首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A leucine aminopeptidase gene of Aquifex aeolicus, a hyperthermophilic bacterium, was cloned and expressed in Escherichia coli, and its expression product was purified and characterized. The expressed protein was purified to homogeneity by using heat to denature contaminating proteins followed by ion-exchange chromatography to purify the heat-stable product. The purified enzyme gave a single band on SDS-PAGE with a molecular weight of 54 kDa. Kinetic studies on the purified enzyme confirmed that it was a leucine aminopeptidase. The optimum temperature for its activity was around 80 degrees C and the optimum pH was in the range from 8.0 to 8.5. It was stable at high temperatures and 27% of its activity was retained after heating at 115 degrees C for 30 min. The purified enzyme had a pH stability range between 4.0 and 11.0. This aminopeptidase was highly resistant to organic solvents such as methanol, ethanol, tetrahydrofuran, dimethyl sulfoxide, acetone, acetonitrile, dimethyl formamide, 1-propanol, 2-propanol, and dioxane.  相似文献   

2.
The CphAII protein from the hyperthermophile Aquifex aeolicus shows the five conserved motifs of the metallo-β-lactamase (MBL) superfamily and presents 28% identity with the Aeromonas hydrophila subclass B2 CphA MBL. The gene encoding CphAII was amplified by PCR from the A. aeolicus genomic DNA and overexpressed in Escherichia coli using a pLex-based expression system. The recombinant CphAII protein was purified by a combination of heating (to denature E. coli proteins) and two steps of immobilized metal affinity chromatography. The purified enzyme preparation did not exhibit a β-lactamase activity but showed a metal-dependent phosphodiesterase activity versus bis-p-nitrophenyl phosphate and thymidine 5′-monophosphate p-nitrophenyl ester, with an optimum at 85°C. The circular dichroism spectrum was in agreement with the percentage of secondary structures characteristic of the MBL αββα fold.  相似文献   

3.
All known co-chaperonin protein 10 (cpn10) molecules are heptamers of seven identical subunits that are linked together by beta-strand interactions. Here, we report the first characterization of a cpn10 protein from a thermophilic organism: Aquifex aeolicus. Primary-structure alignment of A. aeolicus cpn10 (Aaecpn10) shows high homology with mesophilic cpn10 sequences, except for a unique 25-residue C-terminal extension not found in any other cpn10. Recombinant Aaecpn10 adopts a heptameric structure in solution at pH values above 4 (20 degrees C). Both monomers and heptamers are folded at 20 degrees C, although the thermal stability of the monomers (pH 3; Tm approximately 58 degrees C) is lower than that of the heptamers (pH 7; Tm approximately 115 degrees C). Aaecpn10 functions in a GroEL-dependent in vitro activity assay. Taken together, Aaecpn10 appears similar in secondary, tertiary, and quaternary structure, as well as in many biophysical features, to its mesophilic counterparts despite a functional temperature of 90 degrees C.  相似文献   

4.
The fus gene of the translation factor G (EF-G) from the hyperthermophilic bacterium Aquifex aeolicus was cloned under control of a phage promoter and overexpressed in Escherichia coli with the T7 RNA polymerase system. A heat denaturation step at 95 degrees C was used to purify the protein from the cell extract. This approach simplified the chromatographic procedures and decreased the protein loss since most of Escherichia coli proteins were denatured and precipitated. Ten milligrams of the highly purified protein was isolated from 4 liters of induced culture. The overproduced EF-G was active in ribosome-dependent GTP hydrolysis and a poly(U)-directed polyphenylalanine translation system with E. coli 70S ribosomes. The method presented here might facilitate functional and structural studies of important components of the protein biosynthesis system.  相似文献   

5.
We have produced and characterized two new copper-transporting ATPases, CtrA2 and CtrA3 from Aquifex aeolicus, that belong to the family of heavy metal ion-transporting PIB-type ATPases. CtrA2 has a CPC metal-binding sequence in TM6 and a CxxC metal-binding N-terminal domain, while CtrA3 has a CPH metal-binding motif in TM6 and a histidine-rich N-terminal metal-binding domain. We have cloned both copper pumps, expressed them in Escherichia coli and characterized them functionally. CtrA2 is activated by Ag+ and Cu+ and presumably transports reduced Cu+, while CtrA3 is activated by, and presumably transports, the oxidized copper ion. Both CtrA2 and CtrA3 are thermophilic proteins with an activity maximum at 75 °C. Electron cryomicroscopy of two-dimensional crystals of CtrA3 yielded a projection map at ∼7 Å resolution with density peaks, indicating eight membrane-spanning α-helices per monomer. A fit of the Ca-ATPase structure to the projection map indicates that the arrangement of the six central helices surrounding the ion-binding site in the membrane is conserved, and suggests the position of the two additional N-terminal transmembrane helices that are characteristic of the heavy metal, eight-helix P1B-type ATPases.  相似文献   

6.
Aquifex aeolicus is the hyperthermophilic bacterium known, with growth-temperature maxima near 95 degrees C. The cel8Y gene, encoding a thermostable endoglucanase (Cel8Y) from Aquifex aeolicus VF5, was cloned into a vector for expression and expressed in Escherichia coli XL1-Blue. A clone of 1.7 kb fragment containing endoglucanase activity, designated pKYCY100, was sequenced and found to contain an ORF of 978 bp encoding a protein of 325 amino acid residues, with a calculated molecular mass of 38,831 Da. This endoglucanase was designated cel8Y gene. The endoglucanase has an 18-amino-acid signal peptide but not cellulose-binding domain. The endoglucanase of A. aeolicus VF5 had significant amino acid sequence similarities with endoglucanases from glycosyl hydrolase family 8. The predicted amino acid sequence of the Cel8Y protein was similar to that of CMCase of Cellulomonas uda, BcsC of Escherichia coli, CelY of Erwinia chrysanthemi, and CMCase of Acetobacter xylinum. The molecular mass of Cel8Y was calculated to be 36,750 Da, which is consistent with the value obtained from result of CMC-SDS-PAGE of the purified enzyme. Cel8Y was thermostable, exhibiting maximal activity at 80 degrees C and pH optima of 7.0 and with half-lives of 2 h at 100 degrees C, 4 h at 90 degrees C.  相似文献   

7.
Luke K  Apiyo D  Wittung-Stafshede P 《Biochemistry》2005,44(44):14385-14395
All known cochaperonin protein 10 (cpn10) molecules are heptamers of seven identical subunits noncovalently linked by beta-strand interactions. Cpn10 from the deep-branching, hyperthermophilic bacterium Aquifex aeolicus (Aacpn10) shows high homology with mesophilic and other thermophilic cpn10 sequences, except for a 25-residue C-terminal extension not found in any other cpn10. Prior to atomic structure information, we here address the role of the tail by biophysical means. A tail-lacking variant (Aacpn10-del25) also adopts a heptameric structure in solution and exhibits nativelike substrate-refolding activity. Thermal and chemical perturbations of both Aacpn10 and Aacpn10-del25, probed by far-UV circular dichroism, demonstrate that both proteins have high thermodynamic stability. Heptamer-monomer dissociation midpoints were defined by isothermal titration calorimetry; at 25 degrees C, the values for Aacpn10 and Aacpn10-del25 are within 2-fold of each other and close to reported midpoints for mesophilic cpn10 proteins. In contrast, the monomer stabilities for the A. aeolicus proteins are significantly higher than those of mesophilic homologues at 30 degrees C; thus, heptamer thermophily is a result of more stable monomers. Electron microscopy data reveals that Aacpn10-del25 heptamers are prone to stack on top of each other forming chainlike molecules; the electrostatic surface pattern of a structural model can explain this behavior. Taken together, the unique tail in Aacpn10 is not required for heptamer structure, stability, or function; instead, it appears to be an ancient strategy to avoid cochaperonin aggregation at extreme temperatures.  相似文献   

8.
Analysis of the genome of the hyperthermophilic bacterium Aquifex aeolicus has revealed the presence of a previously undetected gene potentially encoding a plant- and mammalian-type [2Fe-2S] ferredoxin. Expression of that gene in Escherichia coli has yielded a novel thermostable [2Fe-2S] ferredoxin (designated ferredoxin 5) whose sequence is most similar to those of ferredoxins involved in the assembly of iron-sulfur clusters (Isc-Fd). It nevertheless differs from the latter proteins by having deletions near its N- and C-termini, and no cysteine residues other than those involved in [2Fe-2S] cluster coordination. Resonance Raman, low-temperature MCD and EPR studies show close spectral similarities between ferredoxin 5 and the Isc-Fd from Azotobacter vinelandii. M?ssbauer spectra of the reduced protein were analyzed with an S = 1/2 spin Hamiltonian and interpreted in the framework of the ligand field model proposed by Bertrand and Gayda. The redox potential of A. aeolicus ferredoxin 5 (-390 mV) is in keeping with its relatedness to Isc-Fd. Unfolding experiments showed that A. aeolicus ferredoxin 5 is highly thermostable (T(m) = 106 degrees C at pH 7), despite being devoid of features (e.g., high content of charged residues) usually associated with extreme thermal stability. Searches for genes potentially encoding plant-type [2Fe-2S] ferredoxins have been performed on the sequenced genomes of hyperthermophilic organisms. None other than the two proteins from A. aeolicus were retrieved, indicating that this otherwise widely distributed group of proteins is barely represented among hyperthermophiles.  相似文献   

9.
The active form of the leucyl-tRNA synthetase from an extreme thermophile Aquifex aeolicus has a heterodimeric (alpha/beta type) quaternary structure that is unique among class I aminoacyl-tRNA synthetases. In an attempt to clarify the individual roles of each subunit in the function of leucyl-tRNA synthetase, several elementary activities were separately measured using each of the subunits alone or the reconstructed alpha/beta complex. It was found that the beta subunit alone is capable of recognizing its cognate tRNA, while the leucyl-adenylate formation and the overall leucyl-tRNA formation are detected only when both of the subunit proteins coexisted.  相似文献   

10.
11.
The "hypothetical protein" Aq_1259 was identified by mass spectrometry and purified from native membranes of Aquifex aeolicus. It is a 49.4kDa protein, highly homologous (>52% identity) to several conserved hypothetical proteins from other bacteria. However, none of these proteins has been characterized using biochemical or electrophysiological techniques. Based on the sequence and circular dichroism spectroscopy, the structure of Aq_1259 is predicted to be a β-barrel with 16 β-strands. The strands with loops and turns are distributed evenly through the entire sequence. The function of Aq_1259 was analyzed after incorporation into a lipid bilayer. Electrophysiological measurements revealed a pore that has a basic stationary conductance of 0.48±0.038nS in a buffer with 0.5M NaH(2)PO(4) at pH 6.5 and 0.2±0.015nS in a buffer with 0.5M NaCl at pH 6.5. Superimposed on this is a fluctuating conductance of similar amplitude. Aq_1259 could be crystallized. The crystals diffract to a resolution of 3.4? and belong to space group I222 with cell dimensions of a=138.3?, b=144.6?, c=151.8?.  相似文献   

12.
Dihydroorotases (EC 3.5.2.3) catalyze the reversible cyclization of carbamoyl aspartate to form dihydroorotate in de novo pyrimidine biosynthesis. The X-ray structures of Aquifex aeolicus dihydroorotase in two space groups, C222(1) and C2, were determined at a resolution of 1.7A. These are the first structures of a type I dihydroorotase, a class of molecules that includes the dihydroorotase domain of mammalian CAD. The type I enzymes are more ancient and larger, at 45 kDa, than the type II enzymes exemplified by the 38 kDa Escherichia coli dihydroorotase. Both dihydroorotases are members of the metallo-dependent hydrolase superfamily, whose members have a distorted "TIM barrel" domain containing the active site. However, A.aeolicus dihydroorotase has a second, composite domain, which the E.coli enzyme lacks and has only one of the two zinc atoms present in the E.coli enzyme. A.aeolicus dihydroorotase is unique in exhibiting significant activity only when complexed with aspartate transcarbamoylase, whereas the E.coli dihydroorotase and the CAD dihydroorotase domain are active as free proteins. The latency of A.aeolicus dihydroorotase can be related to two differences between its structure and that of E.coli dihydroorotase: (1) the monoclinic structure has a novel cysteine ligand to the zinc that blocks the active site and possibly functions as a "cysteine switch"; and (2) active site residues that bind the substrate in E.coli dihydroorotase are located in disordered loops in both crystal structures of A.aeolicus dihydroorotase and may function as a disorder-to-order "entropy switch".  相似文献   

13.
A [2Fe-2S] ferredoxin (Fd1) from the hyperthermophilic bacterium Aquifex aeolicus has been obtained by heterologous expression of the encoding gene in Escherichia coli. Sequence comparisons show that this protein belongs to the extended family of plant- and mammalian-type [2Fe-2S] ferredoxins but also indicate that it is not closely similar to either the plant-type or mammalian-type subfamilies. Instead, it appears to bear some similarity to novel members of this family, in particular the Isc-type ferredoxins involved in the assembly of iron-sulfur clusters in vivo. The two redox levels of the [2Fe-2S](2+/+) metal site of A. aeolicus ferredoxin have been studied by UV-visible, resonance Raman, EPR, variable temperature magnetic circular dichroism, and M?ssbauer spectroscopies. A full-spin Hamiltonian analysis is given for the M?ssbauer spectra. In aggregate, the spectroscopic data reveal differences with both the plant-type and mammalian-type ferredoxins, in keeping with the sequence comparisons. The midpoint potential of the [2Fe-2S](2+/+) couple, at -375 mV versus the normal hydrogen electrode, is more negative than those of mammalian-type ferredoxins and at the upper end of the range covered by plant-type ferredoxins. A. aeolicus ferredoxin contains two cysteines in addition to the four that are committed as ligands of the [2Fe-2S] cluster. These two residues have been shown by chemical modification and site-directed mutagenesis to form a disulfide bridge in the native protein. While that cystine unit plays a significant role in the exceptional thermostability of A. aeolicus ferredoxin (T(m) = 121 degrees C at pH 7 versus T(m) = 113 degrees C in a molecular variant where the disulfide bridge has been removed), it does not bear on the properties of the [2Fe-2S](2+/+) chromophore. This observation is consistent with the large distance (ca. 20 A) that is predicted to separate the iron-sulfur chromophore from the disulfide bridge.  相似文献   

14.
A potential role in disulfide bond formation in the intracellular proteins of thermophilic organisms has recently been attributed to a new family of protein disulfide isomerase (PDI)-like proteins. Members of this family are characterized by a molecular mass of about 26kDa and by two Trx folds, each comprising a CXXC active site motif. We report on the functional and structural characterization of a new member of this family, which was isolated from the thermophilic bacterium Aquifex aeolicus (AaPDO). Functional studies have revealed the high catalytic efficiency of this enzyme in reducing, oxidizing and isomerizing disulfide bridges. Site-directed mutagenesis experiments have suggested that its two active sites have similar functional properties, i.e. that each of them imparts partial activity to the enzyme. This similarity was confirmed by the analysis of the enzyme crystal structure, which points to similar geometrical parameters and solvent accessibilities for the two active sites. The results demonstrated that AaPDO is the most PDI-like of all prokaryotic proteins so far known. Thus, further experimental studies on this enzyme are likely to provide important information on the eukaryotic homologue.  相似文献   

15.
The 2.3 A resolution crystal structure of a [2Fe-2S] cluster containing ferredoxin from Aquifex aeolicus reveals a thioredoxin-like fold that is novel among iron-sulfur proteins. The [2Fe-2S] cluster is located near the surface of the protein, at a site corresponding to that of the active-site disulfide bridge in thioredoxin. The four cysteine ligands are located near the ends of two surface loops. Two of these ligands can be substituted by non-native cysteine residues introduced throughout a stretch of the polypeptide chain that forms a protruding loop extending away from the cluster. The presence of homologs of this ferredoxin as components of more complex anaerobic and aerobic electron transfer systems indicates that this is a versatile fold for biological redox processes.  相似文献   

16.
The 64-kD protein DAip1 from Dictyostelium contains nine WD40-repeats and is homologous to the actin-interacting protein 1, Aip1p, from Saccharomyces cerevisiae, and to related proteins from Caenorhabditis, Physarum, and higher eukaryotes.We show that DAip1 is localized to dynamic regions of the cell cortex that are enriched in filamentous actin: phagocytic cups, macropinosomes, lamellipodia, and other pseudopodia. In cells expressing green fluorescent protein (GFP)-tagged DAip1, the protein rapidly redistributes into newly formed cortical protrusions.Functions of DAip1 in vivo were assessed using null mutants generated by gene replacement, and by overexpressing DAip1. DAip1-null cells are impaired in growth and their rates of fluid-phase uptake, phagocytosis, and movement are reduced in comparison to wild-type rates. Cytokinesis is prolonged in DAip1-null cells and they tend to become multinucleate. On the basis of similar results obtained by DAip1 overexpression and effects of latrunculin-A treatment, we propose a function for DAip1 in the control of actin depolymerization in vivo, probably through interaction with cofilin. Our data suggest that DAip1 plays an important regulatory role in the rapid remodeling of the cortical actin meshwork.  相似文献   

17.
The "hypothetical protein" AQ_1862 was isolated from the membrane fraction of Aquifex aeolicus and identified as the major porin. In experiments with one conducting unit (molecule) a conductance of 1.4 nS was observed in 0.1 M KCl at pH 7.5. This stable (basic) conductance was superimposed by conductance fluctuations of approximately 0.25 nS. Because both events were always observed simultaneously, it is suggested that they are caused by the same molecular entity. Nonetheless they show very different properties. The basic conductance is anion selective at neutral pH with a conductance sequence Cl- approximately Br- approximately NO3->F->gluconate approximately acetate approximately propionate and does not saturate up to 0.5 M KCl. At alkaline pH and in the presence of large anions, it becomes unselective and the conductance saturates at low concentrations (Km approximately 20 mM). In contrast the fluctuating component is mainly cation selective with a conductance sequence K+ approximately Rb+>NH4+>Na+ approximately Li+ approximately Cs+. It saturates at low salt concentrations (Km approximately 15 mM) and is not affected by pH. In view of the diverging properties of both conductance components, it seems appropriate to assume that AQ_1862 has two different conducting pathways rather than one with two different open states.  相似文献   

18.
19.
A DNA ligase gene from the hyperthermophilic bacterium Aquifex pyrophilus (Ap) was cloned and sequenced. An open reading frame of 2,157 bp that codes for a 82-kDa protein showed 40%-60% homology with a series of NAD+-dependent DNA ligases from different organisms. The recombinant enzyme Ap DNA ligase expressed in Escherichia coli was purified to homogeneity and characterized. The activity of Ap DNA ligase gradually increased in proportion to the concentration of monovalent salt up to 200 mM NaCl, 150 mM KCl, 200 mM NH4Cl, and 350 mM potassium glutamate. The optimum temperature and pH of Ap DNA ligase were greater than 65 degrees C and 8.0-8.6, respectively, for nick-closing activity. More than 75% of the ligation activity was retained after incubation at 95 degrees C for 60 min, whereas the half-lives of Thermus aquaticus and Escherichia coli DNA ligases at 95 degrees C were < or =15 min and 5 min, respectively. Thermostable Ap DNA ligase was applied to repeat expansion detection (RED) and could be a useful enzyme in DNA diagnostics.  相似文献   

20.
Aminoacyl-tRNA synthetases are key players in the interpretation of the genetic code. They constitute a textbook example of multi-domain proteins including insertion and terminal functional modules appended to one of the two class-specific active site domains. The non-catalytic domains usually have distinct roles in the aminoacylation reaction. Aquifex aeolicus leucyl-tRNA synthetase (LeuRS) is composed of a separated catalytic site and tRNA anticodon-binding site, which would represent one of the closest relics of the primordial aminoacyl-tRNA synthetase. Moreover, the essential catalytic site residues are split into the two different subunits. In all other class-I aminoacyl-tRNA synthetases, those two functional polypeptides are nowadays fused into a single protein chain. In this work, we report the isolation and the characterization, in Escherichia coli, of a novel oligomeric form (alphabeta)2 for A. aeolicus LeuRS, which is present in addition to the alphabeta heterodimer. A. aeolicus (alphabeta)2 LeuRS has been characterized by biochemical and biophysical methods. Native gel electrophoresis, mass spectrometry, analytical ultracentrifugation, and kinetic analysis confirmed that the (alphabeta)2 enzyme was a stable and active entity. By mass spectrometry we confirmed that the heterodimer alphabeta can bind one tRNALeu molecule whereas the heterotetramer (alphabeta)2 can bind two tRNALeu molecules. Active site titration and aminoacylation assays showed that two functional active sites are found per heterotetramer, suggesting that this molecular species might exist and be active in vivo. All those data suggest that the existence of the heterotetramer is certainly not an artifact of overexpression in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号