首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reversible phosphorylation of nuclear proteins is required for both DNA replication and entry into mitosis. Consequently, most cyclin-dependent kinase (Cdk)/cyclin complexes are localized to the nucleus when active. Although our understanding of nuclear transport processes has been greatly enhanced by the recent identification of nuclear targeting sequences and soluble nuclear import factors with which they interact, the mechanisms used to target Cdk/cyclin complexes to the nucleus remain obscure; this is in part because these proteins lack obvious nuclear localization sequences. To elucidate the molecular mechanisms responsible for Cdk/cyclin transport, we examined nuclear import of fluorescent Cdk2/cyclin E and Cdc2/cyclin B1 complexes in digitonin-permeabilized mammalian cells and also examined potential physical interactions between these Cdks, cyclins, and soluble import factors. We found that the nuclear import machinery recognizes these Cdk/cyclin complexes through direct interactions with the cyclin component. Surprisingly, cyclins E and B1 are imported into nuclei via distinct mechanisms. Cyclin E behaves like a classical basic nuclear localization sequence–containing protein, binding to the α adaptor subunit of the importin-α/β heterodimer. In contrast, cyclin B1 is imported via a direct interaction with a site in the NH2 terminus of importin-β that is distinct from that used to bind importin-α.  相似文献   

2.
Recent studies highlight the existence of a nuclear lipid metabolism related to cellular proliferation. However, the importance of nuclear phosphatidylcholine (PC) metabolism is poorly understood. Therefore, we were interested in nuclear PC as a source of second messengers and, particularly, nuclear localization of PC-specific phospholipase D (PLD). In the present study we have identified the nuclear localization sequence (NLS) of PLD1 whose mutation abolished its nuclear import. Recently, we reported that caspase-mediated cleavage of PLD1 generates the N-terminal fragment (NF-PLD1) and C-terminal fragment (CF-PLD1). Here we show that CF-PLD1 but not NF-PLD1, is exclusively imported into the nucleus via its functional NLS, whereas only some portions of intact PLD1 were localized into the nucleus. The NLS of intact PLD1 or CF-PLD1 is required for interaction with importin-β, which is known to mediate nuclear import. The amount of intact PLD1 or CF-PLD1 translocated into nucleus is correlated with its binding affinity with importin-β. Ultimately, nuclear localization of intact PLD1 but not CF-PLD1 mediates the activation of nuclear protein kinase Cα and extracellular signal-regulated kinase signaling pathways. Taken together, we propose that nuclear localization of PLD1 via the NLS and its interaction with importin-β may provide new insights on the functional role of nuclear PLD1 signaling.  相似文献   

3.
NUAK1 is a serine/threonine kinase member of the AMPK-α family. NUAK1 regulates several processes in tumorigenesis; however, its regulation and molecular targets are still poorly understood. Bioinformatics analysis predicted that the majority of NUAK1 localizes in the nucleus. However, there are no studies about the regulation of NUAK1 subcellular distribution. Here, we analyzed NUAK1 localization in several human cell lines, mouse embryo fibroblasts, and normal mouse tissues. We found that NUAK1 is located in the nucleus and also in the cytoplasm. Through bioinformatics analysis and studies comparing subcellular localization of wild type and NUAK1 mutants, we identified a conserved bipartite nuclear localization signal at the N-terminal domain of NUAK1. Based on mass spectrometry analysis, we found that NUAK1 interacts with importin-β members including importin-β1 (KPNB1), importin-7 (IPO7), and importin-9 (IPO9). We confirmed that importin-β members are responsible for NUAK1 nuclear import through the inhibition of importin-β by Importazole and the knockdown of either IPO7 or IPO9. In addition, we found that oxidative stress induces NUAK1 cytoplasmic accumulation, indicating that oxidative stress affects NUAK1 nuclear transport. Thus, our study is the first evidence of an active nuclear transport mechanism regulating NUAK1 subcellular localization. These data will lead to investigations of the molecular targets of NUAK1 according to its subcellular distribution, which could be new biomarkers or targets for cancer therapies.  相似文献   

4.
It has been reported that a human chloride intracellular channel (CLIC) protein, CLIC4, translocates to the nucleus in response to cellular stress, facilitated by a putative CLIC4 nuclear localization signal (NLS). The CLIC4 NLS adopts an α-helical structure in the native CLIC4 fold. It is proposed that CLIC4 is transported to the nucleus via the classical nuclear import pathway after binding the import receptor, importin-α. In this study, we have determined the X-ray crystal structure of a truncated form of importin-α lacking the importin-β binding domain, bound to a CLIC4 NLS peptide. The NLS peptide binds to the major binding site in an extended conformation similar to that observed for the classical simian virus?40 large T-antigen NLS. A Tyr residue within the CLIC4 NLS makes surprisingly favourable interactions by forming side-chain hydrogen bonds to the importin-α backbone. This structural evidence supports the hypothesis that CLIC4 translocation to the nucleus is governed by the importin-α nuclear import pathway, provided that CLIC4 can undergo a conformational rearrangement that exposes the NLS in an extended conformation.  相似文献   

5.
Nucleocytoplasmic translocation constitutes a foundation for nuclear proteins to exert their proper functions and hence for various biological reactions to occur normally in eukaryotic cells. We reported previously that EZI/Zfp467, a 12 zinc finger motif-containing protein, localizes predominantly in the nucleus, yet the underlying mechanism still remains elusive. Here we constructed a series of mutant forms of EZI and examined their subcellular localization. The results delineated a non-canonical nuclear localization signal in the region covering the 9th to the 12th zinc fingers, which was necessary for nuclear accumulation of EZI as well as sufficient to confer nuclear localizing ability to a heterologous protein. We also found that the N-terminal domain of EZI is necessary for its nuclear export, the process of which was not sensitive to the CRM1 inhibitor leptomycin B. An interaction proteomics approach and the following co-immunoprecipitation experiments identified the nuclear import receptor importin-7 as a molecule that associated with EZI and, importantly, short interfering RNA-mediated knockdown of importin-7 expression completely abrogated nuclear accumulation of EZI. Taken together, these results identify EZI as a novel cargo protein for importin-7 and demonstrate a nucleocytoplasmic shuttling mechanism that is mediated by importin-7-dependent nuclear localization and CRM1-independent nuclear export.  相似文献   

6.
The promyelocytic leukemia-retinoic acid receptor α (PML/RARα) is hypothesized to play a vital role in the pathogenesis of acute promyelocytic leukemia (APL). A previous study has demonstrated that PML/RARα is cleaved by neutrophil elastase (NE) in early myeloid cells, which leads to an increase in the nuclear localization signal (NLS) in RARα and in the incidence of APL. In this study, we explored the effects of NLS-RARα on acute myeloid leukemia (AML) cells and studied the mechanism of its localization. LV-NLS-RARα recombinant lentivirus and negative control LV-NC lentivirus were transfected into HL-60 cells and U937 cells while mutant NLS-RARα were transfected into U937 cells, and all groups were treated with 1α, 25-dihydroxyvitamin D3(1,25D3). The results showed that NLS-RARα was located mainly in the nucleus while mutant NLS-RARα was located in the cytoplasm. Overexpression of NLS-RARα downregulated the expression of CD11b, CD11c, CD14, and three forms of CEBPβ compared to the overexpression of NC and mutant NLS-RARα. It was speculated that the abnormal localization of NLS-RARα was mediated via importin-α/β in the pathogenesis of APL. By producing point mutations in the two NLSs in NLS-RARα, we showed that the nuclear import of NLS-RARα was mainly dependent on the NLS of the RARα portion. Subsequently, we found that importin-α1 (KPNA2)/importin-β1 (KPNB1) participates in the nuclear transport of NLS-RARα. Taken together, abnormal localization of NLS-RARα blocks the differentiation of APL cells, and nuclear localization of NLS-RARα depends on NLS of the RARα portion and is mediated via binding with importin-α/β.  相似文献   

7.
8.
Dysregulation of cyclin-dependent kinase 5 (Cdk5) by cleavage of its activator p35 to p25 by calpain is involved in the neuronal cell death observed in neurodegenerative disorders, including Alzheimer's disease. However, it is not yet clear how p25/Cdk5 induces cell death, although its cytosolic localization or extended half life are thought to be involved. We show here that endoplasmic reticulum (ER) stress causes the calpain-dependent cleavage of p35 to p25 in primary cultured cortical neurons. Generation of p25 occurred at a cell death execution step in ER-stressed neurons. p25 translocated to the nucleus in ER-stressed neurons, whereas p35/Cdk5 was perinuclear in control neurons. Cdk5 inhibitors or dominant-negative Cdk5 suppressed ER stress-induced neuronal cell death. These findings indicate that p25/Cdk5 is a proapoptotic factor that promotes ER stress-induced neuronal cell death in nuclei.  相似文献   

9.
The neuronal Cdk5 kinase is composed of the catalytic subunit Cdk5 and the activator protein p35(nck5a) or its isoform, p39(nck5ai). To identify novel p35(nck5a)- and p39(nck5ai)-binding proteins, fragments of p35(nck5a) and p39(nck5ai) were utilized in affinity isolation of binding proteins from rat brain homogenates, and the isolated proteins were identified using mass spectrometry. With this approach, the nuclear protein SET was shown to interact with the N-terminal regions of p35(nck5a) and p39(nck5ai). Our detailed characterization showed that the SET protein formed a complex with Cdk5/p35(nck5a) through its binding to p35(nck5a). The p35(nck5a)-interacting region was mapped to a predicted alpha-helix in SET. When cotransfected into COS-7 cells, SET and p35(nck5a) displayed overlapping intracellular distribution in the nucleus. The nuclear co-localization was corroborated by immunostaining data of endogenous SET and Cdk5/p35(nck5a) from cultured cortical neurons. Finally, we demonstrated that the activity of Cdk5/p35(nck5a), but not that of Cdk5/p25(nck5a), was enhanced upon binding to the SET protein. The tail region of SET, which is rich in acidic residues, is required for the stimulatory effect on Cdk5/p35(nck5a).  相似文献   

10.
《The Journal of cell biology》1996,133(6):1163-1176
Characterization of the interactions between soluble factors required for nuclear transport is key to understanding the process of nuclear trafficking. Using a synthetic lethal screen with the rna1-1 strain, we have identified a genetic interaction between Rna1p, a GTPase activating protein required for nuclear transport, and yeast importin- beta, a component of the nuclear localization signal receptor. By the use of fusion proteins, we demonstrate that Rna1p physically interacts with importin-beta. Mutants in importin-beta exhibit in vivo nuclear protein import defects, and importin-beta localizes to the nuclear envelope along with other proteins associated with the nuclear pore complex. In addition, we present evidence that importin-alpha, but not importin-beta, mislocalizes to the nucleus in cells where the GTPase Ran is likely to be in the GDP-bound state. We suggest a model of nuclear transport in which Ran-mediated hydrolysis of GTP is necessary for the import of importin-alpha and the nuclear localization signal- bearing substrate into the nucleus, while exchange of GDP for GTP on Ran is required for the export of both mRNA and importin-alpha from the nucleus.  相似文献   

11.
12.
13.
PKCδ translocates into the nucleus in response to apoptotic agents and functions as a potent cell death signal. Cytoplasmic retention of PKCδ and its transport into the nucleus are essential for cell homeostasis, but how these processes are regulated is poorly understood. We show that PKCδ resides in the cytoplasm in a conformation that precludes binding of importin-α. A structural model of PKCδ in the inactive state suggests that the nuclear localization sequence (NLS) is prevented from binding to importin-α through intramolecular contacts between the C2 and catalytic domains. We have previously shown that PKCδ is phosphorylated on specific tyrosine residues in response to apoptotic agents. Here, we show that phosphorylation of PKCδ at Tyr-64 and Tyr-155 results in a conformational change that allows exposure of the NLS and binding of importin-α. In addition, Hsp90 binds to PKCδ with similar kinetics as importin-α and is required for the interaction of importin-α with the NLS. Finally, we elucidate a role for a conserved PPxxP motif, which overlaps the NLS, in nuclear exclusion of PKCδ. Mutagenesis of the conserved prolines to alanines enhanced importin-α binding to PKCδ and induced its nuclear import in resting cells. Thus, the PPxxP motif is important for maintaining a conformation that facilitates cytosplasmic retention of PKCδ. Taken together, this study establishes a novel mechanism that retains PKCδ in the cytoplasm of resting cells and regulates its nuclear import in response to apoptotic stimuli.  相似文献   

14.
Mammalian spermiogenesis is characterized by a unique chromatin-remodeling process in which histones are replaced by transition protein 1 (TP1), TP2, and TP4, which are further replaced by protamines. We showed previously that the import of TP2 into the haploid spermatid nucleus requires the components of cytosol and ATP. We have now carried out a detailed analysis to characterize the molecular components underlying the nuclear translocation of TP2. Real-time PCR analysis of the expression of different importins in testicular germ cells revealed that importin-4 and importin-beta3 are significantly up-regulated in tetraploid and haploid germ cells. We carried out physical interaction studies as well as an in vitro nuclear transport assay using recombinant TP2 and the nuclear localization signal of TP2 (TP2(NLS)) fused to glutathione S-transferase in digitonin-permeabilized, haploid, round spermatids and identified importin-4 to be involved in the import of TP2. A three-dimensional model of the importin-4 protein was generated using the crystal structure of importin-beta1 as the template. Molecular docking simulations of TP2(NLS) with the importin-4 structure led to the identification of a TP2(NLS) binding pocket spanning the three helices (helices 21 to 23) of importin-4, which was experimentally confirmed by in vitro interaction and import studies with different deletion mutants of importin-4. In contrast to TP2, TP1 import was accomplished through a passive diffusion process.  相似文献   

15.
16.
Cdk5 is a member of the cyclin-dependent kinases (Cdks), activated by the neuron-specific activator p39 or p35. The activators also determine the cytoplasmic distribution of active Cdk5, but the mechanism is not yet known. In particular, little is known for p39. p39 and p35 contain localization motifs, such as a second Gly for myristoylation and Lys clusters in the N-terminal p10 region. Using mutant constructs, we investigated the cellular distribution mechanism. We observed that p39 localizes the active Cdk5 complex in the perinuclear region and at the plasma membrane as does p35. We demonstrated the myristoylation of both p39 and p35, and found that it is a major determinant of their membrane association. Plasma membrane targeting depends on the amino acid sequence containing the Lys-cluster in the N-terminal p10 region. In contrast, a non-myristoylated Ala mutant (p39G2A or p35G2A) showed nuclear localization with stronger accumulation of p39G2A than p35G2A. These results indicate that myristoylation regulates the membrane association of p39 as well as p35 and that the Lys cluster controls their trafficking to the plasma membrane. The differential nuclear accumulation of p39 and p35 suggests their segregated functions, p35–Cdk5 in the cytoplasm and p39–Cdk5 in the nucleus.  相似文献   

17.
Cyclin-dependent kinase (Cdk)5 is a proline-directed Ser/Thr protein kinase that functions mainly in neurons and is activated by binding to a regulatory subunit, p35 or p39. Kinase activity is mainly determined by the amount of p35 available, which is controlled by a balance between synthesis and degradation. Kinase activity is also regulated by Cdk5 phosphorylation, but the activity of phosphorylated Cdk5 is in contrast to that of cycling Cdks. Cdk5 is a versatile protein kinase that regulates multiple neuronal activities including neuronal migration and synaptic signaling. Further, Cdk5 plays a role in both survival and death of neurons. Long-term inactivation of Cdk5 triggers cell death, and the survival activity of Cdk5 is apparent when neurons suffer from stress. In contrast, hyper-activation of Cdk5 by p25 promotes cell death, probably by reactivating cell-cycle machinery in the nucleus. The pro-death activity is suppressed by membrane association of Cdk5 via myristoylation of p35. Appropriate activity, localization, and regulation of Cdk5 may be critical for long-term survival of neurons, which is more than 80 years in the case of humans.  相似文献   

18.
19.
A classical nuclear localization signal (NLS)-containing protein is transported into the nucleus via the formation of a NLS-substrate/importin alpha/beta complex. In this study, we found that importin alpha migrated into the nucleus without the addition of importin beta, Ran or any other soluble factors in an in vitro transport assay. A mutant importin alpha lacking the importin beta-binding domain efficiently entered the nucleus. Competition experiments showed that this import pathway for importin alpha is distinct from that of importin beta. These results indicate that importin alpha alone can enter the nucleus via a novel pathway in an importin beta- and Ran-independent manner. Furthermore, this process is evolutionarily conserved as similar results were obtained in Saccharomyces cerevisiae. Moreover, the import rate of importin alpha differed among individual nuclei of permeabilized cells, as demonstrated by time-lapse experiments. This heterogeneous nuclear accumulation of importin alpha was affected by the addition of ATP, but not ATPgammaS. These results suggest that the nuclear import machinery for importin alpha at individual nuclear pore complexes may be regulated by reaction(s) that require ATP hydrolysis.  相似文献   

20.
L1 major capsid proteins of human papillomaviruses (HPVs) enter the nuclei of host cells at two times during the viral life cycle: 1) after infection and 2) later during the productive phase, when they assemble the replicated HPV genomic DNA into infectious virions. L1 proteins are stable in two oligomeric configurations: as homopentameric capsomers, and as capsids composed of 72 capsomers. We found that intact L1 capsids of HPV type 11 cannot enter the nucleus, suggesting that capsid disassembly may be required for HPV11 L1 nuclear import. We established that HPV11 L1 is imported in a receptor-mediated manner into the nuclei of digitonin-permeabilized HeLa cells. HPV11 L1 docked at the nuclear pore complexes via karyopherin alpha2beta1 heterodimers. Anti-karyopherin-beta1 and anti-karyopherin alpha2 antibodies specifically inhibited nuclear import of HPV11 L1. Moreover, nuclear import of HPV11 L1 could be reconstituted using karyopherin alpha2, beta1, RanGDP and p10. In agreement with the docking and import data, we found that HPV11 L1 binds to karyopherin alpha2 and that this interaction is inhibited by a peptide representing the classical nuclear localization signal of SV40 T antigen. These results strongly suggest that HPV11 L1 enters the nucleus of the infected host cell via the karyopherin alpha2beta1 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号