首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study was conducted to examine the effect of oxygen tension during in vitro culture (IVC) of porcine oocytes/embryos on their development and quality using two different culture systems. Porcine cumulus oocyte complexes (COCs) were matured (IVM) and fertilized (IVF) in vitro, and subsequently cultured for 6 days in a simple and economical portable incubator or a standard CO(2) incubator. While the same temperature (38.5 degrees C) and CO(2) concentration (5%) were used in the both systems, the portable incubator was operated in a negative air pressure (- 300 mmHg) to create an O(2) level at 8-10% (low O(2) concentration), or in a positive air pressure (high O(2) concentration). To compare the two culture systems, IVM and IVF of COCs and subsequent IVC of in vitro produced (IVP) embryos were carried out in the portable incubator with a low O(2) concentration (Group I) or in the standard incubator with a high O(2) concentration (Group II). To assess the effect of O(2) concentration on IVC of IVP embryos, some oocytes that had been cultured in the standard incubator for IVM and IVF were subsequently cultured in the portable incubator with a low O(2) concentration (Group III) or a high O(2) concentration (Group IV). The occurrence of DNA fragmentation in the blastocysts produced under different culture conditions was examined by TUNEL staining to assess embryo quality. The rates of oocytes that reached MII and were penetrated by spermatozoa following IVF did not differ between the two incubation systems. In contrast, the proportions of development to blastocysts and the mean cell number of blastocysts in Group I were higher than those in Group II and Group IV. The index of DNA-fragmented nucleus in the blastocysts of Group I was significantly lower than that in the blastocysts of Group II. Therefore, low oxygen tension during IVM, IVF and IVC enhanced the subsequent development of IVP embryos to the blastocyst stage and improved their quality.  相似文献   

2.
Chen N  Liow SL  Yip WY  Tan LG  Ng SC 《Theriogenology》2005,63(8):2300-2310
The need to transport oocytes and embryos between two laboratories have prompted us to evaluate the effects of in vitro maturation of immature mouse oocytes in a CO2-deficient dry heat portable incubator and subsequent in vitro development of these fertilized mouse oocytes in a standard CO2 incubator. In addition, the effects of cysteamine supplementation on maturation rate and embryonic development during in vitro maturation (IVM) and culture of embryos in the portable incubator were also investigated. Germinal vesicle stage mouse oocytes, recovered at 40-h post-FSH from 6- to 8-week-old C57BL/6xCBA F1 healthy female mice, were matured in vitro in a modified TCM-199 supplemented with or without 100 microM cysteamine in a standard incubator (5% CO2; 37 degrees C) or cultured in a CO2-deficient dry heat portable incubator for 5 h at 37 degrees C and thereafter transferred to a standard incubator for further culture. The addition of cysteamine in the IVM medium significantly improved maturation rates of the GV mouse oocytes to metaphase II stage. However, cysteamine supplementation in the culture medium did not significantly improve fertilization and blastocyst formation rates of IVM and ovulated oocytes, and in vivo-derived zygotes. Culture conditions in a CO2-deficient dry heat portable incubator did not adversely affect the developmental competence of in vivo-derived zygotes and in vitro matured mouse oocytes after IVF or parthenogenetic activation. Cysteamine supplement in the IVM medium could enhance nuclear maturation of these immature oocytes during shipment.  相似文献   

3.
The objective of this study was to develop a simple and portable CO2 incubator using effervescent granules (EG) and to examine the effect of negative and positive air pressure for in vitro maturation (IVM), fertilization (IVF) and culture (IVC) of bovine oocytes. In experiment 1, cumulus-oocyte complexes (COCs) were matured (22 h), fertilized (5 h) and cultured (7 days) using 0.25, 0.5 or 1.0 g of EG per 0.6 l added to maintain an optimum level of CO2 (approximately 3, 6 or 12%, respectively) for in vitro production of embryos. Control oocytes, zygotes and embryos were cultured in a standard CO2 incubator. The blastocyst production rates observed on Days 7 to 9 after insemination were 20.5+/-4.2%, 18.5+/-3.9% and 28.7+/-5.1% for the 0.25 g EG, 0.5 g EG treatments and control, respectively. These rates were significantly higher (P < 0.05) than that of the 1.0 g EG treatment (8.7+/-2.6%). The number of cells in the inner cell mass (ICM) and trophectoderm (TE) produced from blastocysts using the control procedure were 40.8+/-2.9 and 81.2+/-5.3, respectively, and were higher (P < 0.05) compared to the 0.50 g EG (34.6+/-2.9 and 66.8+/-5.7) and 1.0 g EG treatments (33.4+/-3.4 and 67.2+/-7.3). In experiment 2, COCs were placed in a small box with 0.25 g of EG so that the effects on IVM, IVF and IVC of positive or negative air pressure could be compared. The blastocyst production rate observed in the negative air pressure treatment (29.6+/-4.6%) was higher (P < 0.01) than that of the positive air pressure treatment (6.2+/-1.5%) or the normal treatment pressure (P < 0.05; 18.7+/-4.2%) but did not differ from that of the control (30.7+/-4.4%). These results indicate that this simple type of incubator with negative air pressure can be successfully used for in vitro production of bovine embryos and could be used at the field level.  相似文献   

4.
Im GS  Lai L  Liu Z  Hao Y  Wax D  Bonk A  Prather RS 《Theriogenology》2004,61(6):1125-1135
This study investigated the effect of culture media and gas atmospheres on the development of porcine nuclear transfer embryos. Oocytes derived from a local abattoir were matured for 42-44 h and enucleated. Fetal fibroblasts were prepared from a Day 35 porcine fetus. Confluent stage fetal fibroblasts were introduced into the perivitelline space of enucleated oocytes. Fusion and activation were induced simultaneously with two direct current (1.2 kV/cm for 30 micros) in 0.3 M mannitol medium. For parthenogenetic activation, the same pulses were used. In Experiment 1, parthenogenetically activated oocytes were cultured in North Carolina State University-23 (NCSU-23), Porcine Zygote Medium-3 (PZM-3), or Beltsville Embryo Culture Medium-3 (BECM-3). Parthenogenetically activated oocytes cultured in PZM-3 had a higher (P < 0.05) developmental rate to the blastocyst stage (15.2% versus 3.7-9.6%) as compared to BECM-3 or NCSU-23. The number of nuclei in Day 6 blastocysts was higher (P < 0.05) in PZM-3 (23.6) and NCSU-23 (21.4) than BECM-3 (14.2). In Experiment 2, parthenogenetically activated oocytes were cultured in NCSU-23 under a gas atmosphere of 5% CO(2) in air for 6 days (T1), 5% CO(2), 5% O(2), 90% N(2) for 6 days (T2), 5% CO(2) in air for 3 days, then 5% CO(2), 5% O(2), 90% N(2) for 3 days (T3), or 5% CO(2), 5% O(2), 90% N(2) for 3 days, then 5% CO(2) in air for 3 days (T4). Blastocyst formation rates were not different among treatments (12.9 =/-3.6 %, 13.5 +/- 4.2%, 10.8+/-2.4%, and 12.6+/-2.7%, respectively). However, T2 (36.7+/-2.9) and T3 (33.8+/-3.0) resulted in more nuclei per blastocyst than T1 (23.2+/-2.1) or T4 (26.0+/-2.1 ). In Experiment 3, reconstructed porcine nuclear transfer (NT) embryos were cultured in NCSU-23 or PZM-3 under a gas atmosphere of 5% CO(2) in air or 5% CO(2), 5% O(2), 90% N(2). Developmental rates to blastocyst stage for porcine NT embryos cultured in NCSU-23 under a gas atmosphere of 5% CO(2) in air or 5% CO(2), 5% O(2), 90% N(2) were 7.2+/-1.4% and 12.3+/-1.4%, and the number of nuclei was 12.2=/-0.8% and 19.4+/-1.0, respectively. NT embryos cultured in PZM-3 under a gas atmosphere of 5% CO(2) in air or 5% CO(2), 5% O(2), 90% N(2) had developmental rates to blastocyst stage of 18.8+/-1.9 %, and 17.8+/-3.8% the nuclei number was 20.9 +/- 1.9 and 21.9+/-3.3, respectively. NT embryos cultured in NCSU-23 had a higher developmental rate to the blastocyst stage in 5% CO(2), 5% O(2), 90% N(2) than in 5% CO(2) in air (P < 0.05). Regardless of gas atmospheres, NT embryos cultured in PZM-3 had a higher developmental rate (18.3 =/- 1.7% versus 16.9 +/- 1.2%) and nuclei number (21.4 +/-1.8 versus 16.9 +/- 1.2) than in NCSU-23 (P < 0.05). In conclusion, a gas atmosphere of 5% CO(2), 5% O(2), 90% N(2) supported a higher development rate of porcine NT embryos than 5% CO(2) in air when the porcine NT embryos were cultured in NCSU-23. Furthermore, regardless of atmosphere, PZM-3 supported a higher development rate of porcine nuclear transfer embryos than NCSU-23.  相似文献   

5.
Immature ovine oocytes were collected from ovaries obtained from an abattoir and assigned to one of three treatment groups for in vitro maturation. For Treatment 1 (T1), oocytes were matured in a conventional incubator, in tissue culture wells in an atmosphere of 5% CO(2) and air. Maturation medium consisted of bicarbonate buffered Tissue Culture Medium 199 (TCM199) supplemented with fetal calf serum (FCS), follicle stimulating hormone (FSH), luteinizing hormone (LH), and penicillin/streptomycin (pen/strep). For Treatment 2 (T2), oocytes were matured in a portable incubator, in plastic tubes containing the same medium as T1. The medium was equilibrated with 5% CO(2) and overlayed with oil. For Treatment 3 (T3) oocytes were matured in the portable incubator without CO(2) equilibration, in tubes containing HEPES buffered TCM 199 supplemented as in T1. After 24 hours at 39 degrees C, the percentage of oocytes undergoing normal nuclear maturation was 72.55, 68.14 and 66.96% for T1, T2 and T3, respectively (P >0.05). In a second experiment oocytes were matured in the 3 treatments described, then fertilized in vitro using frozen-thawed ram sperm. Fertilization rates were 44.09, 58.62 and 55.69% for T1, T2 and T3, respectively. T1 and T2 were significantly different (P < 0.05). For Experiment 3, oocytes matured and fertilized as described were cultured in drops of Modified Brinster's Mouse Ova Culture (MBMOC) containing bovine oviductal cells. These were incubated at 39 degrees C in an atmosphere of 5% CO(2) and air for 7 days. T1, T2 and T3 resulted in 20.26, 16.94 and 24.43% development to morulae, and 4.01, 3.06 and 1.85% development to blastocysts, respectively (P >0.05). The results of these experiments indicate that maturation, fertilization, and developmental rates of ovine oocytes matured in the portable incubator are similar to those of oocytes matured in a conventional incubator. This technique shows promise for transportation of oocytes to laboratories where abattoirs are not in close proximity, and holds promise for transportation of oocytes from non-domestic animals collected in the field or remote locations, to facilities capable of utilizing and preserving the gametes.  相似文献   

6.
To enable both the multiplication of elite livestock and the engineering of transgenic animals for various agricultural and biochemical purposes, scientists around the world are intensively studying efficient ways of improving developmental competency of bovine embryos reconstructed by somatic cell nuclear transfer. Because it is widely accepted that culture conditions along with many other factors contribute to the developmental competency of reconstructed embryos, this preliminary study was designed to test whether or not bovine reconstructed embryos could develop in vitro using a simple portable CO(2) incubator. CO(2) and O(2) gas tensions and air pressure can be varied using this system. The parameters used in the five conducted trials were low CO(2) (2-5%) and O(2) (8-10%) gas tensions, and negative air pressure (of 300 mm Hg). Chamber temperature was maintained at 38.5 degrees C. Bovine fetal fibroblasts were used as donor karyoplasts and were fused into microsurgically enucleated M II oocytes followed by activation and culture. From the 250 enucleated oocytes, 217 (86.8%) fused, 183 (73.2%) cleaved, and 43 (17.2%) developed to the blastocyst stage. While relatively low developmental rates were achieved, technical proficiency may have been a contributing factor. Further studies using this system are needed to determine optimal levels of O(2), CO(2), and air pressure.  相似文献   

7.
Microinjection and in vitro culture procedures were developed to produce transgenic bovine embryos after in vitro fertilization of in vitro matured oocytes. In Experiment I, zygotes were subjected to pronuclear microinjection of DNA 18 or 24 h following addition of spermatozoa to oocytes. Microinjections were performed in either Hepes-buffered TCM-199 or modified Dulbecco's phosphate-buffered saline without glucose. Viability of embryos was similar at both injection times and for both media, as determined by morphological evaluation after culturing embryos in vitro for 10 d. In Experiment II, microinjected embryos were cultured 1) in rabbit oviducts, 2) in vitro in a 5% CO(2) in air, or 3) in a 5% CO(2) / 5% O(2) / 90% N(2) incubator. There were no significant differences between the 2 in vitro culture environments. The in vitro culture systems supported development of embryos significantly better than the rabbit oviducts; 33% of cleaved ova developed to blastocysts in vitro vs 10% in vivo; 98% of transferred ova were recovered from the rabbit oviducts. From both experiments, 6 of 92 blastocysts were positive for the microinjected DNA as determined by a polymerase chain reaction followed by gel electrophoresis.  相似文献   

8.
Cloning of bovine embryos by multiple nuclear transfer   总被引:3,自引:0,他引:3  
The in vitro development of multiple generation bovine nuclear transferred embryos to blastocysts and their survival ability after freezing and thawing were examined. Parent donor embryos which had 20 to 50 cells were recovered from superovulated cows. Follicular oocytes matured in vitro were used as recipient oocytes. The recipient oocytes enucleated at 22 to 24 h after the onset of maturation were preactivated at 33 h. Enucleated oocytes with a donor blastomere were fused 9 h after activation by an electric stimulus and the fused oocytes were cultured in vitro (first generation). Reconstituted oocytes that had developed to the 8- to 16-cell stage 3 to 4 d after fusion were used as donor embryos for the next generation. Recloning procedures were performed twice (second and third generations). The proportion of recipient oocytes successfully fused with a blastomere increased with the cycle of nuclear transfer. Eighty to 86% of fused oocytes developed to the 2-cell stage and there was no significant difference with the generation. The proportion of reconstituted embryos receiving blastomeres derived from first generation embryos had higher developmental ability in vitro, than those derived from other generations (43 vs 31% for 8 to 16-cell stage, 37 vs 20 and 21% for blastocyst stage). The number of cloned blastocysts increased with repeated nuclear transfer (once: 6.2 +/- 4.3, twice: 19.8 +/- 9.2 and three times: 30.0 +/- 14.7) but varied greatly with each parent donor embryo. The in vitro viability of cloned blastocysts after freezing and thawing (59%) was low but not significantly different from that obtained for in vitro fertilized blastocysts (72%). After transfer of either fresh or frozen-thawed cloned blastocysts to 21 recipients, 10 of them were pregnant on Day 60. Four and 3 offspring were produced from 20 fresh and 14 frozen-thawed blastocysts,respectively.  相似文献   

9.
Avery  B.  Greve  T. 《Acta veterinaria Scandinavica》1992,33(4):341-348
Because of suboptimal in vitro production of bovine blastocysts a new incubator model (Mini) was tested against the traditional (Heraeus). The difference between their properties seemed only to be the volume of the incubator space. No difference was noted between the CO2 or the temperature, but the data clearly showed a highly significant increase of the blastocyst rates, 6% versus 51% in the Heraeus and the Mini incubator, respectively, calculated as blastocysts per cleaved embryos. It was concluded that the incubator type or model may be a very important part of the in vitro production of bovine embryos, although we were not able to pin point specific causes for this difference.  相似文献   

10.
Avery B  Melsted JK  Greve T 《Theriogenology》2000,54(8):1259-1268
The importance of the incubator type is often overlooked when protocols for in vitro production of embryos are evaluated. In this study the ability of a standard CO2 Heraeus incubator and the Oxoid CO2Gen atmosphere-generating system to support bovine in vitro oocyte maturation, fertilization and embryo development is described for the first time. The Oxoid CO2Gen gas generating system, originally designed for the growth of bacteria, is based on the chemical reaction of ascorbic acid and air. When the sachet with ascorbic acid is placed in the confined volume of the airtight AnaeroJar, an atmosphere of 6% CO2 in 15% O2 is created, which is comparable to the 5% CO2 and 20% O2 used for standard in vitro production of bovine embryos. In the first set of experiments oocyte in vitro maturation (IVM), fertilization (IVF) and embryo culture (IVC) were allocated to one or the other of the culture systems. In the second set of experiments IVM and IVF took place in the Heraeus incubator, while IVC was allocated either to the Heraeus or to the AnaeroJar. During experiments the AnaeroJar was placed in the Heraeus incubator to ensure identical incubation temperatures of 38.8 degrees C. A standard protocol was used for production of embryos: 23 h of IVM in TCM-199, 20 h of IVF with frozen-thawed washed spermatozoa in TALP medium and 7 days of IVC (8 days after insemination) in B2 medium with bovine oviduct epithelial cells. In the first set of experiments, based on a total of 766 inseminated oocytes, the Day 8 blastocyst rates were the same in the Heraeus incubator and the AnaeroJar: 30% vs. 30% with oviduct cell coculture, and 21% vs. 18% without coculture. In the second set of experiments, based on 1963 inseminated oocytes, the average blastocyst rates were 27% vs. 32% from the Heraeus incubator and the AnaeroJar. In 2 of 6 replicates blastocyst rates were lower in the Heraeus incubator than in the jar; in the remaining replicates they were alike. No differences were noted in blastocyst kinetics or morphology. In conclusion, the Oxoid gas generating system seems to be a cheap, convenient and stable alternative to expensive CO2 incubators, not only for the growth of bacteria, but also for in vitro production of bovine embryos.  相似文献   

11.
Booth PJ  Holm P  Callesen H 《Theriogenology》2005,63(7):2040-2052
Reducing oxygen concentration from atmospheric levels during in vitro culture generally, but not invariably, improves embryonic development across a range of species. Since the few published reports of such an action in the pig are contradictory--perhaps a consequence of the derivation of the embryos prior to culture--a study was performed to examine the effect of O2 tension during culture on three different types of porcine embryos, namely: in vivo flushed embryos, and in vitro matured oocytes either fertilized in vitro or parthenogenetically activated. In vivo embryos (n=208) were flushed at the 2-8 cell stage. Cumulus oocyte complexes (COCs) destined for IVF or parthenogenetic activation were derived from 2 to 6 mm, post-pubertal ovarian follicles and matured for 48 h in TCM-199. Parthenogenones were generated by activating denuded oocytes (n=573) with 10 mM calcium ionophore, followed by 2 mM DMAP prior to culture. The IVF embryos (n=971) were produced by fertilizing COCs (day 0) with fresh ejaculated semen in modified tris-based medium for 6 h before cumulus removal. All embryos were cultured in BECM-3 containing 12 mg/mL fatty-acid-free BSA up to day 4, followed by BECM-3 supplemented with 10% calf serum until day 7. The gas environment for IVM/IVF was 5% CO2 in air, while that for IVC was either 5% CO2 in air or 5% O2, 5% CO2 and 90% N2. Low O2 tension increased both day 7 blastocyst rates (high versus low O2, respectively; 9.3+/-2.9%: 26/280; 23.9+/-4.2%: 71/293; P<0.001) and total cell numbers (39.3+/-2.9, n=24 versus 61.2+/-7.7, n=61; P=0.01) of parthenogenetically activated embryos. In contrast, such a treatment neither affected blastocyst rates (89.3+/-6.9 versus 87.8+/-7.5) nor cell numbers (87.4+/-4.5 versus 87.7+/-4.8) of in vivo flushed embryos. The effect of reduced O2 concentration on IVF embryos was intermediate, since only cell numbers were improved (69.8+/-3.5, range=17-204, n=49; 88.5+/-5.8, range=28-216; n=66; P<0.01), equivalent to that recorded in in vivo flushed embryos. However, blastocyst rates were unaffected (10.7+/-1.4%: 51/486; 12.9+/-2.2%: 67/485). The effect, when present, of reducing O2 concentration from 20 to 5% was beneficial for pig in vitro embryonic development. The responses are apparently dependent on firstly, the manner by which the embryonic cell cycle is activated and secondly, the derivation of the tissue prior to placement into culture, if the observed resilience of in vivo embryos is independent of treatment duration.  相似文献   

12.
Bovine oocytes were aspirated from ovaries within 1.6 to 2 hours after slaughter. They were then matured in TCM-199 medium drops under oil in CO(2)/air incubator at 39 degrees C. Spermatozoa were capacitated in SP-TALP medium with heparin. The percentage of embryos that developed in vitro to the 4- and 6- cell stages 48 hours post insemination and then reached the morula or blastocyst stage was 64.3% and 59.2%, respectively, while only 3.6% of the embryos that reached the 2-cell stage became morula or blastocysts. An average of 6.3+/-3.2 total in vitro fertilized embryos per cow were obtained (range 2 to 11). Maturation of bovine oocytes in vitro for 18 or 24 hours did not influence the percentage of cleaved embryos (71.0 and 75.9%, respectively) or that developed to the blastocyst stage (25.6 and 24.2%, respectively). The use of reindeer blood serum for in vitro culture of immature bovine oocytes and of dividing of embryos gave the following results: 57.4% of the oocytes cleaved after fertilization and 16.2% developed further to the blastocyst stage. In contrast in the control group, where cow serum was used, the values were 73.4% and 24.8%, respectively. Rabbit oviduct epithelium cell monolayers were able to support the development of 16.3% of the cleaved bovine embryos to the blastocyst stage as compared with 24.0% of the embryos on cow oviduct epithelium cell monolayers. After nonsurgical transplantation, 12 calves were produced from 91 in vitro fertilized embryos.  相似文献   

13.
Nuclear transfer (NT) techniques have advanced in the last few years, and cloned animals have been produced from somatic cells in several species including pig. In this study we examined the feasibility of using granulosa-derived cells (GCs) as donor cells combined with a microinjection procedure to transfer those nuclei. In vitro matured oocytes were enucleated by aspirating the first polar body and adjacent cytoplasm. Mural GCs infected with an enhanced green fluorescence protein (EGFP) gene were serum-starved (0.5% serum, 7 days), injected directly into cytoplasm of enucleated oocytes and the oocytes were electrically activated. The reconstructed embryos were cultured for 7 days and stained with Hoechst 33342 to determine the number of nuclei. Non-manipulated oocytes were electrically activated and cultured as controls. At 9 h post-activation, the pronuclear formation rates were 78.7+/-3.7% in NT and 97.4+/-4.4% in controls at 9 h post-activation. After 7 days culture, the cleavage rates were 24.5+/-7.2% in NT and 79.3+/-5.6% in controls. The blastocysts formation rates were 4.9+/-2.4% in NT and 26.8+/-3.8% in controls. To examine the effect of activation time on development of NT embryos, oocytes were activated at 0-0.5, 1-2, or 3-4 h post-injection. At 18 h post-activation the pronuclear formation rates were higher (62.5+/-7.3%) in the 3-4 h group as compared to the 0-0.5 h (22.0+/-12.5%) or 1-2h (44.5+/-6.3%) groups (P<0.05). However, the cleavage rates (9.6+/-4.6 to 10.7+/-4.2%) and the blastocysts formation rates (1.2+/-2.4 to 4.9+/-3.7%) were not different among treatments (P>0.05). The mean cell number of blastocysts was 15.7+/-5.7 in NT and 25.3+/-24.7 in controls. Green fluorescence was observed in roughly half of the embryos from the one-cell to the blastocyst stage. These results indicate that granulosa-derived cell nuclei can be remodeled in the cytoplasm of porcine oocytes, and that the reconstructed embryos can develop to the blastocyst stage. In addition, EGFP can be used as a marker for gene expression of donor nuclei.  相似文献   

14.
The objective of this study was to investigate the suitability of sex-sorted sperm for producing viable in vitro embryos for subsequent transfer into recipient cows and heifers on commercial dairy farms. From August 2002 to June 2003, ovaries were collected from 104 producer-nominated Holstein donor cows on seven Wisconsin farms via colpotomy or at slaughter. Oocytes (N=3526) were aspirated from these ovaries, fertilized 22+/-0.2h later, and cultured to the morula or blastocyst stage. The fluorescence-activated cell sorting ("Beltsville") approach was used to produce (primarily) X-bearing sperm from the ejaculates of three young Holstein sires, and 365 transferable embryos were produced. On average, 3.6+/-0.3 (means+/-S.E.M.) transferable embryos were produced per donor, including 1.4+/-0.2 (Grade 1), 1.5+/-0.2 (Grade 2), and 0.7+/-0.1 (Grade 3) embryos. Number of usable oocytes per donor (33.9+/-3.3) and percent cleavage (51.1+/-1.9) were significant predictors of the number of blastocysts that developed. Mean conception rates for the resulting in vitro embryos were 34.2+/-1.6% in yearling heifer recipients and 18.2+/-0.7% in lactating cow recipients. Additional oocytes (N=3312) from ovaries of anonymous donors (N unknown) collected at a commercial abattoir were fertilized using unsorted sperm, and the percentage of these that developed to blastocyst stage (20.1+/-2.9) was greater (P<0.05) than the corresponding percentage (12.2+/-2.3) achieved with sex-sorted sperm using oocytes (N=1577) from the same source. In summary, we inferred that in vitro embryo production may be a promising application of sex-sorted sperm in dairy cattle breeding, but that the biological causes of impaired embryo development in vitro and compromised conception rates of transferred embryos should be further investigated.  相似文献   

15.
The present study was carried out to explore the feasibility of using buffalo fetal skin fibroblasts as donor nuclei and to find out the developmental competence of embryos following transfer of these nuclei to in vitro matured enucleated buffalo oocytes. Skin cells were isolated from 1 to 2-month-old fetuses obtained from slaughterhouse, by enzymatic digestion (0.5% w/v trypsin +0.05% w/v collagenase in Dulbecco's PBS) for 15-20 min. The cells were washed 4 times with Dulbecco's PBS and then once with RPMI-1640+10% FBS by centrifugation at 600 x g. The cells were then cultured in the same medium in a CO2 incubator (5% CO2 in air) at 38.5 degrees C for 2-3 days. Cumulus-oocyte complexes (COCs) collected from slaughterhouse buffalo ovaries were subjected to IVM in the IVM medium (TCM-199 + 5 microg/ml FSH-P + 10 microg/ml LH+10% FBS) for 20-22 h in a CO2 incubator (5% CO2 in air) at 38.5 degrees C. Oocytes were denuded with 0.1% trypsin followed by repeated pipetting and then enucleated by aspirating the first polar body with 10-15% of nearby cytoplasm with a micromanipulator. Two different types of donor cells (growing cells and those arrested with cytochalasin-B) were used for reconstruction of oocytes. The reconstructs were electro fused and incubated in the activation medium (TCM-199 + 8 microg/ml cytochalasin-B+10% FBS) for 4 h. These were then cultured in IVC medium (TCM-199+10% FBS) in a CO2 incubator (5% CO2 in air) at 38.5 degrees C for 48 h. The cleaved embryos were then co-cultured with buffalo oviduct cells in embryo development media (EDM). Out of 119 denuded matured oocytes which were enucleated and reconstructed with growing cells, 78 (65.5%) were electro fused, activated and cultured, out of which 4 (5.1%) reconstructs cleaved and developed to 2-cell stage, 3 (3.8%) reached to 4-cell stage and 3 (3.8%) reached to 8-cell stage. In the synchronized group, out of 62 denuded matured oocytes which were reconstructed with cytochalasin-B blocked cells, 40 (65%) were electrofused, activated and cultured, out of which 4 (10%) developed to 2-cell stage, 3 (7.50%) to 4-cell stage, 2 (5.0%) to early morula stage and 1 (2.50%) to blastocysts stage. These results suggest that buffalo fetal skin fibroblasts could be used as donor nuclei for the production of buffalo embryos after nuclear transfer to enucleated in vitro matured buffalo oocytes.  相似文献   

16.
17.
Kim HS  Lee GS  Kim JH  Kang SK  Lee BC  Hwang WS 《Theriogenology》2006,65(4):831-844
The present study investigated the expression of ligand and receptor for leptin, and the effect of leptin supplementation on preimplantation development of porcine in vitro fertilized (IVF) and somatic cell nuclear transfer (SCNT) embryos. The IVF embryos were produced using frozen boar semen and SCNT embryos were obtained by nuclear transfer of fetal fibroblasts into enucleated oocytes. The protein expression of leptin ligand and receptor was investigated in in vitro matured oocytes, 2-, 4- and 8-cell embryos, morulae and blastocysts derived from IVF and SCNT using immunofluorescence. Both the ligand and receptor were detected in in vitro matured oocytes and all stage of IVF and SCNT embryos. The IVF and SCNT embryos were cultured in modified North Carolina State University (mNCSU)-23 medium supplemented with various concentrations (0, 1, 10, 100 or 1000 ng/mL) of leptin. The rates of cleavage at day 2 and blastocyst formation at day 7, and cell number of blastocysts were monitored as experimental parameters. In SCNT embryos, supplementing with 1000 ng/mL leptin significantly (P<0.05) increased the rate of blastocysts formation (20.2% versus 12.9%) and total cell number (54.6+/-17.4 versus 45.1+/-15.2) compared to the control group. In IVF embryos, leptin supplementation did not affect preimplantation embryo development and cell number in blastocysts. In conclusion, the present study demonstrated the expression of leptin ligand and receptor and the embryotropic effect of leptin in SCNT embryos.  相似文献   

18.
Developmental competence of bovine oocytes collected from follicles of different size categories (in either the growth or the dominant phase of the first follicular wave) was studied, with the aim of improving in vitro embryo production. Estrus and ovulation of 39 cyclic Holstein dairy cows were synchronized by two prostaglandin F2alpha treatments at 11-day intervals and one hCG treatment on the day of onset of estrus (Day 0). Cows with follicles in either the growth (Day 3, n=25) or the dominant phase (Day 7, n=14) were slaughtered, and follicles >5 mm were counted. Three oocyte populations were recovered separately from large (11-15 mm), medium (6-10 mm) and small (2-5 mm) follicles in both follicular phases. All collected cumulus-oocyte complexes (COC), except for markedly atretic oocytes without cumulus cells, were used in experiments. Oocytes were matured, fertilized and cultured by standard methods. There were no significant differences between the growth and the dominant phases for mean numbers of large follicles, usable oocytes and embryos per donor. Generally, those numbers were low, but the development rates of oocytes into blastocysts were high, particularly in the growth phase (60.0%). Mean (+/- S.E.M.) numbers of medium follicles, oocytes and embryos per donor were higher in the growth as compared with the dominant phase; in the usable oocytes and embryos, this difference was significant (9.6 +/- 1.4 and 3.5 +/- 0.6 versus 3.9 +/- 0.6 and 1.1 +/- 0.3; P<0.01). The development rates of oocytes into blastocysts, however, did not differ significantly between the growth and the dominant phases (36.7% versus 27.8%). Mean numbers of usable oocytes and embryos per donor recovered from small follicles in both follicular wave phases were similar. The development rate of oocytes into blastocysts was generally low, but higher (P<0.01) in the growth than in the dominant phase (24.5% versus 11.7%). Comparison between the two phases showed that mean number of all counted follicles and all usable oocytes collected per donor were similar, but the mean number of embryos per donor and the development rate of oocytes into blastocysts were higher in the growth phase than in the dominant phase (8.0 +/- 1.2 versus 3.8 +/- 2.4; P=0.012 and 30.3% versus 14.9%; P<0.01). The interaction between follicle size and the phase of follicular wave affected the efficiency of embryo production. The yield of embryos was primarily influenced by the number of oocytes collected from medium follicles and the developmental competence of oocytes from small follicles. The growth phase was more effective for oocyte collection; the number of oocytes from medium follicles and the developmental competence of oocytes from small follicles decreased in the dominant phase.  相似文献   

19.
The in vitro viability of polyspermic pig eggs was investigated. Immature oocytes were matured and fertilized in vitro. Approximately 10 h after insemination, the eggs were centrifuged at 12 000 x g for 10 min and individually classified into two (2PN)- and poly-pronuclear (PPN, 3 or 4 pronuclei) eggs. The classified eggs were cultured in vitro or in vivo. Nuclei numbers of inner cell mass (ICM) and trophectoderm (TE) were compared between 2PN- and PPN-derived blastocysts. The frequency of development in vitro of 2PN and PPN eggs to the blastocyst stage was 53.6% and 40.7%, respectively. The mean number (8.2 +/- 0.7, n = 48) of ICM nuclei of 2PN-derived blastocysts was higher than that (4.2 +/- 0.8, n = 37) of PPN-derived blastocysts (p < 0.001), whereas there was no difference (p > 0.05) in mean numbers of total (46.7 +/- 3.4 vs. 39. 9 +/- 3.9) and TE nuclei (38.5 +/- 2.9 vs. 35.7 +/- 3.3) between the two groups. Development of 2PN and PPN eggs cultured in vivo to the blastocyst stage was 33.3% and 27.4%, respectively. The numbers of ICM and TE nuclei of these embryos cultured in vivo showed a pattern similar to that for the in vitro-produced blastocysts. Additionally, fetuses were obtained on Day 21 from both the 2PN and the PPN groups. This suggests that polyspermic pig embryos develop to the blastocyst stage and beyond, although showing a smaller ICM cell number as compared to normal embryos.  相似文献   

20.
In vitro techniques for production of bovine embryos including in vitro oocyte maturation (IVM), fertilization (IVF) and culture (IVC) are becoming increasingly employed for a variety of research purposes. However, decreased viability following cryopreservation by conventional methods has limited commercial applications of these technologies. A practical alternative to facilitate transport would be to arrest development by chilling without freezing. The present research was undertaken to evaluate chilling sensitivity of IVM-IVF embryos at different stages of development, and to determine possible beneficial effects of cysteamine treatment during IVM, previously shown to enhance embryo development in culture, on survival following chilling at different stages. Embryos produced by standard IVM-IVF-IVC methods were chilled to 0 degrees C for 30 min at 2-cell (30-34 h post-insemination, hpi), 8-cell (48-52 hpi) or blastocyst (166-170 hpi) stages. Viability after chilling was assessed by IVC with development to expanded blastocyst stage determined on days 7 and 8 post-insemination (pi) and hatching blastocyst stage determined on days 9 and 10 pi. Control embryos at the same stages were handled similarly, but without chilling, and development during culture similarly assessed. The effect of cysteamine supplementation (100 microM) of the IVM medium was determined for both chilled and non-chilled (control) embryos. Cysteamine supplementation during IVM had no significant effect on oocyte maturation or fertilization, but increased the proportions of oocytes developing to blastocyst stage by day 7 (13.7+/-0.9% versus 7.2+/-0.9%; P<0.05), total blastocysts (20.5+/-0.9% versus 15.3+/-1.3%; P<0.05), and hatching blastocysts (16.8+/-1.6% versus 12.0+/-1.5%; P<0.05). The greater survival in terms of hatching (78.6+/-7.0) following chilling of blastocysts produced by IVM-IVF of oocytes matured in media supplemented with cysteamine offers promise for applications requiring short-term storage to facilitate transport of in vitro produced bovine embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号