首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nisha P  Plank JL  Csink AK 《Genetics》2008,179(1):359-373
While heterochromatic gene silencing in cis is often accompanied by nucleosomal compaction, characteristic histone modifications, and recruitment of heterochromatin proteins, little is known concerning genes silenced by heterochromatin in trans. An insertion of heterochromatic satellite DNA in the euchromatic brown (bw) gene of Drosophila melanogaster results in bwDominant (bwD), which can inactivate loci on the homolog by relocation near the centric heterochromatin (trans-inactivation). Nucleosomal compaction was found to accompany trans-inactivation, but stereotypical heterochromatic histone modifications were mostly absent on silenced reporter genes. HP1 was enriched on trans-inactivated reporter constructs and this enrichment was more pronounced on adult chromatin than on larval chromatin. Interestingly, this HP1 enrichment in trans was unaccompanied by an increase in the 2MeH3K9 mark, which is generally thought to be the docking site for HP1 in heterochromatin. However, a substantial increase in the 2MeH3K9 mark was found on or near the bwD satellite insertion in cis, but did not spread further. These observations suggest that the interaction of HP1 with chromatin in cis is fundamentally different from that in trans. Our molecular data agree well with the differential phenotypic effect on bwD trans-inactivation of various genes known to be involved in histone modification and cis gene silencing.  相似文献   

2.
The brown(Dominant) (bw(D)) allele contains a large insertion of heterochromatin leading to the trans-inactivation of the wild-type allele in bw(D)/bw(+) heterozygous flies. This silencing is correlated with the localization of bw(+) to a region of the interphase nucleus containing centric heterochromatin. We have used a series of transgene constructs inserted in the vicinity of the bw locus to demarcate both the extent of bw(D) influence along the chromosome and the relative sensitivities of various genes. Examples of regulatory regions that are highly sensitive, moderately sensitive, and insensitive were found. Additionally, by using the same transgene at increasing distances from the bw(D) insertion site in trans we were able to determine the range of influence of the heterochromatic neighborhood in terms of chromosomal distance. When the transgene was farther away from bw, there was, indeed, a tendency for it to be less trans-inactivated. However, insertion site also influenced silencing: a gene 86 kb away was trans-inactivated, while the same transgene 45 kb away was not. Thus location, distance, and gene-specific differences all influence susceptibility to trans-silencing near a heterochromatic neighborhood. These results have important implications for the ability of nuclear positioning to influence the expression of large blocks of a chromosome.  相似文献   

3.
S. Bonaccorsi  A. Lohe 《Genetics》1991,129(1):177-189
The entirely heterochromatic Y chromosome of Drosophila melanogaster contains a series of simple sequence satellite DNAs which together account for about 80% of its length. Molecular cloning of the three simple sequence satellite DNAs of D. melanogaster (1.672, 1.686 and 1.705 g/ml) revealed that each satellite comprises several distinct repeat sequences. Together 11 related sequences were identified and 9 of them were shown to be located on the Y chromosome. In the present study we have finely mapped 8 of these sequences along the Y by in situ hybridization on mitotic chromosome preparations. The hybridization experiments were performed on a series of cytologically determined rearrangements involving the Y chromosome. The breakpoints of these rearrangements provided an array of landmarks along the Y which have been used to localize each sequence on the various heterochromatic blocks defined by Hoechst and N-banding techniques. The results of this analysis indicate a good correlation between the N-banded regions and 1.705 repeats and between the Hoechst-bright regions and the 1.672 repeats. However, the molecular basis for banding does not appear to depend exclusively on DNA content, since heterochromatic blocks showing identical banding patterns often contain different combinations of satellite repeats. The distribution of satellite repeats has also been analyzed with respect to the male fertility factors of the Y chromosome. Both loop-forming (kl-5, kl-3 and ks-1) and non-loop-forming (kl-2 and ks-2) fertility genes contain substantial amounts of satellite DNAs. Moreover, each fertility region is characterized by a specific combination of satellite sequences rather than by an homogeneous array of a single type of repeat.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
Non-mobile retrotransposons mdg1het and aurora localized in Drosophila melanogaster heterochromatin were studied. A novel retrotransposon aurora comprising 324 bp LTRs was revealed as a 5 kb insertion causing 5 bp duplication of integration site in the heterochromatic Stellate gene. All the aurora copies are immobilized in D. melanogaster heterochromatin and adjoining chromosome regions 40, 41C and 80BC. Mobile aurora copies were revealed in D. simulans euchromatin by in situ hybridization technique. A comparison of 2.5 kb sequence of immobile mdg1het (including a half of ORF2 and 3'-LTR) with the correspondent sequence of transposable mdg1 copy [9] allowed to conclude that evolution of mdg1 subfamilies occurred under the selective pressure for the ability to transpose. The time period passed since the aurora and mdg1 copies integrated in heterochromatin was roughly estimated via divergence extent between the left and right LTR; for aurora copy it is 0-0.15 Myr, and for mdg1het copies it is 0-0.7 Myr.  相似文献   

6.
Konev AY  Yan CM  Acevedo D  Kennedy C  Ward E  Lim A  Tickoo S  Karpen GH 《Genetics》2003,165(4):2039-2053
Heterochromatin is a major component of higher eukaryotic genomes, but progress in understanding the molecular structure and composition of heterochromatin has lagged behind the production of relatively complete euchromatic genome sequences. The introduction of single-copy molecular-genetic entry points can greatly facilitate structure and sequence analysis of heterochromatic regions that are rich in repeated DNA. In this study, we report the isolation of 502 new P-element insertions into Drosophila melanogaster centric heterochromatin, generated in nine different genetic screens that relied on mosaic silencing (position-effect variegation, or PEV) of the yellow gene present in the transposon. The highest frequencies of recovery of variegating insertions were observed when centric insertions were used as the source for mobilization. We propose that the increased recovery of variegating insertions from heterochromatic starting sites may result from the physical proximity of different heterochromatic regions in germline nuclei or from the association of mobilizing elements with heterochromatin proteins. High frequencies of variegating insertions were also recovered when a potent suppressor of PEV (an extra Y chromosome) was present in both the mobilization and selection generations, presumably due to the effects of chromatin structure on P-element mobilization, insertion, and phenotypic selection. Finally, fewer variegating insertions were recovered after mobilization in females, in comparison to males, which may reflect differences in heterochromatin structure in the female and male germlines. FISH localization of a subset of the insertions confirmed that 98% of the variegating lines contain heterochromatic insertions and that these schemes produce a broader distribution of insertion sites. The results of these schemes have identified the most efficient methods for generating centric heterochromatin P insertions. In addition, the large collection of insertions produced by these screens provides molecular-genetic entry points for mapping, sequencing, and functional analysis of Drosophila heterochromatin.  相似文献   

7.
D. F. Eberl  B. J. Duyf    A. J. Hilliker 《Genetics》1993,134(1):277-292
Constitutive heterochromatic regions of chromosomes are those that remain condensed through most or all of the cell cycle. In Drosophila melanogaster, the constitutive heterochromatic regions, located around the centromere, contain a number of gene loci, but at a much lower density than euchromatin. In the autosomal heterochromatin, the gene loci appear to be unique sequence genes interspersed among blocks of highly repeated sequences. Euchromatic genes do not function well when brought into the vicinity of heterochromatin (position-effect variegation). We test the possibility that the blocks of centromeric heterochromatin provide an environment essential for heterochromatic gene function. To assay directly the functional requirement of autosomal heterochromatic genes to reside in heterochromatin, the rolled (rl) gene, which is normally located deep in chromosome 2R heterochromatin, was relocated within small blocks of heterochromatin to a variety of euchromatic positions by successive series of chromosomal rearrangements. The function of the rl gene is severely affected in rearrangements in which the rl gene is isolated in a small block of heterochromatin, and these position effects can be reverted by rearrangements which bring the rl gene closer to any large block of autosomal or X chromosome heterochromatin. There is some evidence that five other 2R heterochromatic genes are also affected among these rearrangements. These findings demonstrate that the heterochromatic genes, in contrast to euchromatic genes whose function is inhibited by relocation to heterochromatin, require proximity to heterochromatin to function properly, and they argue strongly that a major function of the highly repeated satellite DNA, which comprises most of the heterochromatin, is to provide this heterochromatic environment.  相似文献   

8.
A. R. Lohe  A. J. Hilliker    P. A. Roberts 《Genetics》1993,134(4):1149-1174
Heterochromatin in Drosophila has unusual genetic, cytological and molecular properties. Highly repeated DNA sequences (satellites) are the principal component of heterochromatin. Using probes from cloned satellites, we have constructed a chromosome map of 10 highly repeated, simple DNA sequences in heterochromatin of mitotic chromosomes of Drosophila melanogaster. Despite extensive sequence homology among some satellites, chromosomal locations could be distinguished by stringent in situ hybridizations for each satellite. Only two of the localizations previously determined using gradient-purified bulk satellite probes are correct. Eight new satellite localizations are presented, providing a megabase-level chromosome map of one-quarter of the genome. Five major satellites each exhibit a multichromosome distribution, and five minor satellites hybridize to single sites on the Y chromosome. Satellites closely related in sequence are often located near one another on the same chromosome. About 80% of Y chromosome DNA is composed of nine simple repeated sequences, in particular (AAGAC)(n) (8 Mb), (AAGAG)(n) (7 Mb) and (AATAT)(n) (6 Mb). Similarly, more than 70% of the DNA in chromosome 2 heterochromatin is composed of five simple repeated sequences. We have also generated a high resolution map of satellites in chromosome 2 heterochromatin, using a series of translocation chromosomes whose breakpoints in heterochromatin were ordered by N-banding. Finally, staining and banding patterns of heterochromatic regions are correlated with the locations of specific repeated DNA sequences. The basis for the cytochemical heterogeneity in banding appears to depend exclusively on the different satellite DNAs present in heterochromatin.  相似文献   

9.
Tsai JH  Yan R  McKee BD 《Chromosoma》2011,120(4):335-351
Drosophila males undergo meiosis without recombination or chiasmata but homologous chromosomes pair and disjoin regularly. The X–Y pair utilizes a specific repeated sequence within the heterochromatic ribosomal DNA blocks as a pairing site. No pairing sites have yet been identified for the autosomes. To search for such sites, we utilized probes targeting specific heterochromatic regions to assay heterochromatin pairing sequences and behavior in meiosis by fluorescence in situ hybridization (FISH). We found that the small fourth chromosome pairs at heterochromatic region 61 and associates with the X chromosome throughout prophase I. Homolog pairing of the fourth chromosome is disrupted when the homolog conjunction complex is perturbed by mutations in SNM or MNM. On the other hand, six tested heterochromatic regions of the major autosomes proved to be largely unpaired after early prophase I, suggesting that stable homolog pairing sites do not exist in heterochromatin of the major autosomes. Furthermore, FISH analysis revealed two distinct patterns of sister chromatid cohesion in heterochromatin: regions with stable cohesion and regions lacking cohesion. This suggests that meiotic sister chromatid cohesion is incomplete within heterochromatin and may occur at specific preferential sites.  相似文献   

10.
Niedermaier J  Moritz KB 《Chromosoma》2000,109(7):439-452
In the nematode genus Ascaris the germline genome contains considerable amounts of extra DNA, which is discarded from the somatic founder blastomeres during early cleavage. In Parascaris univalens the haploid germline genome is contained in one large compound chromosome, which consists of a euchromatic region containing the somatic genome flanked by large blocks of heterochromatin. Fluorescence in situ hybridization of fractions of the germline-limited satellite DNA revealed two highly repeated sequence families establishing the entire heterochromatin (HET blocks). The repeats, a pentanucleotide, TTGCA, and a decanucleotide, TTTGTGCGTG, constitute separate segments of the HET blocks. The blocks are polymorphic in length and, hence, in copy number of the repeats, and the arrangement of the segments. The numerous sequence variants of both repeats display a disperse distribution. The type and rate of base substitutions within both repeat units depend on position. Prior to the elimination process in presomatic cells, termed chromatin diminution, the chromosomes undergo differential mitotic condensation. Interstitial 'chromatin linkers' flanking the prospective numerous somatic chromosomes remain entirely decondensed. The somatic chromosomes are released from the plurivalent chromosomes via excision of the linkers at onset of anaphase, followed by exclusion of the akinetic linker chromatin and HET blocks from the daughter nuclei. In Ascaris suum, the germline-limited satellite, which consists of one 123 bp repeat, is scattered throughout the numerous chromosomes in small heterochromatic knobs of variable sizes, residing at chromosomal ends and/or intercalary positions. The programmed breakage, which appears to proceed in a similar manner to that in P. univalens, results in the loss of all heterochromatic knobs, accompanied by an increase in chromosome number. In both species, all germline chromosomes are capped by tracts of TTAGGC repeats. In P. univalens, such telomeric tracts also occur at the termini of the euchromatic intercalary regions. Upon diminution all telomeric tracts are discarded. De novo telomere addition occurs in all somatic cell lineages of both species. The presented data shed light on the evolutionary history of chromosome aggregation and satellite DNA formation, and putative mechanisms involved in the process of site-directed breakage to reestablish stable somatic chromosomes.  相似文献   

11.
《Cell》2000,100(3):377-386
Heterochromatin, constitutively condensed chromosomal material, is widespread among eukaryotes but incompletely characterized at the nucleotide level. We have sequenced and analyzed 2.1 megabases (Mb) of Arabidopsis thaliana chromosome 4 that includes 0.5-0.7 Mb of isolated heterochromatin that resembles the chromosomal knobs described by Barbara McClintock in maize. This isolated region has a low density of expressed genes, low levels of recombination and a low incidence of genetrap insertion. Satellite repeats were absent, but tandem arrays of long repeats and many transposons were found. Methylation of these sequences was dependent on chromatin remodeling. Clustered repeats were associated with condensed chromosomal domains elsewhere. The complete sequence of a heterochromatic island provides an opportunity to study sequence determinants of chromosome condensation.  相似文献   

12.
S. Henikoff  J. M. Jackson    P. B. Talbert 《Genetics》1995,140(3):1007-1017
We examined the behavior of the brown(Dominant) (bw(D)) heterochromatic insertion moved to different locations relative to centric heterochromatin. Effects were measured as the degree of silencing of a wild-type brown eye pigment gene by bw(D) across a tandem duplication. A series of X-ray-induced effects were recovered at high frequency. Cis-acting enhancers were obtained by relocation of the duplication closer to autosomal heterochromatin. Enhancers were also recovered on the homologous chromosome when it was similarly rearranged, revealing a novel interhomologue effect whereby interactions occur between genetic elements near opposite ends of a chromosome arm rather than between paired alleles. Cis-acting suppressors were obtained as secondary rearrangements in which the duplication was moved farther away from heterochromatin. Suppression was correlated with loss of cytological association between bw(D) and the polytene chromocenter. Surprisingly, the distance from bw(D) to the chromocenter was not correlated with the strength of enhancement or suppression. We propose that bw(D) fails to coalesce with the chromocenter when its position along the chromosome places it beyond a threshold distance from heterochromatin, and this threshold depends upon the configuration of both the chromosome carrying bw(D) and its paired homologue.  相似文献   

13.
Noncoding repetitive sequences make up a large portion of eukaryotic genomes, but their function is not well understood. Large blocks of repetitive DNA-forming heterochromatin around the centromeres are required for this region to function properly, but are difficult to analyze. The smaller regions of heterochromatin at the telomeres provide an opportunity to study their DNA and protein composition. Drosophila telomere length is maintained through the targeted transposition of specific non-long terminal repeat retrotransposons to chromosome ends, where they form long tandem arrays. A subterminal telomere-associated sequence (TAS) lies immediately proximal to the terminal-retrotransposon array. Here, we review the experimental support for the heterochromatic features of Drosophila telomeres, and provide evidence that telomeric regions contain 2 distinct chromatin subdomains: TAS, which exhibits features that resemble beta heterochromatin; and the terminal array of retrotransposons, which appears euchromatic. This organization is significantly different from the telomeric organization of other eukaryotes, where the terminal telomerase-generated repeats are often folded in a t-loop structure and become part of the heterochromatin protein complex.  相似文献   

14.
Summary The Sau3A family is a human, clustered, highly repetitive, GC-rich DNA family. In situ hybridization studies with a plasmid carrying a Sau3A monomer as a probe have shown that Sau3A sequences are preferentially concentrated in the heterochromatic regions of human acrocentric chromosomes (D and G groups, both in pericentromeric regions and in cytological satellites) and in pericentromeric heterochromatin of chromosome 1. The same chromosomal locations were observed by using as probes two recombinant phages which carry Sau3A-positive genomic sectors. The two sectors differfor the relative proportions of monomer and multiples of Sau3A repeats, which show different extents of homology to the cloned monomer, and for the presence, in one of the two, of a samll amount of an unrelated repeat (alphoid DNA). The similarity of the results obtained with the three probes suggests that heterogeneous Sau3A repeats share the same chromosomal localizations and that the two analyzed genomic sectors may not contain significant amounts of repetitive DNAs other than the Sau3A family. A comparison between the chromosomal locations of Sau3A and EcoRI families of repeats has confirmed that each family is characterized by specific chromosomal locations and that single heterochromatic regions may contain both.  相似文献   

15.
The functions of DNA satellites of centric heterochromatin are difficult to assess with classical molecular biology tools. Using a chemical approach, we demonstrate that synthetic polyamides that specifically target AT-rich satellite repeats of Drosophila melanogaster can be used to study the function of these sequences. The P9 polyamide, which binds the X-chromosome 1.688 g/cm3 satellite III (SAT III), displaces the D1 protein. This displacement in turn results in a selective loss of HP1 and topoisomerase II from SAT III, while these proteins remain bound to the adjacent rDNA repeats and to other regions not targeted by P9. Conversely, targeting of (AAGAG)n satellite V repeats by the P31 polyamide results in the displacement of HP1 from these sequences, indicating that HP1 interactions with chromatin are sensitive to DNA-binding ligands. P9 fed to larvae suppresses the position-effect variegation phenotype of white-mottled adult flies. We propose that this effect is due to displacement of the heterochromatin proteins D1, HP1 and topoisomerase II from SAT III, hence resulting in stochastic chromatin opening and desilencing of the nearby white gene.  相似文献   

16.
McKee BD  Hong CS  Das S 《Genetica》2000,109(1-2):77-93
Mapping of pairing sites involved in meiotic homolog disjunction in Drosophilahas led to conflicting hypotheses about the nature of such sites and the role of heterochromatin in meiotic pairing. In the female-specific distributive system, pairing regions appear to be exclusively heterochromatic and map to broad regions encompassing many different sequences. In male meiosis, autosomal pairing sites appear to be distributed broadly within euchromatin but to be absent from heterochromatin, whereas the X-pairing site maps in the centric heterochromatin. The X site has been shown to coincide with the intergenic spacer (IGS) repeats within the rDNA arrays shared between the X and Y. It has not been clear whether the heterochromatic location of this pairing site has any significance. A novel assay for genic modifiers of X–Y chromosome pairing was developed based on the intermediate nondisjunction levels observed in males whose X chromosome lacks the native pairing site but contains two transgenic insertions of single rDNA genes. This assay was used to test several mutations in Su(var)(Suppressor of position effect variegation), PcG(Polycomb-Group) recombination defective, and repair-defective genes. No strong effects on disjunction were seen. However, the tests did uncover several mutations that suppress or enhance the meiotic drive (distorted X-Y recovery ratio) that accompanies X–Y pairing failure. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The evolution of the chromosomal location of ribosomal RNA gene clusters and the organization of heterochromatin in the Drosophila melanogaster group were investigated using fluorescence in situ hybridization and DAPI staining to mitotic chromosomes. The investigation of 18 species (11 of which were being examined for the first time) belonging to the melanogaster and ananassae subgroups suggests that the ancestral configuration consists of one nucleolus organizer (NOR) on each sex chromosome. This pattern, which is conserved throughout the melanogaster subgroup, except in D. simulans and D. sechellia, was observed only in the ercepeae complex within the ananassae subgroup. Both sex-linked NORs must have been lost in the lineage leading to D. varians and in the ananassae and bipectinata complexes, whereas new sites, characterized by intra-species variation in hybridization signal size, appeared on the fourth chromosome related to heterochromatic rearrangements. Nucleolar material is thought to be required for sex chromosome pairing and disjunction in a variety of organisms including Drosophila. Thus, either remnant sequences, possibly intergenic spacer repeats, are still present in the sex chromosomes which have lost their NORs (as observed in D. simulans and D. sechellia), or an alternative mechanism has evolved.  相似文献   

18.
19.
D. R. Dorer  S. Henikoff 《Genetics》1997,147(3):1181-1190
Tandem repeats of Drosophila transgenes can cause heterochromatic variegation for transgene expression in a copy-number and orientation-dependent manner. Here, we demonstrate different ways in which these transgene repeat arrays interact with other sequences at a distance, displaying properties identical to those of a naturally occurring block of interstitial heterochromatin. Arrays consisting of tandemly repeated white transgenes are strongly affected by proximity to constitutive heterochromatin. Moving an array closer to heterochromatin enhanced variegation, and enhancement was reverted by recombination of the array onto a normal sequence chromosome. Rearrangements that lack the array enhanced variegation of white on a homologue bearing the array. Therefore, silencing of white genes within a repeat array depends on its distance from heterochromatin of the same chromosome or of its paired homologue. In addition, white transgene arrays cause variegation of a nearby gene in cis, a hallmark of classical position-effect variegation. Such spreading of heterochromatic silencing correlates with array size. Finally, white transgene arrays cause pairing-dependent silencing of a non-variegating white insertion at the homologous position.  相似文献   

20.
Cattani MV  Presgraves DC 《Genetics》2012,191(2):549-559
The Dobzhansky-Muller model posits that postzygotic reproductive isolation results from the evolution of incompatible epistatic interactions between species: alleles that function in the genetic background of one species can cause sterility or lethality in the genetic background of another species. Progress in identifying and characterizing factors involved in postzygotic isolation in Drosophila has remained slow, mainly because Drosophila melanogaster, with all of its genetic tools, forms dead or sterile hybrids when crossed to its sister species, D. simulans, D. sechellia, and D. mauritiana. To circumvent this problem, we used chromosome deletions and duplications from D. melanogaster to map two hybrid incompatibility loci in F(1) hybrids with its sister species. We mapped a recessive factor to the pericentromeric heterochromatin of the X chromosome in D. simulans and D. mauritiana, which we call heterochromatin hybrid lethal (hhl), which causes lethality in F(1) hybrid females with D. melanogaster. As F(1) hybrid males hemizygous for a D. mauritiana (or D. simulans) X chromosome are viable, the lethality of deficiency hybrid females implies that a dominant incompatible partner locus exists on the D. melanogaster X. Using small segments of the D. melanogaster X chromosome duplicated onto the Y chromosome, we mapped a dominant factor that causes hybrid lethality to a small 24-gene region of the D. melanogaster X. We provide evidence suggesting that it interacts with hhl(mau). The location of hhl is consistent with the emerging theme that hybrid incompatibilities in Drosophila involve heterochromatic regions and factors that interact with the heterochromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号