首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently demonstrated that the Arg-X-Lys/Arg-Arg sequence is a signal for precursor cleavage catalyzed by furin, a mammalian homologue of the yeast precursor-processing endoprotease Kex2, within the constitutive secretory pathway. In this study, we further examined sequence requirements for the constitutive precursor cleavage by expression of various prorenin mutants with amino acid substitutions around the native Lys-Arg cleavage site in Chinese hamster ovary cells. The results delineate the following sequence rules that govern the constitutive precursor cleavage. (a) A basic residue (Lys or Arg) at the 4th (position -4) or 6th (position -6) residue upstream of the cleavage site besides basic residues at positions -1 and -2 is necessary. (b) At position -2, a Lys residue is more preferable than Arg. (c) At position -4, an Arg residue is more preferable than Lys. (d) At position 1, a hydrophobic aliphatic amino acid is not suitable.  相似文献   

2.
We demonstrate that the precursor of the major light-harvesting chlorophyll a/b binding protein (LHCP of Photosystem II), encoded by a Type I gene, contains distinct determinants for processing at two sites during in vitro import into the chloroplast. Using precursors from both pea and wheat, it is shown that primary site processing, and release of a approximately 26-kD peptide, depends on an amino-proximal basic residue. Substitution of an arginine at position -4 resulted in an 80% reduction in processing, with the concomitant accumulation of a high molecular weight intermediate. Cleavage occurred normally when arginine was changed to lysine. The hypothesis that a basic residue is a general requirement for transit peptide removal was tested. We find that the precursors for the small subunit of Rubisco and Rubisco activase do not require a basic residue within seven amino acids of the cleavage site for maturation. In the wheat LHCP precursor, determinants for efficient cleavage at a secondary site were identified carboxy to the primary site, beyond what is traditionally called the transit peptide, within the sequence ala-lys-ala-lys (residues 38-41). Introduction of this sequence into the pea precursor, which has the residues thr-thr-lys-lys in the corresponding position, converted it to a substrate with an efficiently recognized secondary site. Our results indicate that two different forms of LHCP can be produced with distinct NH2-termini by selective cleavage of a single precursor polypeptide.  相似文献   

3.
The PI-SceI protein is an intein-encoded homing endonuclease that initiates the mobility of its gene by making a double strand break at a single site in the yeast genome. The PI-SceI protein splicing and endonucleolytic active sites are separately located in each of two domains in the PI-SceI structure. To determine the spatial relationship between bases in the PI-SceI recognition sequence and selected PI-SceI amino acids, the PI-SceI-DNA complex was probed by photocross-linking and affinity cleavage methods. Unique solvent-accessible cysteine residues were introduced into the two PI-SceI domains at positions 91, 97, 170, 230, 376, and 378, and the mutant proteins were modified with either 4-azidophenacyl bromide or iron (S)-1-(p-bromoacetamidobenzyl)-ethylenediaminetetraacetate (FeBABE). The phenyl azide-coupled proteins cross-linked to the PI-SceI target sequence, and the FeBABE-modified proteins cleaved the DNA proximal to the derivatized amino acid. The results suggest that an extended beta-hairpin loop in the endonuclease domain that contains residues 376 and 378 contacts the major groove near the PI-SceI cleavage site. Conversely, residues 91, 97, and 170 in the protein splicing domain are in close proximity to a distant region of the substrate. To interpret our results, we used a new PI-SceI structure that is ordered in regions of the protein that bind DNA. The data strongly support a model of the PI-SceI-DNA complex derived from this structure.  相似文献   

4.
The export of proteins to the periplasmic compartment of bacterial cells is mediated by an amino-terminal signal peptide. After transport, the signal peptide is cleaved by a processing enzyme, signal peptidase I. A comparison of the cleavage sites of many exported proteins has identified a conserved feature of small, uncharged amino acids at positions -1 and -3 relative to the cleavage site. To determine experimentally the sequences required for efficient signal peptide cleavage, we simultaneously randomized the amino acid residues from positions -4 to +2 of the TEM-1 beta-lactamase enzyme to form a library of random sequences. Mutants that provide wild-type levels of ampicillin resistance were then selected from the random-sequence library. The sequences of 15 mutants indicated a bias towards small amino acids. The N-terminal amino acid sequence of the mature enzyme was determined for nine of the mutants to assign the new -1 and -3 residues. Alanine was present in the -1 position for all nine of these mutants, strongly supporting the importance of alanine at the -1 position. The amino acids at the -3 position were much less conserved but were consistent with the -3 rules derived from sequence comparisons. Compared with the wild type, two of the nine mutants have an altered cleavage position, suggesting that sequence is more important than position for processing of the signal peptide.  相似文献   

5.
Extracellular Phr pentapeptides produced by gram-positive, spore-forming bacteria regulate processes during the transition from exponential- to stationary-phase growth. Phr pentapeptides are produced by cleavage of their precursor proteins. We determined the residues that direct this cleavage for the Bacillus subtilis Phr peptide, CSF, which is derived from the C terminus of PhrC. Strains expressing PhrC with substitutions in residues -1 to -5 relative to the cleavage site had a defect in CSF production. The mutant PhrC proteins retained a functional signal sequence for secretion, as assessed by secretion of PhrC-PhoA fusions. To determine whether the substitutions directly affected cleavage of PhrC to CSF, we tested cleavage of synthetic pro-CSF peptides that corresponded to the C terminus of PhrC and had an amino acid substitution at the -2, -3, or -4 position. The mutant pro-CSF peptides were cleaved less efficiently to CSF than the wild-type pro-CSF peptide whether they were incubated with whole cells, cell wall material, or the processing protease subtilisin or Vpr. To further define the range of amino acids that support CSF production, the amino acid at the -4 position of PhrC was replaced by the 19 canonical amino acids. Only four substitutions resulted in a >2-fold defect in CSF production, indicating that this position is relatively immune to mutational perturbations. These data revealed residues that direct cleavage of CSF and laid the groundwork for testing whether other Phr peptides are processed in a similar manner.  相似文献   

6.
The amino acid sequence of the 112 residues from the amino terminus of alpha 2-CB5 from chick skin collagen was determined by automated sequential degradation of intact alpha 2-CB5 and several chymotryptic and tryptic peptides. This segment of the peptide includes the site of the action of animal collagenases. As compared to the sequence around the alpha 1 cleavage site, the alpha 2 sequence is notable for the remarkable constancy of the residues to the amino side and the relative abundance of hydrophobic residues to the carboxyl side of the cleavage site, suggesting that these features are important in the recognition by the enzyme. The sequence of this region of the alpha 2 chain is consistent with the Gly-X-Y triplet structure and the preference of certain residues for either the X or Y position in distribution. However, three of the six residues of leucine were found in the Y position rather than the X position. Leucine residues were found only once in the Y position in the alpha 1 (I) chain. This preference does not appear to hold in the alpha 2 chain.  相似文献   

7.
Retroviruses encode a protease which cleaves the viral Gag and Gag/Pol protein precursors into mature products. To understand the target sequence specificity of the viral protease, the amino acid sequences from 46 known processing sites from 10 diverse retroviruses were compared. Sequence preference was evident in positions P4 through P3' when compared to flanking sequences. Approximately 80% of all cleavage site sequences could be grouped into two classes based on the sequence composition flanking the scissile bond. The sequences at the amino-terminal cleavage site of the major capsid protein of Gag is always a member of one of the two classes while the carboxyl-terminal cleavage site is of the other class, suggesting a biological role for the two classes. Known processing site sequences proved useful in a motif searching strategy to identify processing sites in retroviral protein sequences, particularly in Gag. In all known cleavage sites, the P1 amino acid is hydrophobic and unbranched at the beta-carbon. The sequence requirements of the P1 position were tested by site-directed mutagenesis of the P1 Phe codon in an HIV-1 Pol cleavage site. Mutations were tested for protease-mediated cleavage of the Pol precursor expressed in Escherichia coli.  相似文献   

8.
Caspase-mediated parkin cleavage in apoptotic cell death   总被引:1,自引:0,他引:1  
The parkin protein is important for the survival of the neurons that degenerate in Parkinson's disease as demonstrated by disease-causing lesions in the parkin gene. The Chinese hamster ovary and the SH-SY5Y cell line stably expressing recombinant human parkin combined with epitope-specific parkin antibodies were used to investigate the proteolytic processing of human parkin during apoptosis by immunoblotting. Parkin is cleaved during apoptosis induced by okadaic acid, staurosporine, and camptothecin, thereby generating a 38-kDa C-terminal fragment and a 12-kDa N-terminal fragment. The cleavage was not significantly affected by the disease-causing mutations K161N, G328E, T415N, and G430D and the polymorphism R366W. Parkin and its 38-kDa proteolytic fragment is preferentially associated with vesicles, thereby indicating that cleavage is a membrane-associated event. The proteolysis is sensitive to inhibitors of caspases. The cleavage site was mapped by site-directed mutagenesis of potential aspartic residues and revealed that mutation of Asp-126 alone abrogated the parkin cleavage. The tetrapeptide aldehyde LHTD-CHO, representing the amino acid sequence N-terminal to the putative cleavage site was an efficient inhibitor of parkin cleavage. This suggests that parkin function is compromised in neuropathological states associated with an increased caspase activation, thereby further adding to the cellular stress.  相似文献   

9.
The mature capsid protein C of flaviviruses is generated through the proteolytic cleavage of the precursor polyprotein by the viral NS2B/3 protease. This cleavage is a prerequisite for the subsequent processing of the viral surface protein prM, and the concerted progression of these events plays a key role in the process of the assembly of infectious virions. Protein C of tick-borne encephalitis virus (TBEV) contains two amino acid sequence motifs within the carboxy-terminal region that match the canonical NS2B/3 recognition site. Site-specific mutagenesis in the context of the full-length TBEV genome was used to investigate the in vivo cleavage specificity of the viral protease in this functionally important domain. The results indicate that the downstream site is necessary and sufficient for efficient cleavage and virion assembly; in contrast, the upstream site is dispensable and placed in a structural context that renders it largely inaccessible to the viral protease. Mutants with impaired C-prM cleavage generally exhibited a significantly increased cytotoxicity. In spite of the clear preference of the protease for only one of the two naturally occurring motifs, the enzyme was unexpectedly tolerant to both the presence of a noncanonical threonine residue at position P2 and the position of cleavage relative to the adjacent internal prM signal sequence. The insertion of three amino acid residues downstream of the cleavage site did not change the viral phenotype. Thus, this study further illuminates the specificity of the TBEV protease and reveals that the carboxy-terminal region of protein C has a remarkable functional flexibility in its role in the assembly of infectious virions.  相似文献   

10.
Edward R. Fliss  Peter Setlow   《Gene》1984,30(1-3):167-172
The nucleotide sequence of the Bacillus megaterium gene coding for spore-specific protein C-3 has been determined. The gene codes for 65 amino acids and the coding sequence is preceded by an efficient ribosome-binding site. The predicted protein C-3 sequence agrees with both the amino acid composition and the amino terminal sequence of protein C-3, and shows homology (approx. 65 % of all residues are identical) with the sequences of the analogous proteins A and C of B. megaterium. Protein C-3 is cleaved by the sequence-specific B. megaterium spore protease, and the amino acid sequence at the new amino-terminus generated is identical to that predicted from the gene sequence, and homologous to the spore protease cleavage sites in the A and C proteins. The protein C-3 gene also shares a number of features with the previously sequenced protein C gene in both upstream and downstream flanking sequence.  相似文献   

11.
12.
The CstF polyadenylation factor is a multisubunit complex required for efficient cleavage and polyadenylation of pre-mRNAs. Using an RNase H-mediated mapping technique, we show that the 64-kDa subunit of CstF can be photo cross-linked to pre-mRNAs at U-rich regions located downstream of the cleavage site of the simian virus 40 late and adenovirus L3 pre-mRNAs. This positional specificity of cross-linking is a consequence of CstF interaction with the polyadenylation complex, since the 64-kDa protein by itself is cross-linked at multiple positions on a pre-mRNA template. During polyadenylation, four consecutive U residues can substitute for the native downstream U-rich sequence on the simian virus 40 pre-mRNA, mediating efficient 64-kDa protein cross-linking at the downstream position. Furthermore, the position of the U stretch not only enables the 64-kDa polypeptide to be cross-linked to the pre-mRNA but also influences the site of cleavage. A search of the GenBank database revealed that a substantial portion of mammalian polyadenylation sites carried four or more consecutive U residues positioned so that they should function as sites for interaction with the 64-kDa protein downstream of the cleavage site. Our results indicate that the polyadenylation machinery physically spans the cleavage site, directing cleavage factors to a position located between the upstream AAUAAA motif, where the cleavage and polyadenylation specificity factor is thought to interact, and the downstream U-rich binding site for the 64-kDa subunit of CstF.  相似文献   

13.
Proteasomal cleavage of proteins is the first step in the processing of most antigenic peptides that are presented to cytotoxic T cells. Still, its specificity and mechanism are not fully understood. To identify preferred sequence signals that are used for generation of antigenic peptides by the proteasome, we performed a rigorous analysis of the residues at the termini and flanking regions of naturally processed peptides eluted from MHC class I molecules. Our results show that both the C terminus (position P1 of the cleavage site) and its immediate flanking position (P1') possess significant signals. The N termini of the peptides show these signals only weakly, consistent with previous findings that antigenic peptides may be cleaved by the proteasome with N-terminal extensions. Nevertheless, we succeed to demonstrate indirectly that the N-terminal cleavage sites contain the same preferred signals at position P1'. This reinforces previous findings regarding the role of the P1' position of a cleavage site in determining the cleavage specificity, in addition to the well-known contribution of position P1. Our results apply to the generation of antigenic peptides and bare direct implications for the mechanism of proteasomal cleavage. We propose a model for proteasomal cleavage mechanism by which both ends of cleaved fragments are determined by the same cleavage signals, involving preferred residues at both P1 and P1' positions of a cleavage site. The compatibility of this model with experimental data on protein degradation products and generation of antigenic peptides is demonstrated.  相似文献   

14.
Processing of the hepatitis C virus polyprotein is accomplished by a series of cotranslational and posttranslational cleavages mediated by host cell signalases and two virally encoded proteinases. Of these the NS3 proteinase is essential for processing at the NS3/4A, NS4A/4B, NS4B/5A, and NS5A/5B junctions. Processing between NS3 and NS4A occurs in cis, implying an intramolecular reaction mechanism, whereas cleavage at the other sites can also be mediated in trans. Sequence analysis of the amino termini of mature cleavage products and comparisons of amino acid residues around the scissile bonds of various hepatitis C virus isolates identified amino acid residues which might contribute to substrate specificity and processing efficiency: an acidic amino acid at the P6 position, a Thr or Cys at the P1 position, and a Ser or Ala at the P1' position. To study the importance of these residues for NS3-mediated cleavage we have undertaken a mutational analysis using an NS3'-5B polyprotein expressed by recombinant vaccinia viruses in mammalian cells. For all NS3-dependent cleavage sites P1 substitutions had the most drastic effects on cleavage efficiency, showing that amino acid residues at this position are the most critical substrate determinants. Since less drastic effects were found for substitutions at the P1' position, these residues appear to be less important for proper cleavage. For all cleavage sites the P6 acidic residue was dispensable, suggesting that it is not essential for substrate recognition and subsequent cleavage. Analysis of a series of mutations at the NS3/4A site revealed great flexibility for substitutions compared with more stringent requirements at the trans cleavage sites. On the basis of these results we propose a model in which processing in cis is determined primarily by polyprotein folding, whereas cleavage in trans is governed not only by the structure of the polyprotein but also by specific interactions between the proteinase and the polyprotein substrate at or around the scissile bond.  相似文献   

15.
M Pethel  B Falgout    C J Lai 《Journal of virology》1992,66(12):7225-7231
We have previously shown that proper processing of dengue type 4 virus NS1 from the NS1-NS2A region of the viral polyprotein requires a hydrophobic N-terminal signal and the downstream NS2A. Results from deletion analysis indicate that a minimum length of eight amino acids at the C terminus of NS1 is required for cleavage at the NS1-NS2A junction. Comparison of this eight-amino-acid sequence with the corresponding sequences of other flaviviruses suggests a consensus cleavage sequence of Met/Leu-Val-Xaa-Ser-Xaa-Val-Xaa-Ala. Site-directed mutagenesis was performed to construct mutants of NS1-NS2A that contained a single amino acid substitution at different positions of the consensus cleavage sequence or at the immediate downstream position. Three to eight different substitutions were made at each position. A total of 50 NS1-NS2A mutants were analyzed for their cleavage efficiency relative to that of the wild-type dengue type 4 virus sequence. As predicted, nearly all substitutions at positions P1, P3, P5, P7, and P8, occupied by conserved amino acids, yielded low levels of cleavage, with the exception that Pro or Ala substituting for Ser (P5) was tolerated. Substitutions of an amino acid at the remaining positions occupied by nonconserved amino acids generally yielded high levels of cleavage. However, some substitutions at nonconserved positions were not tolerated. For example, substitution of Gly or Glu for Gln (P4) and substitution of Val or Glu for Lys (P6) each yielded a low level of cleavage. Overall, these data support the proposed cleavage sequence motif deduced by comparison of sequences among the flaviviruses. This study also showed that in addition to the eight-amino-acid sequence, the amino acid immediately following the NS1-NS2A cleavage site plays a role in cleavage.  相似文献   

16.
The nucleotide sequence of an Escherichia coli gene which presumably encodes the H-protein of the glycine cleavage (GCV) enzyme complex is presented. The gene, designated gcvH, encodes a polypeptide of 128 amino acids with a calculated molecular weight of 13,665 daltons. The translation start site was determined by N-terminal amino acid sequence analysis of a gcvH-lacZ encoded fusion protein. The E. coli H-protein shows extensive homology with the H-proteins from the pea (Pisum sativum) and the chicken liver GCV enzyme complexes. 85 of 128 amino acid residues are identical or chemically similar between the E. coli and the pea H-proteins, and 74 of 128 amino acid residues are identical or chemically similar between the E. coli and the chicken liver H-proteins. All three proteins have identical amino acid sequences from residues 61-65. This sequence contains the lysyl residue involved in lipoic acid attachment in the chicken liver H-protein.  相似文献   

17.
GH binding protein (GHBP) is a circulating form of the GH receptor (GHR) extracellular domain, which derives by alternative splicing of the GHR gene (in mice and rats) and by metalloprotease-mediated GHR proteolysis with shedding of the extracellular domain as GHBP (in rabbits, humans, and other species). Inducible proteolysis of either mouse (m) or rabbit (rb) GHR is detected in cell culture in response to phorbol ester and other stimuli, yielding a cell-associated GHR remnant (comprised of the cytoplasmic and transmembrane domains and a small portion of the proximal extracellular domain) and down-regulating GH signaling. In this report, we map the mGHR cleavage site by adenoviral overexpression of a membrane-anchored mGHR mutant lacking its cytoplasmic domain and purification and N-terminal sequencing of the phorbol 12-myristate 13-acetate-induced remnant protein. The sequence obtained was LEACEEDI, which matches the mGHR extracellular domain stem region sequence L265EACEEDI272, indicating that mGHR cleavage occurs in the extracellular domain nine residues outside of the transmembrane domain, in the same region (but at different residues) as the rbGHR cleavage site we recently mapped. We studied the effects on receptor proteolysis and GHBP shedding of replacing rbGHR cleavage site residues with those corresponding to the mGHR cleavage site. We analyzed five separate rodentized rbGHR mutants incorporating mGHR amino acids either at or surrounding the cleavage site. Each mutant was normally processed, displayed at the cell surface, and responded to GH stimulation by undergoing tyrosine phosphorylation. Only the mutants replaced with mGHR cleavage site residues, rather than surrounding residues, exhibited deficient inducible proteolysis and GHBP shedding. These findings suggested that the GHR cleavage sites in the two species differ in their susceptibility to cleavage. This difference may underlie interspecies variation in utilization of proteolysis to generate GHBP.  相似文献   

18.
Serine protease of pestiviruses: determination of cleavage sites.   总被引:10,自引:5,他引:5       下载免费PDF全文
N Tautz  K Elbers  D Stoll  G Meyers    H J Thiel 《Journal of virology》1997,71(7):5415-5422
The single-stranded genomic RNA of pestiviruses is of positive polarity and encompasses one large open reading frame of about 4,000 codons. The resulting polyprotein is processed co- and posttranslationally by virus-encoded and host cell proteases to give rise to the mature viral proteins. A serine protease residing in the nonstructural (NS) protein NS3 (p80) has been shown to be essential for the release of the NS proteins located downstream of NS3. In this report the NS3 serine protease-dependent cleavage sites for bovine viral diarrhea virus (BVDV) strain CP7 are described. Proteins used for analysis were generated in Escherichia coli or in eukaryotic cells by the use of the T7 vaccinia virus system. The N termini of NS4A, NS4B, NS5A, and NS5B were determined by protein sequencing. Analysis of the data obtained showed that leucine at P1 is the only position conserved for all cleavage sites. At P1' alanine is found at the NS4A-NS4B site, whereas serine resides at this position at the NS3-NS4A, NS4B-NS5A, and NS5A-NS5B cleavage sites. For all cleavage sites the amino acids found at P1 and P1' are conserved for different genotypes of pestiviruses, despite the high degree of sequence variation found between these viruses. It is therefore assumed that the cleavage sites determined for BVDV CP7 are representative of those for all pestiviruses.  相似文献   

19.
To maximize spread of their host intron or intein, many homing endonucleases recognize nucleotides that code for important and conserved amino acid residues of the target gene. Here, we examine the cleavage requirements for I-TevI, which binds a stretch of thymidylate synthase (TS) DNA that codes for functionally critical residues in the TS active site. Using an in vitro selection scheme, we identified two base-pairs in the I-TevI cleavage site region as important for cleavage efficiency. These were confirmed by comparison of I-TevI cleavage efficiencies on mutant and on wild-type substrates. We also showed that nicking of the bottom strand by I-TevI is not affected by mutation of residues surrounding the bottom-strand cleavage site, unlike other homing endonucleases. One of these two base-pairs is universally conserved in all TS sequences, and is identical with a previously identified cleavage determinant of I-BmoI, a related GIY-YIG endonuclease that binds a homologous stretch of TS-encoding DNA. The other base-pair is conserved only in a subset of TS genes that includes the I-TevI, but not the I-BmoI, target sequence. Both the I-TevI and I-BmoI cleavage site requirements correspond to functionally critical residues involved in an extensive hydrogen bond network within the TS active site. Remarkably, these cleavage requirements correlate with TS phylogeny in bacteria, suggesting that each endonuclease has individually adapted to efficiently cleave distinct TS substrates.  相似文献   

20.
Apolipoprotein C-II (apoC-II) plays a critical role in the metabolism of plasma lipoproteins as an activator for lipoprotein lipase. Human apoC-II consists of 79 amino acid residues (pro-apoC-II). A minor fraction is converted to a mature form by cleavage at the site QQDE releasing the 6 amino-terminal residues. We have cloned and sequenced the cDNA for rat apoC-II from a liver cDNA library using human apoC-II cDNA as a probe. The cDNA encodes a protein of 97 amino acid residues including a signal peptide of 22 amino acid residues. There is approximately 60% similarity between the deduced amino acid sequence of rat apoC-II and other apoC-II sequences presently known (human, monkey, dog, cow, and guinea pig). Compared to these, rat apoC-II is one residue shorter at the carboxyl terminus. Furthermore, there is a deletion of 3 amino acid residues (PQQ) in the highly conserved cleavage site where processing from pro- to mature apoC-II occurs in other species. Accordingly, rat apoC-II isolated from plasma was mainly in the pro-form. Northern blot analyses indicated that rat apoC-II is expressed both in liver and in small intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号