up to two mismatches) identified 39 theoretical Tn916 insertion sites (19 coding, 20 noncoding), of which nine corresponded to Tn916 insertions identified in B316(T) mutants during our conjugation experiments.  相似文献   

12.
Abstract Tn5251 belongs to the Tn916-Tn1545 family of conjugative transposons (CT) and was found integrated into CT Tn5252 , to form the composite element Tn5253 of Streptococcus pneumoniae . We show that Tn5251 is identical in structure and size to Tn916 . DNA sequence analysis of a 4,419-bp segment containing the tet(M) gene showed that only 73 nucleotides out of 4,419 were different in the the two CT. Essentially all differences (66 / 73) were clustered in a 688-bp segment of tet(M) , which was 90% identical to Tn916 and 100% identical to the tet(M) genes of Tn1545 from S. pneumoniae and pOZ101 from Neisseria gonorrhoeae . DNA sequence analysis of the Tn5251/Tn5252 junction fragments allowed us (i) to determine Tn5251 termini, (ii) to define the 6-bp coupling sequences flanking the CT, and (iii) to infer the structure of the integration site ( attB ) of Tn5251 into Tn5252 . Conjugal transfer of Tn5251 independent from Tn5253 could not be detected, even if we could show excision and formation of Tn5251 circular intermediates at a level of 5.4 copies per 106 chromosomes.  相似文献   

13.
C E Rubens  L M Heggen 《Plasmid》1988,20(2):137-142
The tetracycline resistance gene encoded within the transposon Tn916 was replaced with the gene encoding erythromycin resistance from the plasmid pVA838. The derivative transposon of Tn916 was designated Tn916 delta E and was introduced into the Streptococcus faecalis chromosome by protoplast transformation. The conjugation/transposition functions of Tn916 delta E were similar to those observed for Tn916 in S. faecalis and Tn916 delta E was capable of self-conjugation at frequencies similar to those of other S. faecalis and Group B Streptococcus. This transposon will be useful for mutagenesis studies in gram-positive organisms, especially in those species where erythromycin resistance is a more desirable selectable marker.  相似文献   

14.
Heterobivalent tyrosine recombinases play a prominent role in numerous bacteriophage and transposon recombination systems. Their enzymatic activities are frequently regulated at a structural level by excisionase factors, which alter the ability of the recombinase to assemble into higher-order recombinogenic nucleoprotein structures. The Tn916 conjugative transposon spreads antibiotic resistance in pathogenic bacteria and is mobilized by a heterobivalent recombinase (Tn916Int), whose activity is regulated by an excisionase factor (Tn916Xis). Unlike the well-characterized (lambda)Xis excisionase from bacteriophage lambda, Tn916Xis stimulates excision in vitro and in Escherichia coli only modestly. To gain insights into this functional difference, we have performed in vitro DNA-binding studies of Tn916Xis and Tn916Int, and we have solved the solution structure of Tn916Xis. We show that the heterobivalent Tn916Int protein is capable of bridging the DR2-type and core-type sites on the left arm of the tranpsoson. Consistent with the notion that Tn916Int is regulated only loosely, we find that Tn916Xis binding does not alter the stability of DR2-Tn916Int-core bridges or the ability of Tn916Int to recognize the arms of the transposon in vitro. Despite a high degree of divergence at the primary sequence level, we show that Tn916Xis and (lambda)Xis adopt related prokaryotic winged-helix structures. However, they differ at their C termini, with Tn916Xis replacing the flexible integrase contacting tail found in (lambda)Xis with a positively charged alpha-helix. This difference provides a structural explanation for why Tn916Xis does not interact cooperatively with its cognate integrase in vitro, and reveals how subtle changes in the winged-helix fold can modulate the functional properties of excisionase factors.  相似文献   

15.
16.
Abstract The streptococcal transposons Tn916 and Tn925 were transferred to several strains of Leuconostoc (Ln.) oenos using the filter mating method. The insertion of both transposons into the chromosome occurred at different sites. Transconjugants of Ln. oenos carrying Tn916 could serve as donors in mating experiments with Lactococcus lactis LM2301. Further analysis of L. lactis LM2301 transconjugants showed that the insertion of the transposon Tn916 into the chromosome was site-specific. These studies establish a basis for the initiation of genetic studies in this Leuconostoc species since there are no efficient conjugal or transformation systems previously described for this microorganism.  相似文献   

17.
The isolation of two multi-resistance transposons, Tn2425 and Tn1831, and their relation to Tn21 and Tn2424, is described. A 1.7 kb segment present in Tn2424 and Tn2425 was identified as an IS element by rec-independent transposition, resulting in a cointegrate structure that carries two direct repeated copies of the IS element. By the isolation of this IS element we demonstrated that transposition is one mechanism leading to sequence variations in Tn21-like structures, especially in the region between the mer operon and the sul gene.  相似文献   

18.
Lactococcus lactis subsp. lactis MG1363 can act as a conjugative donor of chromosomal markers. This requires a chromosomally located fertility function that we designate the lactococcal fertility factor (Laff). Using inter- and intrastrain crosses, we identified other L. lactis strains (LMO230 and MMS373) that appear to lack Laff. The selectable marker in our crosses was Tcr, carried by Tn916, a transposon present on the chromosome. The transfer of Tcr was not due to Tn916-encoded conjugative functions, because (i) L. lactis cannot act as a donor in Tn916-promoted conjugation (F. Bringel, G. L. Van Alstine, and J. R. Scott, Mol. Microbiol. 5:2983-2993, 1992) and (ii) transfer occurred when the Tcr marker was present in a Tn916 derivative containing a mutation, tra-641, that prevents Tn916-directed conjugation in any host. In addition, we isolated a strain in which Tn916 appears to be linked to Laff; this strain should be useful for further analysis of this fertility factor. In this strain, Tn916 is on the same 600-kb SmaI fragment as Clu, a fertility factor previously shown to promote lactose plasmid transfer in L. lactis. Thus, it is possible that Clu and Laff are identical.  相似文献   

19.
Conjugative transposition of transposon Tn916 has been shown to proceed by excision of the transposon in the donor strain and insertion of this element in the recipient. This process requires the product of the transposon int gene. We report here the surprising finding that the int gene is required only in the donor during conjugative transposition. We find that Tn916 int-1, whose int gene has been inactivated by an insertion mutation, transposes when a complementing wild-type int gene is present only in the donor during mating. When the int+ gene is present in a plasmid and is expressed from the spac promoter, conjugative transposition is very inefficient. However, when the Int+ function is supplied from a coresident distantly linked Tn916 tra-641 mutant, which is defective in a function required for conjugation, efficient conjugative transposition of Tn916 int-1 occurs. This suggests either that Int is not required for integration of Tn916 in gram-positive bacteria or that the protein is transferred from the donor to the transconjugant during the mating event. When the nonconjugative plasmid pAT145 was present in the donor, it was rarely cotransferred with Tn916. This suggests that complete fusion of mating cells is not common during conjugative transposition.  相似文献   

20.
Tn916 and related conjugative transposons are clinically significant vectors for the transfer of antibiotic resistance among human pathogens, and they excise from their donor organisms using the transposon-encoded integrase ((Tn916)Int) and excisionase ((Tn916)Xis) proteins. In this study, we have investigated the role of the (Tn916)Xis protein in stimulating excisive recombination. The functional relevance of (Tn916)Xis binding sites on the arms of the transposon has been assessed in vivo using a transposon excision assay. Our results indicate that in Escherichia coli the stimulatory effect of the (Tn916)Xis protein is mediated by sequence-specific binding to either of its two binding sites on the left arm of the transposon. These sites lie in between the core and arm sites recognized by (Tn916)Int, suggesting that the (Tn916)Xis protein enhances excision in a manner similar to the excisionase protein of bacteriophage lambda, serving an architectural role in the stabilization of protein-nucleic acid structures required for strand synapsis. However, our finding that excision in E. coli is significantly enhanced by the host factor HU, but does not depend on the integration host factor or the factor for inversion stimulation, defines clear mechanistic differences between Tn916 and bacteriophage lambda recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号