首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
In order to overcome a significant stiffening artefact associated with current finite element (FE) models for the mechanics of embryonic epithelia, two new FE formulations were developed. Cell–cell interfacial tensions γ are represented by constant-force rod elements as in previous models. However, the viscosity of the cytoplasm with its embedded organelles and filament networks is modeled using viscous triangular elements, it is modeled using either radial and circumferential dashpots or an orthogonal dashpot system rather than the viscous triangular elements typical of previous two-dimensional FE models. The models are tested against tissue (epithelium) stretching because it gives rise to significant changes in cell shape and against cell sorting because it involves high rates of cell rearrangement. The orthogonal dashpot system is found to capture cell size and shape effects well, give the model cells characteristics that are consistent with those of real cells, provide high computational efficiency and hold promise for future three-dimensional analyses.  相似文献   

2.
Barlow  P. W.; Luck  H. B.; Luck  J. 《Annals of botany》2001,88(6):1141-1152
A map-L-system is described which simulates the developmentof the two-dimensional patterns of cell walls displayed at thesurfaces of shoot apices of Psilotum nudum. The simulation ofthese cellular patterns commences with the division of a triangularcell and continues until a complete set of ten different cells,including new triangular cells, is formed amongst the descendantsof each merophyte. The triangular cells generated by means ofthis division pathway, P1, are, in their three-dimensional aspect,four-sided apical cells. In the plant, they have the potentialityto support the development of a shoot apex. The generation ofnew triangular cells by pathway P1 therefore seems to be a preconditionfor the branching of the shoot. Observed variations upon thecellular pattern developed by pathway P1 have also been analysed.Two of these variant pathways, P2 and P3, suggest the typesof controls which are required to bring about all three (P1–P3)patterns of cells. These controls may involve the participationof the plant cytoskeleton and may also require an influencefrom the apical cell itself. The triangular shoot apical cellsof Psilotum are autoreproductive cells: that is, at each division,one of the daughters is a new triangular cell, the other daughterhas some other shape. This example of triangular cell autoreproductionand self-maintenance and its relation to organogenesis is discussedin light of the views on reproduction and self-maintenance expressedby Agnes Arber (1950) in her book The natural philosophy ofplant form(Cambridge: Cambridge University Press). Copyright2001 Annals of Botany Company Agnes Arber, apical cell, cell division patterns, computer simulation, cytoskeleton, L-systems, Living Systems Theory, meristems, Psilotum, shoot apex, stem cell  相似文献   

3.
Representatives of the closely related genera, Interfilum and Klebsormidium, are characterized by unicells, dyads or packets in Interfilum and contrasting uniseriate filaments in Klebsormidium. According to the literature, these distinct thallus forms originate by different types of cell division, sporulation (cytogony) versus vegetative cell division (cytotomy), but investigations of their morphology and ultrastructure show a high degree of similarity. Cell walls of both genera are characterized by triangular spaces between cell walls of neighbouring cells and the parental wall or central space among the walls of a cell packet, exfoliations and projections of the parental wall and cap-like and H-like fragments of the cell wall. In both genera, each cell has its individual cell wall and it also has part of the common parental wall or its remnants. Therefore, vegetative cells of Interfilum and Klebsormidium probably divide by the same type of cell division (sporulation-like). Various strains representing different species of the two genera are characterized by differences in cell wall ultrastructure, particularly the level of preservation, rupture or gelatinization of the parental wall surrounding the daughter cells. The differing morphologies of representatives of various lineages result from features of the parental wall during cell separation and detachment. Cell division in three planes (usual in Interfilum and a rare event in Klebsormidium) takes place in spherical or short cylindrical cells, with the chloroplast positioned perpendicularly or obliquely to the filament (dyad) axis. The morphological differences are mainly a consequence of differing fates of the parental wall after cell division and detachment. The development of different morphologies within the two genera mostly depends on characters such as the shape of cells, texture of cell walls, mechanical interactions between cells and the influence of environmental conditions.  相似文献   

4.
BACKGROUND: Cell Theory, also known as cell doctrine, states that all eukaryotic organisms are composed of cells, and that cells are the smallest independent units of life. This Cell Theory has been influential in shaping the biological sciences ever since, in 1838/1839, the botanist Matthias Schleiden and the zoologist Theodore Schwann stated the principle that cells represent the elements from which all plant and animal tissues are constructed. Some 20 years later, in a famous aphorism Omnis cellula e cellula, Rudolf Virchow annunciated that all cells arise only from pre-existing cells. General acceptance of Cell Theory was finally possible only when the cellular nature of brain tissues was confirmed at the end of the 20th century. Cell Theory then rapidly turned into a more dogmatic cell doctrine, and in this form survives up to the present day. In its current version, however, the generalized Cell Theory developed for both animals and plants is unable to accommodate the supracellular nature of higher plants, which is founded upon a super-symplasm of interconnected cells into which is woven apoplasm, symplasm and super-apoplasm. Furthermore, there are numerous examples of multinucleate coenocytes and syncytia found throughout the eukaryote superkingdom posing serious problems for the current version of Cell Theory. SCOPE: To cope with these problems, we here review data which conform to the original proposal of Daniel Mazia that the eukaryotic cell is composed of an elemental Cell Body whose structure is smaller than the cell and which is endowed with all the basic attributes of a living entity. A complement to the Cell Body is the Cell Periphery Apparatus, which consists of the plasma membrane associated with other periphery structures. Importantly, boundary structures of the Cell Periphery Apparatus, although capable of some self-assembly, are largely produced and maintained by Cell Body activities and can be produced from it de novo. These boundary structures serve not only as mechanical support for the Cell Bodies but they also protect them from the hostile external environment and from inappropriate interactions with adjacent Cell Bodies within the organism. CONCLUSIONS: From the evolutionary perspective, Cell Bodies of eukaryotes are proposed to represent vestiges of hypothetical, tubulin-based 'guest' proto-cells. After penetrating the equally hypothetical actin-based 'host' proto-cells, tubulin-based 'guests' became specialized for transcribing, storing and partitioning DNA molecules via the organization of microtubules. The Cell Periphery Apparatus, on the other hand, represents vestiges of the actin-based 'host' proto-cells which have become specialized for Cell Body protection, shape control, motility and for actin-mediated signalling across the plasma membrane.  相似文献   

5.
We quantitatively examined the possible damage to the growth and cell division ability of Escherichia coli caused by 1064-nm optical trapping. Using the synchronous behavior of two sister E. coli cells, the growth and interdivision times between those two cells, one of which was trapped by optical tweezers, the other was not irradiated, were compared using an on-chip single cell cultivation system. Cell growth stopped during the optical trapping period, even with the smallest irradiated power on the trapped cells. Moreover, the damage to the cell's growth and interdivision period was proportional to the total irradiated energy (work) on the cell, i.e., irradiation time multiplied by irradiation power. The division ability was more easily affected by a smaller energy, 0.36 J, which was 30% smaller than the energy that adversely affected growth, 0.54 J. The results indicate that the damage caused by optical trapping can be estimated from the total energy applied to cells, and furthermore, that the use of optical trapping for manipulating cells might cause damage to cell division and growth mechanisms, even at wavelengths under 1064 nm, if the total irradiation energy is excessive.  相似文献   

6.
Bacillus subtilis strain Marburg was grown exponentially with a doubling time of 65 min. To follow the time course of various cell cycle events, cells were collected by agar filtration and were then classified according to length. The DNA replication cycle was determined by a quantitative analysis of radioautograms of tritiated thymidine pulse labeled cells. The DNA replication period was found to be 45 min. This period is preceded and followed by periods without DNA synthesis of about 10 min.The morphology and segregation of nucleoplasmic bodies was studied in thin sections. B. subtilis contains two sets of genomes. DNA replication and DNA segregation seem to go hand in hand and DNA segregation is completed shortly after termination of DNA replication.Cell division and cell separation were investigated in whole mount preparations (agar filtration) and in thin sections. Cell division starts about 20 min after cell birth; cell separation starts at about 45 min and before completion of the septum.  相似文献   

7.
Cellular dimensions profoundly influence cellular physiology. For unicellular organisms, this has direct bearing on their ecology and evolution. The morphology of a cell is governed by scaling rules. As it grows, the ratio of its surface area to volume is expected to decrease. Similarly, if environmental conditions force proliferating cells to settle on different size optima, cells of the same type may exhibit size-dependent variation in cellular processes. In fungi, algae and plants where cells are surrounded by a rigid wall, division at smaller size often produces immediate changes in geometry, decreasing cell fitness. Here, we discuss how cells interpret their size, buffer against changes in shape and, if necessary, scale their polarity to maintain optimal shape at different cell volumes.  相似文献   

8.
K. Grossmann  E. W. Weiler  J. Jung 《Planta》1985,164(3):370-375
Cell division in cell suspension cultures can be completely blocked by the growth retardant tetcyclacis at a concentration of 10-4 mol l-1. In rice cells it has been demonstrated that the growth inhibition can be completely overcome by application of cholesterol independent of the duration of pretreatment with tetcyclacis. In suspension cultures of maize and soybean, too, the effect of tetcyclacis on cell division was neutralized by adding cholesterol. Other plant sterols, stigmasterol, campesterol and sitosterol were active in a decreasing order. Modifications in the cholesterol perhydro-cyclopentanophenanthrene-ring system indicate that the hydroxyl group at C-3 and the double bond between C-5 and C-6 in ring B are required for the activity. In contrast, gibberellic acid as well as ent-kaurenoic acid could not compensate retardant effects. Likewise, tetcyclasis did not change the level of gibberellins in rice cells as shown by radioimmunoassay. Thus, it is concluded that in cell suspension cultures sterols play a more important role in cell division than gibberellins.Abbreviation GAx gibberelin Ax  相似文献   

9.
When grown in a complex peptone-yeast extract culture medium, Seliberia stellata and related morphologically similar aquatic bacterial strains typically divided asymmetrically, giving rise to a motile swarmer and a longer sessile rod. Indirect immunoferritin labeling of these bacteria, followed by incubation during which cell growth occurred, has provided evidence that antigenic cell-surface components are synthesized de novo in a sharply demarcated zone at one pole of the growing parent cells. Cell elongation occurred unidirectionally from the pole showing the de novo surface synthesis; it was this end of the elongating, helically sculptured (i.e., screw-like) rod that became the daughter swarmer cell. The daughter swarmers, produced after polar growth and division of the immunoferritinlabeled parent cells, were not labeled. The immunoferritin label remaining on the parent cell did not appear to be diluted or disturbed by the cell growth and division process. Under the cultural conditions used in this study, the growth and division events which led to production of swarmer cells in the seliberia strains examined met two major criteria of accepted definitions of budding (de novo cell surface synthesis and transverse asymmetry of division). However, the developing daughter cell was not initially narrower than the parent and thus did not increase in cell diameter during growth.In memory: R. Y. Stanier  相似文献   

10.
Li Y  Austin S 《Plasmid》2002,48(3):174-178
The prophage of bacteriophage P1 is a low copy number plasmid in Escherichia coli and is segregated to daughter cells by an active partition system. The dynamics of the partition process have now been successfully followed by time-lapse photomicroscopy. The process appears to be fundamentally different from that previously inferred from statistical analysis of fixed cells. A focus containing several plasmid copies is captured at the cell center. Immediately before cell division, the copies eject bi-directionally along the long axis of the cell. Cell division traps one or more plasmid copies in each daughter cell. These copies are free to move, associate, and disassociate. Later, they are captured to the new cell center to re-start the cycle. Studies with mutants suggest that the ability to segregate accurately at a very late stage in the cell cycle is dependent on a novel ability of the plasmid to control cell division. Should segregation be delayed, cell division is also delayed until segregation is successfully completed.  相似文献   

11.
IL-21 is known to enhance immunoglobulin production using human in vitro models. Using either PBMC or purified tonsilar B cells both stimulated with anti-CD40, IL-4+/-IL-21, this enhancement was shown to correlate with increased cell division especially for IgE and to a lesser extent for IgM and total IgG. Cell division was monitored by CFSE staining and maximum cell division was found at low initial cell plating densities. A correlation between increased cell division and IL-10-mediated enhancement of IgE production was also seen; however, increased cell division plays a smaller role with IL-10 than IL-21. This is further emphasized in that when IL-10 and IL-21 were added together there was a further synergistic increase in IgE seen, but no accompanying further increase in cell division. The mouse system was also examined for IL-21 effects as a function of cell concentration, and as in humans, IL-21 added to murine cells increased IgE production over IL-4/CD40 stimulated cells at lower cell concentrations; however, IL-21 significantly reduced IgE at higher plated cell concentrations.  相似文献   

12.
Cell division proteins FtsZ (FtsA, ZipA, ZapA), FtsE/X, FtsK, FtsQ, FtsL/B, FtsW, PBP3, FtsN and AmiC localize at mid cell in Escherichia coli in an interdependent order as listed. To investigate whether this reflects a time dependent maturation of the divisome, the average cell age at which FtsZ, FtsQ, FtsW, PBP3 and FtsN arrive at their destination was determined by immuno- and GFP-fluorescence microscopy of steady state grown cells at a variety of growth rates. Consistently, a time delay of 14-21 min, depending on the growth rate, between Z-ring formation and the mid cell recruitment of proteins down stream of FtsK was found. We suggest a two-step model for bacterial division in which the Z-ring is involved in the switch from cylindrical to polar peptidoglycan synthesis, whereas the much later localizing cell division proteins are responsible for the modification of the envelope shape into that of two new poles.  相似文献   

13.
Summary Dissociated prospective ectoderm cells from Xenopus laevis embryos divide autonomously up to the 17th division cycle of the embryo. To examine the requirements for the further proliferation of these cells, the continuation of cell division in compact ectodermal explants beyond the 17th division cycle has been studied. Such explants develop into aggregates of epidermal cells, as can be shown immunohistochemically with an anti-serum against Xenopus epidermal cytokeratin. Cell division in these explants is comparable to the in vivo proliferation rate at least during the first 24 h of cultivation, that is, well beyond the 17th division cycle. Thus, epidermal cells are provided with all the factors necessary for continued proliferation, but these can be effective only when the cells form tight aggregates. The long-term changes in cell number are complex. Mitotic figures are present until the explants disintegrate after 3–4 days. However, the total cell number per explant does not increase during later development. The production of cells by mitotic divisions is likely to be countered by the loss of cells due to cell death, which is indicated by the presence of pyknotic nuclei.  相似文献   

14.
细胞药物是以不同细胞为基础的用于疾病治疗的制剂、药物或产品的统称,是继放疗、化疗之后又一种临床有效的治疗手段,可实施个性化治疗。细胞药物的种类很多,按其生物学特性可分为传统体细胞、免疫细胞以及各种不同的干细胞等。经体外操作过的细胞群,如肝细胞、胰岛细胞、软骨细胞、树突状细胞、细胞因子诱导的杀伤细胞、淋巴因子激活的杀伤细胞、体外加工的骨髓或造血干细胞和体外处理的肿瘤细胞(瘤苗)等。细胞药物已在一些难治性疾病中得到应用,包括血液系统疾病、心血管系统疾病、消化系统疾病、神经系统疾病、免疫系统疾病和抗衰老等。细胞治疗涉及的细胞种类很多,且不同细胞或不同治疗方法各有特点。运用不同的细胞药物来修复病变细胞,以重建受损的功能细胞和组织,恢复其生物学功能,为细胞丢失或损伤性疾病的防治提供了崭新的思路。  相似文献   

15.
One mechanism for achieving accurate placement of the cell division machinery is via Turing patterns, where nonlinear molecular interactions spontaneously produce spatiotemporal concentration gradients. The resulting patterns are dictated by cell shape. For example, the Min system of Escherichia coli shows spatiotemporal oscillation between cell poles, leaving a mid‐cell zone for division. The universality of pattern‐forming mechanisms in divisome placement is currently unclear. We examined the location of the division plane in two pleomorphic archaea, Haloferax volcanii and Haloarcula japonica, and showed that it correlates with the predictions of Turing patterning. Time‐lapse analysis of H. volcanii shows that divisome locations after successive rounds of division are dynamically determined by daughter cell shape. For H. volcanii, we show that the location of DNA does not influence division plane location, ruling out nucleoid occlusion. Triangular cells provide a stringent test for Turing patterning, where there is a bifurcation in division plane orientation. For the two archaea examined, most triangular cells divide as predicted by a Turing mechanism; however, in some cases multiple division planes are observed resulting in cells dividing into three viable progeny. Our results suggest that the division site placement is consistent with a Turing patterning system in these archaea.  相似文献   

16.
Summary Cell division during embryonic development of the brine shrimp,Artemia salina has been studied by counting nuclei and mitotic figures. No cell division was observed during development of the encysted gastrula until about an hour before emergence of the embryo (a pre-nauplius) from the cyst, and even then only a few mitotic figures were observed. Following emergence, and during further development up to the stage II nauplius larva an increase of about 25% in the number of cells occurs. However, when the newly hatched larva is exposed to FUdR (10 g/ml) cell division is largely inhibited, but observable development nevertheless proceeds normally. Evidently all processes involved with the development of the gastrula into a stage II nauplius larva can occur with far fewer cells than normally are present.  相似文献   

17.
ABSTRACT. Cell division in higher eukaryotes is mainly controlled by p34 cdc2 or related kinases and by other components of these kinase complexes. We present evidence that cdc2 -like kinases also occur in Paramecium. Two polypeptides reacted with an antibody directed against the perfectly conserved PSTAIR region found in cdc2 kinases in other eukaryotes. Only the less abundant peptide bound to p13 suc1 from Schizosaccharomyces pombe. Using centrifugal elutriation to select cells on the basis of size, we isolated highly synchronous Paramecium G1 cells. With this procedure, we demonstrated that the p13suc1-associated cdc2 -like histone H1 kinase was activated before cell division at the point of commitment to division in Paramecium. Further, we show that Paramecium cdc2 -like proteins occurred principally as monomers and that these monomers were active as histone H1 kinases in vitro.  相似文献   

18.
Stomatal development was studied in wild-type Arabidopsis leaves using light and electron microscopy. Development involves three successive types of stomatal precursor cells: meristemoid mother cells, meristemoids, and guard mother cells (GMCs). The first two types divide asymmetrically, whereas GMCs divide symmetrically. Analysis of cell wall patterns indicates that meristemoids can divide asymmetrically a variable number of times. Before meristemoid division, the nucleus and a preprophase band of microtubules become located on one side of the cell, and the vacuole on the other. Meristemoids are often triangular in shape and have evenly thickened walls. GMCs can be detected by their roughly oval shape, increased starch accumulation, and wall thickenings on opposite ends of the cells. Because these features are also found in developing stomata, stomatal differentiation begins in GMCs. The wall thickenings mark the division site in the GMC since they overlie a preprophase band of microtubules and occur where the cell plate fuses with the parent cell wall. Stomatal differentiation in Arabidopsis resembles that of other genera with kidney-shaped guard cells. This identification of stages in stomatal development in wild-type Arabidopsis provides a foundation for the analysis of relevant genes and of mutants defective in stomatal patterning, cell specification, and differentiation.  相似文献   

19.
Cell division must be tightly coupled to cell growth in order to maintain cell size, yet the mechanisms linking these two processes are unclear. It is known that almost all proteins involved in cell division shuttle between cytoplasm and nucleus during the cell cycle; however, the implications of this process for cell cycle dynamics and its coupling to cell growth remains to be elucidated. We developed mathematical models of the cell cycle which incorporate protein translocation between cytoplasm and nucleus. We show that protein translocation between cytoplasm and nucleus not only modulates temporal cell cycle dynamics, but also provides a natural mechanism coupling cell division to cell growth. This coupling is mediated by the effect of cytoplasmic-to-nuclear size ratio on the activation threshold of critical cell cycle proteins, leading to the size-sensing checkpoint (sizer) and the size-independent clock (timer) observed in many cell cycle experiments.  相似文献   

20.
Cell shape and cell division   总被引:1,自引:0,他引:1  
The correlation between cell shape elongation and the orientation of the division axis described by early cell biologists is still used as a paradigm in developmental studies. However, analysis of early embryo development and tissue morphogenesis has highlighted the role of the spatial distribution of cortical cues able to guide spindle orientation. In vitro studies of cell division have revealed similar mechanisms. Recent data support the possibility that the orientation of cell division in mammalian cells is dominated by cell adhesion and the associated traction forces developed in interphase. Cell shape is a manifestation of these adhesive and tensional patterns. These patterns control the spatial distribution of cortical signals and thereby guide spindle orientation and daughter cell positioning. From these data, cell division appears to be a continuous transformation ensuring the maintenance of tissue mechanical integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号