首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Repetitive DNA sequences are useful molecular markers for studying plant genome evolution and species diversity. The authors report the isolation and characterization of repetitive DNA sequences (pOs139) from Oryza sativa cuhivars "Zhaiyeqing". By Southern blot analysis, the authors discovered that pOs139 sequences were organized not only tandemly, but also highly specifc for the AA genome of Oryza genus. Sequence analysis revealed that the clone pOs139 contains a 355 bp repetitive unit. The genomic DNA of 29 Chinese common wild accessions, and 43 cultivated rice accessions, were analyzed by Southern blot with pOs139 as a probe. The results illustrated that there was significant difference in hybridization patterns between japonica and indica subspecies. Hybridization bands of indica subspecies were much more than those of japonica, and the Chinese common wild rice was similar to indica in hybridization patterns. The copy number estimated by dot blot hybridization analysis indicated that a considerable degree of variation existed among different accessions of O. sativa and the Chinese common wild rice. It is interesting to note that japonica subspecies contains relatively low copy numbers of pOs139-related repetitive DNA sequences, while the indica and Chinese common wild rice contain relatively high copy numbers.  相似文献   

2.
Genome-specific repetitive sequences in the genus Oryza   总被引:1,自引:0,他引:1  
Summary Repetitive DNA sequences are useful molecular markers for studying plant genome evolution and species divergence. In this paper, we report the isolation and characterization of four genome-type specific repetitive DNA sequences in the genus Oryza. Sequences specific to the AA, CC, EE or FF genome types are described. These genome-type specific repetitive sequences will be useful in classifying unknown species of wild or domestic rice, and in studying genome evolution at the molecular level. Using an AA genome-specific repetitive DNA sequence (pOs48) as a hybridization probe, considerable differences in its copy number were found among different varieties of Asian-cultivated rice (O. sativa) and other related species within the AA genome type. Thus, the relationship among some of the members of AA genome type can be deduced based on the degree of DNA sequence similarity of this repetitive sequence.  相似文献   

3.
4.
A survey of minisatellites (MSs) in 5.3 Mb of randomly selected rice DNA sequences from public databases was carried out to clarify the role of transposable elements (TEs) in the dispersal of MSs in the rice genome. The estimated frequency of MSs in this sample was one per 23.4 kb, and this frequency is approximately equivalent to that of Class I microsatellites in the rice genome. Of the MSs in the 5.3-Mb sequence sample, 82% were found to be present in multiple copies in the rice genome, and all of these were a part of TE sequences. In this study at least 61 TE groups were identified as MS carriers. It was also shown that the GC-rich MS pOs6.2H, which was previously reported to be one of the interspersed MSs in the rice genome, is a component of an En / Spm -like element. These results indicate that the majority of MSs in the rice genome are maintained in TEs, and amplified and dispersed as components of the TEs. The G+C content of the multi-locus MS sequences reflected that of the TE sequences containing those MSs, but no obvious bias towards the high G+C content of DNA was observed. Single locus MSs also did not show any obvious bias towards the high G+C content of DNA in the rice genome. In this respect, the MSs in the rice genome are quite different from those in the human genome: in the latter, the majority of MSs show an obvious bias towards the high G+C content of DNA.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by M.-A. Grandbastien  相似文献   

5.
6.
Summary. A selection of cattle, human and sheep cDNA probes were screened against sheep genomic DNA, cut with 10 different restriction enzymes, to assess the usefulness of these probes for restriction fragment length polymorphism (RFLP) linkage studies in sheep. Two-thirds of the cattle cDNA probes showed moderate to strong homology with sheep DNA samples, compared with less than half of the human cDNA probes at the final washing stringency chosen for the experiments. The set of probes tested detected a useful frequency of RFLPs. Fifty-seven per cent of probes showing moderate to strong homology identified RFLPs with one or more restriction enzymes. Restriction enzymes that detected RFLPs most frequently in sheep were Taq I and Msp I. The results show that sheep and cattle cDNA probes, including candidate genes for production traits, identified a high frequency of RFLPs suitable for genetic mapping in sheep.  相似文献   

7.
A highly polymorphic repetitive sequence, D11S533, was isolated by oligonucleotide hybridization from an arrayed chromosome 11q-specific cosmid library. The DNA sequence of this element was determined and found to consist of a repetitive degenerate hexanucleotide sequence [T(Pu)T(Pu)T(Pu)]n extending over 438 bp. Southern blot analysis demonstrated that this element is relatively unique in the human genome. This sequence can be detected by amplification using the polymerase chain reaction (PCR) with oligonucleotide primers complementary to unique sequences flanking the repetitive element. This sequence displays a high degree of polymorphism, and analysis of 15 individuals demonstrated at least 10 alleles ranging in size from 300 to 900 bp. Fluorescence in situ hybridization was used to localize this sequence to 11q13 (FLpter 0.60 +/- 0.02). Pulsed-field gel electrophoresis and the isolation of yeast artificial chromosomes established the long-range physical map surrounding the locus. Because various alleles of this polymorphic sequence can be easily detected by PCR amplification, this probe has potential usefulness in genetic linkage mapping as well as identity testing.  相似文献   

8.
The discovery of RFLPs and their utilization as genetic markers has revolutionized research in human molecular genetics. However, only a fraction of the DNA sequence polymorphisms in the human genome affect the length of a restriction fragment and hence result in an RFLP. Polymorphisms that are not detected as RFLPs are typically passed over in the screening process though they represent a potentially important source of informative genetic markers. We have used a rapid method for the detection of naturally occurring DNA sequence variations that is based on enzymatic amplification and direct sequencing of genomic DNA. This approach can detect essentially all useful sequence variations within the region screened. We demonstrate the feasibility of the technique by applying it to the human retinoblastoma susceptibility locus. We screened 3,712 bp of genomic DNA from each of nine individuals and found four DNA sequence polymorphisms. At least one of these DNA sequence polymorphisms was informative in each of three families with hereditary retinoblastoma that were not informative with any of the known RFLPs at this locus. We believe that direct sequencing is a reasonable alternative to other methods of screening for DNA sequence polymorphisms and that it represents a step forward for obtaining informative markers at well-characterized loci that have been minimally informative in the past.  相似文献   

9.
High molecular weight DNA from pleroceroid larvae of the tapeworm Spirometra mansonoides was purified from isolated nuclei by conventional techniques. The DNA so isolated has a melting temperature (Tm) of 87 degrees C and a guanine plus cytosine (G/C) content of 44%. 5-Methyl cytosine could not be detected in plerocercoid DNA by HPLC analysis of DNA hydrolysates, by radiolabeling 5'-termini of MspI digests with polynucleotide kinase, or by comparing restriction patterns generated by MspI and HpaII. Renaturation kinetics demonstrated that the genome of S. mansonoides contains repetitive as well as single copy sequences and has a genome size estimated at approx. 1.6 X 10(9) bp. Hybridization was carried out between plerocercoid DNA and cDNAs for human beta-actin, alpha-tubulin and growth hormone (hGH). Rationale for this analysis was based on known homologies among actin and tubulin genes in numerous species and on apparent similarities between hGH and a plerocercoid growth factor that may be reflected in similar DNA sequence. Scanning densitometry of dot blots demonstrated that the hGH probe annealed to the same extent at low stringency (1 M NaCl, 55 degrees C) to DNA from plerocercoids, rat liver and chicken erythrocytes; but this interaction was less than to DNA from human lymphocytes, calf thymus and mouse skin. Similar results were obtained when restriction endonuclease digests of these DNAs were analyzed by Southern transfer. Little or no hybridization of the growth hormone probe to plerocercoid DNA was evident at higher stringency (1 M NaCl, 65 degrees C). In contrast, human tubulin and actin probes showed extensive hybridization to pleroceroid restriction fragments under the high stringency conditions.  相似文献   

10.
以来源于C基因组的药用野生稻的中高度重复序列C0t-1DNA为探针,在不同的洗脱严谨度下,通过荧光原位杂交对宽叶野生稻(CCDD)基因组进行了分析。结果发现,随着洗脱严谨度的调整,杂交信号呈现出较高的特异性,主要分布在着丝粒、近着丝粒及端粒区域。本文以宽叶野生稻的核型分析为基础,比较其与二倍体药用野生稻基因组的异同,从而进一步探讨野生稻的进化起源机制。  相似文献   

11.
影响籼粳稻DNA限制性片段长度多态性检测的因素分析   总被引:1,自引:0,他引:1  
对窄叶青(籼稻)和京系17(梗稻)的RFLP进行了系统分析。结果表明,某种酶多态性检测能力与同时检测到此多态性的其余酶的数目之间存在极显著的正相关(r=0.962**)。由此推论,籼粳稻大部分RFLP可能来自大范围DNA的结构变化而不是碱基取代。cDNA克隆虽然具有高度的保守性,但却具有比基因组克隆更高的多态性检测能力。在实验使用的探针范围内,探针长度和检测到的多态性无相关性。由探针检测到的多态性位点均匀地散布在水稻的12对染色体上,这可能是这两个品种所属的亚种之间的遗传距离较大的原因。  相似文献   

12.
We cloned a repetitive sequence to show RFLPs in the genome of Magnaporthe grisea, a fungal pathogen responsible for rice blast. As the sequence was 0.8 kb in length and dispersed in the genome, it was named MGSR1 (for Magnaporthe grisea short repeat 1). MGSR1 was conserved highly in the genome of rice pathogens, but poorly in the genome of pathogens of grasses other than rice. And the RFLPs, displayed with the sequence, could distinguish between clonal lineages in rice-pathogenic isolates. The nucleotide sequence showed the presence of an internal promoter of RNA polymerase III, a 3?-poly(T), and an 8-bp direct repeat in it.  相似文献   

13.
We detected sequences related to the avian retrovirus Rous sarcoma virus within the genome of the Japanese quail, a species previously considered to be free of endogenous avian leukosis virus elements. Using low-stringency conditions of hybridization, we screened a quail genomic library for clones containing retrovirus-related information. Of five clones so selected, one, lambda Q48, contained sequence information related to the gag, pol, and env genes of Rous sarcoma virus arranged in a contiguous fashion and spanning a distance of approximately 5.8 kilobases. This organization is consistent with the presence of an endogenous retroviral element within the Japanese quail genome. Use of this element as a high-stringency probe on Southern blots of genomic digests of several quail DNA demonstrated hybridization to a series of high-molecular-weight bands. By slot hybridization to quail DNA with a cloned probe, it was deduced that there were approximately 300 copies per diploid cell. In addition, the quail element also hybridized at low stringency to the DNA of the White Leghorn chicken and at high stringency to the DNAs of several species of jungle fowl and both true and ruffed pheasants. Limited nucleotide sequencing analysis of lambda Q48 revealed homologies of 65, 52, and 46% compared with the sequence of Rous sarcoma virus strain Prague C for the endonuclease domain of pol, the pol-env junction, and the 3'-terminal region of env, respectively. Comparisons at the amino acid level were also significant, thus confirming the retrovirus relatedness of the cloned quail element.  相似文献   

14.
Rat genome was assayed for the presence of hsp70 gene-related sequences. Southern blots prepared from rat DNA digested with EcoRI or HindIII restriction endonucleases were hybridized with mouse, human and fruit fly hsp 70 gene probes at increasing stringencies. At the stringency which allows sequences divergent up to about 30% to form stable complexes all three probes detected 25–30 restriction fragments. Increased stringency of the hybridization reduced the number of detectable bands to a few and among them the DNA fragments hybridizing specifically either with mouse or human hsp70 gene probes were detected. Most of the genomic fragments containing hsp70 gene-related sequences were subsequently isolated by screening the rat genomic library with mouse hsp70 gene probe. 168 positive clones were plaque purified and on the basis of the restriction and hybridization pattern we deduced that inserts represented 20 different genomic regions. Partial restriction maps of all isolated genomic fragments were constructed and regions containing hsp70 gene related as well as highly repetitive DNA sequences were localized. A putative sequence rearrangement in the proximity of the hsp70 gene-related sequence was detected in one of the isolated genomic segments.  相似文献   

15.
Cytosolic triosephosphate isomerase is a single gene in rice.   总被引:7,自引:3,他引:4       下载免费PDF全文
Y Xu  T C Hall 《Plant physiology》1993,101(2):683-687
A cDNA clone encoding rice (Oryza sativa L.) cytosolic triosephosphate isomerase (TPI), an important glycolytic enzyme, was isolated and characterized. The clone (pRTPI-6) contains an open reading frame of 759 base pairs, encoding a polypeptide chain of 253 amino acid residues (M(r) 27,060). The identity of this clone was defined by its high homology (85% nucleotide sequence and 89% amino acid sequence identical match) with a maize mRNA sequence encoding the cytosolic TPI and with TPIs from other species. Genomic DNA blot analysis using the cDNA as a probe showed that the cytosolic TPI gene is present as a single copy per haploid rice genome, as opposed to that found in maize, in which multiple TPI gene copies exist. A single TPI mRNA species of about 1100 nucleotides was detected by gel blot hybridization analysis of RNA isolated from root, culm, and leaf tissues, indicating that its expression is ubiquitous. Based on sequence comparison and molecular analysis, we propose that the chloroplast-located TPI may be encoded by divergent structural nuclear genes in rice.  相似文献   

16.
Rice molecular genetic map using RFLPs and its applications   总被引:3,自引:0,他引:3  
In the past decade, notable progress has been made in rice molecular genetic mapping using genomic or cDNA clones. A total of over 3000 DNA markers, mainly with RFLPs, have been mapped on the rice genome. In addition, many studies related to tagging of genes of interest, gene isolation by map-based cloning and comparative mapping between cereal genomes have advanced along with the development of a high-density molecular genetic map. Thus rice is considered a pivotal plant among cereal crops and, in addition to Arabidopsis, is a model plant in genome analysis. In this article, the current status of the construction of rice molecular genetic maps and their applications are reviewed.  相似文献   

17.
用DNA 复性动力学方法克隆到一个水稻中度重复顺序。Southern 杂交、限制性内切酶分析及序列分析资料表明,该重复顺序在水稻基因组中具有串联重复和散布状态两种存在方式。以该DNA 片段作探针,用Southern 杂交方法分析了多种野生稻种和栽培稻品种的基因组分化特征。某些限制性内切酶消化过的水稻DNA,其图谱呈现出多达40 条以上的杂交带,包括强杂交带和弱杂交带两种类型。重复实验结果证明,强杂交带表现为BBCC染色体组型特异而弱带则在栽培稻各品种间显示出丰富的多态性,表明该重复顺序片段在水稻理论研究和育种实践中可能具有重要意义  相似文献   

18.
The principal sources of genetic variation that can be assayed with restriction enzymes are base substitutions and insertions/deletions (indels). The likelihood of detecting indels as restriction fragment length polymorphisms (RFLPs) is determined by the size and frequency of the indels, and the ability to resolve small indels as RFLPs is limited by the distribution of restriction fragment sizes. In this study, we use aligned sequences from the indica and japonica subspecies of rice ( Oryza sativa L.) to quantify and compare the ability of restriction enzymes to detect indels. We look specifically at two abundant transposable element-derived indel sources: miniature inverted repeat transposable elements (MITEs) and long terminal repeat (LTR) retroelements. From this analysis we conclude that indels rather than base substitutions are the prevailing source of the polymorphism detected in rice. We show that, although MITE derived indels are more abundant than LTR-retroelement derived indels, LTR-retroelements have a greater capacity to generate visible restriction fragment length polymorphism because of their larger size. We find that the variation in the detectability of indels among restriction enzymes can be explained by differences in the frequency and dispersion of their restriction sites in the genome. The parameters that describe the fragment size distributions obtained with the restriction enzymes are highly correlated across the sequenced genomes of rice, Arabidopsis and human, with the exception of some extreme deviations in frequency for particular recognition sequences corresponding to variations in the levels and modes of DNA methylation in the three disparate organisms. Thus, we can predict the relative ability of a restriction enzyme to detect indels derived from a specific source based on the distribution of restriction fragment sizes, even when this is estimated for a distantly related genome.Electronic Supplementary Material Supplementary Material is available in the online version of this article at Communicated by M.-A. Grandbastien  相似文献   

19.
Wild species of rice with many valuable agronomic traits are an important genetic resource for improving cultivated rice by wide hybridization. Genome- or chromosome-specific markers are useful for monitoring genome introgression and for identifying genome components. From 47 random amplified polymorphic DNAs (RAPDs) of nine Oryza species, three bands (Ogla225, Opun225, and Opun246) were found to be genome specific with distinct sizes. Their specificities were further characterized by Southern hybridization, sequence analysis, and fluorescent in situ hybridization (FISH). Ogla225 is specifically amplified from the AA genome but homologous sequences were conserved among Oryza species. Opun225 occurs at a low copy number although is specifically amplified from Oryza punctata. There are estimated 2000-3300 repeats of Opun246 in each haploid genome of Oryza species with the BB or BBCC genome. Clusters of Opun246 repeats were detected at heterochromatic regions on almost all chromosomes of the BB genomes by FISH. Opun246 may be a useful marker for monitoring the introgression of BB genome or for identifying the conserved components of BB genome in genetic resource. The results from this study and our previous study both indicate that numerous unique repeats play role in the differentiation of the BB genome from other Oryza genomes.  相似文献   

20.
A genetic linkage map has been constructed for meadow fescue (Festuca pratensis Huds.) (2n=2x=14) using a full-sib family of a cross between a genotype from a Norwegian population (HF2) and a genotype from a Yugoslavian cultivar (B14). The two-way pseudo-testcross procedure has been used to develop separate maps for each parent, as well as a combined map. A total number of 550 loci have been mapped using homologous and heterologous RFLPs, AFLPs, isozymes and SSRs. The combined map consists of 466 markers, has a total length of 658.8 cM with an average marker density of 1.4 cM/marker. A high degree of orthology and colinearity was observed between meadow fescue and the Triticeae genome(s) for all linkage groups, and the individual linkage groups were designated 1F–7F in accordance with the orthologous Triticeae chromosomes. As expected, the meadow fescue linkage groups were highly orthologous and co-linear with Lolium, and with oat, maize and sorghum, generally in the same manner as the Triticeae chromosomes. It was shown that the evolutionary 4AL/5AL translocation, which characterises some of the Triticeae species, is not present in the meadow fescue genome. A putative insertion of a segment orthologous to Triticeae 2 at the top of 6F, similar to the rearrangement found in the wheat B and the rye R genome, was also observed. In addition, chromosome 4F is completely orthologous to rice chromosome 3 in contrast to the Triticeae where this rice chromosome is distributed over homoeologous group 4 and 5 chromosomes. The meadow fescue genome thus has a more ancestral configuration than any of the Triticeae genomes. The extended meadow fescue map reported here provides the opportunity for beneficial cross-species transfer of genetic knowledge, particularly from the complete genome sequence of rice.Communicated by P. Langridge  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号