首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Actin-containing cytoplasmic fibers were visualized in the mesenteric mesothelial cells of the large intestine of bullfrog tadpoles by rhodamine-phalloidin staining of en face preparations of mesothelial cells. These fibers were concurrently stained by immunofluorescence using antibodies to myosin or -actinin. Electron microscopy showed the presence of bundles of microfilaments in the basal cytoplasm of the cells. Such fibers in the mesothelial cells may be comparable to the stress fibers present in cultured cells. The mesothelial cells initially formed axially oriented stress fibers when they changed from a rhombic to a slender spindle-like shape. On the other hand, stress fibers disappeared as cells transformed from elongated to polygonal shapes during the period of metamorphic climax. Expression of stress fibers in these cells appears to be related to the degree of tension loaded on the mesentery, which may be generated by mesenteric winding. These stress fibers in the mesothelial cells may serve to regulate cellular transformation. They may also help to maintain cellular integrity by strengthening the cellular attachment to subepithelial tissue against tensile stress exerted on the mesentery.  相似文献   

2.
Cryosections and whole-mount preparations of the guinea pig small intestine and colon were single or double immunolabeled using the anti-c-Kit and protein gene product 9.5 antibodies. Immunolabeled specimens were observed under a confocal laser scanning microscope. The main findings of the present study are: (1) the distribution and profiles of three-dimensional structures of c-Kit-positive cellular networks in the small intestine and colon, and (2) the anatomical relations of c-Kit-positive cells to the enteric nerves in the layers. In the small intestine, c-Kit-positive cellular networks were observed at levels of the deep muscular plexus and myenteric plexus. The c-Kit-positive cellular networks ran along or overlay the nerve fibers at the deep muscular plexus, while they showed the reticular structures intermingled with the nerve elements at the myenteric plexus. In the colon, c-Kit-positive cellular networks were observed at levels of the submuscular plexus and myenteric plexus, and were further identified within the circular and longitudinal muscle layers as well as in the subserosal layer. In the circular muscle layer, c-Kit-positive cells surrounded the associated nerve fibers and extended several long processes toward the adjacent c-Kit-positive cells. The c-Kit-positive cellular networks within the longitudinal muscle layer as well as in the subserosal layer were not associated with the nerve fibers. In the layers of the intestinal wall with c-Kit-positive cells, the cellular networks of the interstitial cells were identified in ultrastructure. The characteristic profiles of c-Kit-positive cellular networks provide a morphological basis upon which to investigate the mechanisms regulating intestinal movement. Received: 14 July 1998 / Accepted: 2 September 1998  相似文献   

3.
Fluorescence cytochemistry using en face preparations of rat vascular endothelial cells (ECs) revealed the localization of actin, fibronectin (FN) and fibronectin receptor (FNR) along not only central stress fibers (SFs) but also the cell margins. Electron microscopy showed very close proximity between the topographical distribution of intracellular microfilament bundles and that of subendothelial FN in the EC margins. Therefore, these basal and marginal actin cables may be comparable to the well-established central SFs present in ECs. Formation of the central SFs was induced in ECs or mesothelial cells in response to tension, by which their cellular integrity seems to be effectively maintained. However, even when central SF formation was inhibited by cytochalasin D, the ECs with marginal SFs showed high resistance to mechanical tension, whereas mesenteric mesothelial cells having no such fibers easily lost their integrity. Thus, together with central SFs, the marginal SFs characteristic of rat vascular ECs may play an essential role in strengthening cell-matrix adhesion.  相似文献   

4.
The role of actin filaments in the development of cellular shape in the mesenteric mesothelium of the bullfrog was studied by using a simple, new technique for making en face preparations of mesothelial sheets. By using these mesothelial cell preparations, the distribution of actin was determined by means of fluorescence microscopy with 7-nitrobenz-2-oxa-1,3-diazole (NBD)-phallacidin and that of myosin by means of immunofluorescence microscopy. Although fluorescence produced by both NBD-phallacidin and antimyosin staining was found exclusively along the margins of the cells, its intensity was altered in correspondence with changes in cell shape. For instance, tadpole-type mesothelial cells with either an irregular or very slender cell shape showed very weak fluorescence. On the other hand, frog-type mesothelial cells with a polygonal shape showed intense fluorescence at their margins and had circumferential bundles of actin filaments at their apices. Furthermore, intercellular junctions between the mesothelial cells developed as the cell shape became polygonal during metamorphosis. The present study showed that development of circumferential bundles of actin filaments and intercellular junctions may serve to establish and maintain the definitive polygonal cellular pattern in the mesenteric mesothelium of the bullfrog.  相似文献   

5.
Changes in small intestinal geometry, residual strain and stress-strain properties during physiological growth were studied in rats ranging from 1 to 32 weeks of age. Small intestinal mass and dimensions increased many-fold with age, e.g. the weight per unit length increased five-fold with age and the wall cross-sectional area increased four-fold. The opening angle of duodenum obtained at zero-stress state was approximately 220 degrees and 290 degrees during the first and second week after birth and decreased to 170 degrees at other ages (p < 0.005). The opening angle of ileum ranged between 120 degrees and 150 degrees . The residual strain of duodenum at the mucosal surface did not vary with age (p > 0.05) whereas the residual strain of ileum at the mucosal surface decreased with age (p < 0.001). The circumferential and longitudinal stress-strain curves fitted well to a mono-exponential function. At a given circumferential stress, the corresponding strain values increased during the first 8 weeks of age (p < 0.05) where after no further change was observed. Hence, the small intestine became more compliant during early life. At a given longitudinal stress, the corresponding strains of ileum and duodenum became larger during the first 2-4 weeks of age (p < 0.05) where after no further change was observed. The small intestine was stiffer in longitudinal direction compared to the circumferential direction. In conclusion, pronounced morphometric and biomechanical changes were observed in the rat small intestine during physiological growth. Such data may prove useful in the understanding of the functional changes of the digestive tract during early life.  相似文献   

6.
We describe a three-dimensional magnetic twisting device that is useful in characterizing the mechanical properties of cells. With the use of three pairs of orthogonally aligned coils, oscillatory mechanical torque was applied to magnetic beads about any chosen axis. Frequencies up to 1 kHz could be attained. Cell deformation was measured in response to torque applied via an RGD-coated, surface-bound magnetic bead. In both unpatterned and micropatterned elongated cells on extracellular matrix, the mechanical stiffness transverse to the long axis of the cell was less than half that parallel to the long axis. Elongated cells on poly-L-lysine lost stress fibers and exhibited little mechanical anisotropy; disrupting the actin cytoskeleton or decreasing cytoskeletal tension substantially decreased the anisotropy. These results suggest that mechanical anisotropy originates from intrinsic cytoskeletal tension within the stress fibers. Deformation patterns of the cytoskeleton and the nucleolus were sensitive to loading direction, suggesting anisotropic mechanical signaling. This technology may be useful for elucidating the structural basis of mechanotransduction. cytoskeleton; prestress; stress fibers; mechanotransduction; mechanical deformation  相似文献   

7.
Cellular networks of pacemaker activity in intestinal movements are still a matter of debate. Because gap-junctional intercellular communication in the intestinal wall may provide important clues for understanding regulatory mechanisms of intestinal movements, we have attempted to clarify the distribution patterns of three types of gap junction proteins. Using antibodies for connexin40, connexin43, connexin45, smooth muscle actin, and vimentin, immunocytochemical observations were made with the confocal laser scanning microscope on cryosections of fresh-frozen small intestine and colon of the dog and rat. Connexin 45 was localized along the deep muscular plexus of the small intestine in both dog and rat. Double labeling studies revealed that connexin45 overlapped with vimentin –, but not actin-positive areas, indicating the fibroblast-like nature of the cells, rather than their being smooth muscle-like. Connexin43 immunoreactivity appeared along the smooth muscle cell surface in the outer circular layer of the small intestine of both animals. Connexin 40 immunoreactivity was not observed in the muscle layer other than in the wall of large blood vessels. It is suggested that connexin45-expressing cells along the deep muscular plexus of dog and rat small intestine are likely to act as a constituent of a pacemaker system, which may include a conductive system, by forming a cellular network operating via specific types of gap junctions.  相似文献   

8.
Summary Prostaglandins and inhibitors of prostaglandin synthesis have striking regulatory effects on intestinal muscularis externa. We suggested earlier that a population of macrophage-like cells, located between the external muscle layers might release prostaglandins with a local effect on enveloping interstitial cells of Cajal, postulated pacemaker cells of the gut.To determine cellular production site(s) of prostaglandin we applied monoclonal antibodies against prostaglandin H synthase combined with the PAP technique to sections of rabbit and guinea-pig small intestine and kidney. In rabbit small intestine muscle cells in the circular muscle layer and in the muscularis mucosae were positive, longitudinal muscle negative. Vascular endothelial cells and serosal mesothelial cells were stained. In guinea-pig all muscle layers were unstained but endothelial and mesothelial cells were stained together with unidentified cells in the outermost submucosa. In rabbit kidney, positive staining of collecting ducts, interstitial cells, the parietal layer of Bowman's capsule and arterial endothelial cells was present. Furthermore, we found prostaglandin synthase antigenicity in the epithelial cells lining the loop of Henle, not described before. In guinea-pig medullary collecting ducts were stained and the papilla was lined by stained epithelial cells.The results show a species variation in the distribution of recognizable levels of prostaglandin H synthase. The impressive reaction in the mesothelium must be considered, when enzyme distribution is examined biochemically with fractionated tissue. Our findings do not support our hypothesis that macrophage-like cells are more potent sources of prostaglandins than smooth muscle cells.  相似文献   

9.
Prostaglandins and inhibitors of prostaglandin synthesis have striking regulatory effects on intestinal muscularis externa. We suggested earlier that a population of macrophage-like cells, located between the external muscle layers might release prostaglandins with a local effect on enveloping interstitial cells of Cajal, postulated pacemaker cells of the gut. To determine cellular production site(s) of prostaglandin we applied monoclonal antibodies against prostaglandin H synthase combined with the PAP technique to sections of rabbit and guinea-pig small intestine and kidney. In rabbit small intestine muscle cells in the circular muscle layer and in the muscularis mucosae were positive, longitudinal muscle negative. Vascular endothelial cells and serosal mesothelial cells were stained. In guinea-pig all muscle layers were unstained but endothelial and mesothelial cells were stained together with unidentified cells in the outermost submucosa. In rabbit kidney, positive staining of collecting ducts, interstitial cells, the parietal layer of Bowman's capsule and arterial endothelial cells was present. Furthermore, we found prostaglandin synthase antigenicity in the epithelial cells lining the loop of Henle, not described before. In guinea-pig medullary collecting ducts were stained and the papilla was lined by stained epithelial cells. The results show a species variation in the distribution of recognizable levels of prostaglandin H synthase. The impressive reaction in the mesothelium must be considered, when enzyme distribution is examined biochemically with fractionated tissue. Our findings do not support our hypothesis that macrophage-like cells are more potent sources of prostaglandins than smooth muscle cells.  相似文献   

10.
The time course and pattern of incorporation of rhodamine-labeled actin microinjected into cultured fibroblastic cells were examined by fluorescence microscopy. Following microinjection, the fluorescent probe was incorporated rapidly into ruffling membranes, and within 5 min faintly fluorescent stress fibers were observed. Levels of fluorescence in ruffling membranes then tended to remain constant while fluorescence of the stress fibers continued to increase until approximately 20-min postinjection. Small, discrete regions of some microinjected cells displayed high levels of fluorescence that appeared initially approximately 5-10 min postinjection. I observed these small areas of intense fluorescence frequently near the cell periphery, which corresponded to focal contacts when examined with interference reflection optics. The results of this study show that a relationship exists between patterns of fluorescent actin incorporation in these cells and cellular areas or structures presumed to play a role in cell movement. These findings suggest that actin within stress fibers and the microfilament network of ruffling membranes undergoes a rapid turnover that may relate directly to the motility of the cell.  相似文献   

11.
12.
Possible translocation of actin and alpha-actinin along stress fibers   总被引:1,自引:0,他引:1  
We have employed fluorescent analogue cytochemistry and fluorescence photobleaching to study the mobility of actin and alpha-actin along stress fibers. Rhodamine-labeled actin or alpha-actinin microinjected into embryonic chick cardiac fibroblasts soon became incorporated into stress fibers. A pulse of a laser microbeam was used to photobleach small spots on the fluorescent stress fibers. Images of the bleached fiber were recorded with an intensified image processing system at 2-3 min intervals. The distance between the bleached spot and the terminus of the stress fiber, which remained stationary throughout the experiment, was then measured in the successive images. Movement of bleached spots was detected along stress fibers located in the apparently trailing processes of polygonal fibroblasts, and only occurred in one direction: away from the distal tip of the stress fiber. The rate of movement calculated for alpha-actinin-injected cells was 0.24 +/- 0.12 micron/min, for actin-injected cells, 0.29 +/- 0.11 micron/min. The rate did not seem to be affected by the location of the spot relative to the distal end of the stress fiber unless the spot was located within the most distal 5 microns of the stress fiber. Anti-myosin antibody staining indicated that stress fibers which demonstrated translocation were relatively depleted of myosin. The apparent translocation of proteins along stress fibers, possibly generated by stretching, may be related to the retraction of cell processes during locomotion.  相似文献   

13.
The localization of prostaglandin (PG) endoperoxide synthase in bovine intestine was examined immunocytochemically with polyclonal antibody raised against PG endoperoxide synthase purified from bovine seminal glands. The most intense positive staining reaction for the enzyme was present in mast cells. Mast cells were found to be widely distributed in the intestinal wall, and were particularly numerous in the lamina propria. Most of the mast cells in the lamina propria of the intestinal villi were elongated and oriented with their long axis parallel to the plane of the absorptive epithelium. In whole mount preparations of jejunal villi, mast cells were seen to form a two-dimensional network in the lamina propria. In addition to mast cells, smooth muscle cells of the inner circular muscle layer and muscularis mucosae, nerve cells and fibers, endothelial cells of arterioles, and serosal epithelial cells also showed faint to moderate staining for the enzyme. These results suggested that mast cells are the major source of PGs in the bovine intestinal wall. The characteristic arrangement of mast cells in the intestinal villi may be related to their functions in this portion of the bovine intestine.  相似文献   

14.
Using morphological techniques, histological changes of the mesentery were observed during the development of the bullfrog, Rana catesbeiana. The tadpoles of this species had many openings all over the mesentery from the duodenum through the large intestine. Most of the openings were elliptical and less than 3 × 2 mm in size. The openings became remarkably decreased in size and number with rapid narrowing of the mesentery occurring during the period of metamorphic climax, and had almost completely disappeared by the end of metamorphosis. Appearance and disappearance of the openings were closely correlated with the changes in the dimensions of the mesentery. Furthermore, in parallel with these changes in the openings, a noticeable alteration occurred in the shape of the mesothelial cells of the mesentery. In tadpoles having no mesenteric openings, the mesothelial cells had a polygonal contour, which became transformed once the openings were formed in the mesentery. The shapes of the transformed cells were classified into two types, one having many radiating cell processes and the other a very slender and spindle-shaped contour. Both types of cells eventually became transformed into a definitive type of cell exhibiting a roundish polygonal contour by the end of metamorphosis. From these findings it was concluded that the growing mesentery might, of necessity, give rise to the openings and transformation of the mesothelial cells to enable rapid lengthening and shortining of the intestinal tract to occur during the postembryonic development of anuran amphibians.  相似文献   

15.
16.
The distribution of contractile forces generated in cytoskeletal stress fibers (SFs) contributes to cellular dynamic functions such as migration and mechanotransduction. Here we describe a novel (to our knowledge) method for measuring local tensions in SFs based on the following procedure: 1), known forces of different magnitudes are applied to an SF in the direction perpendicular to its longitudinal axis; 2), force balance equations are used to calculate the resulting tensions in the SF from changes in the SF angle; and 3), the relationship between tension and applied force thus established is extrapolated to an applied force of zero to determine the preexisting tension in the SF. In this study, we measured tensions in SFs by attaching magnetic particles to them and applying known forces with an electromagnetic needle. Fluorescence microscopy was used to capture images of SFs fluorescently labeled with myosin II antibodies, and analysis of these images allowed the tension in the SFs to be measured. The average tension measured in this study was comparable to previous reports, which indicates that this method may become a powerful tool for elucidating the mechanisms by which cytoskeletal tensions affect cellular functions.  相似文献   

17.
Rapidly proliferating epithelial crypt cells of the small intestine are susceptible to radiation-induced oxidative stress, yet there is a dearth of data linking this stress to expression of antioxidant enzymes and to alterations in intestinal nutrient absorption. We previously showed that 5-14 days after acute γ-irradiation, intestinal sugar absorption decreased without change in antioxidant enzyme expression. In the present study, we measured antioxidant mRNA and protein expression in mouse intestines taken at early times postirradiation. Observed changes in antioxidant expression are characterized by a rapid decrease within 1h postirradiation, followed by dramatic upregulation within 4h and then downregulation a few days later. The cell type and location expressing the greatest changes in levels of the oxidative stress marker 4HNE and of antioxidant enzymes are, respectively, epithelial cells responsible for nutrient absorption and the crypt region comprising mainly undifferentiated cells. Consumption of a cocktail of antioxidant vitamins A, C, and E, before irradiation, prevents reductions in transport of intestinal sugars, amino acids, bile acids, and peptides. Ingestion of antioxidants may blunt radiation-induced decreases in nutrient transport, perhaps by reducing acute oxidative stress in crypt cells, thereby allowing the small intestine to retain its absorptive function when those cells migrate to the villus days after the insult.  相似文献   

18.
Stiffness responses of fibroblasts were measured by scanning probe microscopy, following elongation or compression by deformation of an elastic substrate by 8%. The cellular stiffness, reflecting intracellular tension acting along stress fibers, decreased or increased instantly in response to the elongating or compressing stimuli, respectively. After this rapid change, the fibroblasts gradually recovered to their initial stiffness during the following 2 h, and then stabilized. The cells did not show conspicuous changes in shape after the 8% deformation during the SPM measurements. Fluorescence examination for GFP-actin demonstrated that the structure of the stress fibers was not altered noticeably by this small degree of deformation. Treatment with Y-27632, to inhibit myosin phosphorylation and abrogate cellular contractility, eliminated the change in stiffness after the mechanical elongation. These results indicate that fibroblasts possess a mechanism that regulates intracellular tension along stress fibers to maintain the cellular stiffness in a constant equilibrium state.  相似文献   

19.
In 28 mature rats, ultrastructure of the diaphragmal lymphatic capillaries and mesothelial tegmen was studied. Interrelation of their cellular elements and possible ways of metabolic absorbtion from the abdomen were clarified. The diaphragmal lymphatic capillaries were demonstrated to situate under mesothelial cells and they are separated by a thin layer of longitudial collagenic fibers. As cross section of the lymphatic capillary demonstrates, the capillary wall consists of 3--6 endothelial cells with a set of organelles, among which are: mitochondria, Golgi's complex, some pinocytotic vesicles.  相似文献   

20.
Caco-2 cells usually require 21 days of culture for developing sufficient differentiation in traditional two-dimensional Transwell culture, deviating far away from the quick differentiation of enterocytes in vivo. The recently proposed three-dimensional cultures of Caco-2 cells, though imitating the villi/crypt-like microstructure of intestinal epithelium, showed no effect on accelerating the differentiation of Caco-2 cells. In this study, a novel culture of Caco-2 cells on hollow fiber bioreactor was applied to morphologically mimic the human small intestine lumen for accelerating the expression of intestine functions. The porous hollow fibers of polyethersulfone (PES), a suitable membrane material for Caco-2 cell culture, successfully promoted cells to form confluent monolayer on the inner surface. The differentiated functions of Caco-2 cells, represented by alkaline phosphatase, γ-glutamyltransferase, and P-glycoprotein activity, were greatly higher in a 10-day hollow fiber culture than in a 21-day Transwell culture. Moreover, the Caco-2 cells on PES hollow fibers expressed higher F-actin and zonula occludens-1 protein than those on Transwell culture, indicative of an increased mechanical stress in Caco-2 cells on PES hollow fibers. The accelerated differentiation of Caco-2 cells on PES hollow fibers was unassociated with membrane chemical composition and surface roughness, but could be stimulated by hollow fiber configuration, since PES flat membranes with either rough or smooth surface failed to enhance the differentiation of Caco-2. Therefore, the accelerated expression of Caco-2 cell function on hollow fiber culture might show great values in simulation of the tissue microenvironment in vivo and guide the construction of intestinal tissue engineering apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号