首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
2.
3.
4.
5.
The catalytic AAA+ domain (PspF1-275) of an enhancer-binding protein is necessary and sufficient to contact sigma54-RNA polymerase holoenzyme (Esigma54), remodel it, and in so doing catalyze open promoter complex formation. Whether ATP binding and hydrolysis is coordinated between subunits of PspF and the precise nature of the nucleotide(s) bound to the oligomeric forms responsible for substrate remodeling are unknown. We demonstrate that ADP stimulates the intrinsic ATPase activity of PspF1-275 and propose that this heterogeneous nucleotide occupancy in a PspF1-275 hexamer is functionally important for specific activity. Binding of ADP and ATP triggers the formation of functional PspF1-275 hexamers as shown by a gain of specific activity. Furthermore, ATP concentrations congruent with stoichiometric ATP binding to PspF1-275 inhibit ATP hydrolysis and Esigma54-promoter open complex formation. Demonstration of a heterogeneous nucleotide-bound state of a functional PspF1-275.Esigma54 complex provides clear biochemical evidence for heterogeneous nucleotide occupancy in this AAA+ protein. Based on our data, we propose a stochastic nucleotide binding and a coordinated hydrolysis mechanism in PspF1-275 hexamers.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Translocases of the AAA+ (ATPases Associated with various cellular Activities) family are powerful molecular machines that use the mechano‐chemical coupling of ATP hydrolysis and conformational changes to thread DNA or protein substrates through their central channel for many important biological processes. These motors comprise hexameric rings of ATPase subunits, in which highly conserved nucleotide‐binding domains form active‐site pockets near the subunit interfaces and aromatic pore‐loop residues extend into the central channel for substrate binding and mechanical pulling. Over the past 2 years, 41 cryo‐EM structures have been solved for substrate‐bound AAA+ translocases that revealed spiral‐staircase arrangements of pore‐loop residues surrounding substrate polypeptides and indicating a conserved hand‐over‐hand mechanism for translocation. The subunits' vertical positions within the spiral arrangements appear to be correlated with their nucleotide states, progressing from ATP‐bound at the top to ADP or apo states at the bottom. Studies describing multiple conformations for a particular motor illustrate the potential coupling between ATP‐hydrolysis steps and subunit movements to propel the substrate. Experiments with double‐ring, Type II AAA+ motors revealed an offset of hydrolysis steps between the two ATPase domains of individual subunits, and the upper ATPase domains lacking aromatic pore loops frequently form planar rings. This review summarizes the critical advances provided by recent studies to our structural and functional understanding of hexameric AAA+ translocases, as well as the important outstanding questions regarding the underlying mechanisms for coordinated ATP‐hydrolysis and mechano‐chemical coupling.  相似文献   

17.
18.
19.
20.
AAA+ proteins remodel target substrates in an ATP-dependent manner, an activity that is of central importance for a plethora of cellular processes. While sharing a similar hexameric structure AAA+ proteins must exhibit differences in substrate recognition to fulfil their diverse biological functions. Here we describe strategies of AAA+ proteins to ensure substrate specificity. AAA domains can directly mediate substrate recognition, however, in general extra domains, added to the core AAA domain, control substrate interaction. Such extra domains may either directly recognize substrates or serve as a platform for adaptor proteins, which transfer bound substrates to their AAA+ partner proteins. The positioning of adaptor proteins in substrate recognition can enable them to control the activity of their partner proteins by coupling AAA+ protein activation to substrate availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号