首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the predicted secondary structures of 20 of the 22 tRNAs encoded in mitochondrial DNA (mtDNA) molecules of the nematodes, Caenorhabditis elegans and Ascaris suum, the T psi C arm and variable loop are replaced with a loop of 6 to 12 nucleotides: the TV-replacement loop. From considerations of patterns of nucleotide correlations in the central regions of these tRNAs, it seems highly likely that tertiary interactions occur within five sets of binary and ternary combinations of nucleotides that correspond in location to nucleotides known to be involved in tertiary interactions in yeast tRNA(Phe) and other standard tRNAs. These observations are consistent with the nematode TV-replacement loop-containing mt-tRNAs being folded into a similar L-shaped functional form to that demonstrated for standard tRNAs, and for the bovine DHU (dihydrouridine) arm replacement-loop-containing mt-tRNA(Ser(AGY)). However, the apparent occurrence in nematode mt-tRNAs of tertiary bonds common to standard tRNAs contrasts with the situation in bovine mt-tRNA(Ser(AGY)) where the functional form is dependent on an almost unique set of tertiary interactions. Because three of the proposed conserved tertiary interactions in the nematode mt-tRNAs involve nucleotides that occur in the variable loop in standard tRNAs, it seems more likely that in nematode mt-tRNAs it is the T psi C arm rather than the variable loop that has undergone the greatest proportional decrease in nucleotide number.  相似文献   

2.
3.
The nucleotide sequences of the mitochondrial DNA (mtDNA) molecules of two nematodes, Caenorhabditis elegans [13,794 nucleotide pairs (ntp)], and Ascaris suum (14,284 ntp) are presented and compared. Each molecule contains the genes for two ribosomal RNAs (s-rRNA and l-rRNA), 22 transfer RNAs (tRNAs) and 12 proteins, all of which are transcribed in the same direction. The protein genes are the same as 12 of the 13 protein genes found in other metazoan mtDNAs: Cyt b, cytochrome b; COI-III, cytochrome c oxidase subunits I-III; ATPase6, Fo ATPase subunit 6; ND1-6 and 4L, NADH dehydrogenase subunits 1-6 and 4L: a gene for ATPase subunit 8, common to other metazoan mtDNAs, has not been identified in nematode mtDNAs. The C. elegans and A. suum mtDNA molecules both include an apparently noncoding sequence that contains runs of AT dinucleotides, and direct and inverted repeats (the AT region: 466 and 886 ntp, respectively). A second, apparently noncoding sequence in the C. elegans and A. suum mtDNA molecules (109 and 117 ntp, respectively) includes a single, hairpin-forming structure. There are only 38 and 89 other intergenic nucleotides in the C. elegans and A. suum mtDNAs, and no introns. Gene arrangements are identical in the C. elegans and A. suum mtDNA molecules except that the AT regions have different relative locations. However, the arrangement of genes in the two nematode mtDNAs differs extensively from gene arrangements in all other sequenced metazoan mtDNAs. Unusual features regarding nematode mitochondrial tRNA genes and mitochondrial protein gene initiation codons, previously described by us, are reviewed. In the C. elegans and A. suum mt-genetic codes, AGA and AGG specify serine, TGA specifies tryptophan and ATA specifies methionine. From considerations of amino acid and nucleotide sequence similarities it appears likely that the C. elegans and A. suum ancestral lines diverged close to the time of divergence of the cow and human ancestral lines, about 80 million years ago.  相似文献   

4.
5.
6.
7.
D A Melton  R Cortese 《Cell》1979,18(4):1165-1172
  相似文献   

8.
9.
J. L. Boore  W. M. Brown 《Genetics》1994,138(2):423-443
The DNA sequence of the 15,532-base pair (bp) mitochondrial DNA (mtDNA) of the chiton Katharina tunicata has been determined. The 37 genes typical of metazoan mtDNA are present: 13 for protein subunits involved in oxidative phosphorylation, 2 for rRNAs and 22 for tRNAs. The gene arrangement resembles those of arthropods much more than that of another mollusc, the bivalve Mytilus edulis. Most genes abut directly or overlap, and abbreviated stop codons are inferred for four genes. Four junctions between adjacent pairs of protein genes lack intervening tRNA genes; however, at each of these junctions there is a sequence immediately adjacent to the start codon of the downstream gene that is capable of forming a stem-and-loop structure. Analysis of the tRNA gene sequences suggests that the D arm is unpaired in tRNA(ser(AGN)), which is typical of metazoan mtDNAs, and also in tRNA(ser(UCN)), a condition found previously only in nematode mtDNAs. There are two additional sequences in Katharina mtDNA that can be folded into structures resembling tRNAs; whether these are functional genes is unknown. All possible codons except the stop codons TAA and TAG are used in the protein-encoding genes, and Katharina mtDNA appears to use the same variation of the mitochondrial genetic code that is used in Drosophila and Mytilus. Translation initiates at the codons ATG, ATA and GTG. A + T richness appears to have affected codon usage patterns and, perhaps, the amino acid composition of the encoded proteins. A 142-bp non-coding region between tRNA(glu) and CO3 contains a 72-bp tract of alternating A and T.  相似文献   

10.
11.
12.
Nematode mitochondria possess extremely truncated tRNAs. Of 22 tRNAs, 20 lack the entire T-arm. The T-arm is necessary for the binding of canonical tRNAs and EF (elongation factor)-Tu (thermo-unstable). The nematode mitochondrial translation system employs two different EF-Tu factors named EF-Tu1 and EF-Tu2. Our previous study showed that nematode Caenorhabditis elegans EF-Tu1 binds specifically to T-armless tRNA. C. elegans EF-Tu1 has a 57-amino acid C-terminal extension that is absent from canonical EF-Tu, and the T-arm-binding residues of canonical EF-Tu are not conserved. In this study, the recognition mechanism of T-armless tRNA by EF-Tu1 was investigated. Both modification interference assays and primer extension analysis of cross-linked ternary complexes revealed that EF-Tu1 interacts not only with the tRNA acceptor stem but also with the D-arm. This is the first example of an EF-Tu recognizing the D-arm of a tRNA. The binding activity of EF-Tu1 was impaired by deletion of only 14 residues from the C-terminus, indicating that the C-terminus of EF-Tu1 is required for its binding to T-armless tRNA. These results suggest that C. elegans EF-Tu1 recognizes the D-arm instead of the T-arm by a mechanism involving its C-terminal region. This study sheds light on the co-evolution of RNA and RNA-binding proteins in nematode mitochondria.  相似文献   

13.
In most eukaryotes, transfer RNAs (tRNAs) are one of the very few classes of genes remaining in the mitochondrial genome, but some mitochondria have lost these vestiges of their prokaryotic ancestry. Sequencing of mitogenomes from the flowering plant genus Silene previously revealed a large range in tRNA gene content, suggesting rapid and ongoing gene loss/replacement. Here, we use this system to test longstanding hypotheses about how mitochondrial tRNA genes are replaced by importing nuclear-encoded tRNAs. We traced the evolutionary history of these gene loss events by sequencing mitochondrial genomes from key outgroups (Agrostemma githago and Silene [=Lychnis] chalcedonica). We then performed the first global sequencing of purified plant mitochondrial tRNA populations to characterize the expression of mitochondrial-encoded tRNAs and the identity of imported nuclear-encoded tRNAs. We also confirmed the utility of high-throughput sequencing methods for the detection of tRNA import by sequencing mitochondrial tRNA populations in a species (Solanum tuberosum) with known tRNA trafficking patterns. Mitochondrial tRNA sequencing in Silene revealed substantial shifts in the abundance of some nuclear-encoded tRNAs in conjunction with their recent history of mt-tRNA gene loss and surprising cases where tRNAs with anticodons still encoded in the mitochondrial genome also appeared to be imported. These data suggest that nuclear-encoded counterparts are likely replacing mitochondrial tRNAs even in systems with recent mitochondrial tRNA gene loss, and the redundant import of a nuclear-encoded tRNA may provide a mechanism for functional replacement between translation systems separated by billions of years of evolutionary divergence.  相似文献   

14.
Summary The nucleotide sequence of a segment of the mitochondrial DNA (mtDNA) molecule of the liver flukeFasciola hepatica (phylum Platyhelminthes, class Trematoda) has been determined, within which have been identified the genes for tRNAala, tRNAasp, respiratory chain NADH dehydrogenase subunit I (ND1), tRNAasn, tRNApro, tRNAile, tRNAlys, ND3, tRNAserAGN, tRNAtrp, and cytochromec oxidase subunit I (COI). The 11 genes are arranged in the order given and are all transcribed from the same strand of the molecule. The overall order of theF. hepatica mitochondrial genes differs from what is found in other metazoan mtDNAs. All of the sequenced tRNA genes except the one for tRNAserAGN can be folded into a secondary structure with four arms resembling most other metazoan mitochondrial tRNAs, rather than the tRNAs that contain a TψC arm replacement loop, found in nematode mtDNAs. TheF. hepatica mitochondrial tRNAserAGN gene contains a dihydrouridine arm replacement loop, as is the case in all other metazoan mtDNAs examined to date. AGA and AGG are found in theF. hepatica mitochondrial protein genes and both codons appear to specify serine. These findings concerningF. hepatica mtDNA indicate that both a dihydrouridine arm replacement loop-containing tRNAserAGN gene and the use of AGA and AGG codons to specify serine must first have occurred very early in, or before, the evolution of metazoa.  相似文献   

15.
The translation elongation factor Tu (EF-Tu) delivers aminoacyl-tRNAs to ribosomes by recognizing the tRNA acceptor and T stems. However, the unusual truncation observed in some animal mitochondrial tRNAs seems to prevent recognition by a canonical EF-Tu. For instance, nematode mitochondria contain tRNAs lacking a T or D arm. We recently found an atypical EF-Tu (EF-Tu1) specific for nematode mitochondrial tRNAs that lack the T arm. We have now discovered a second factor, EF-Tu2, which binds only to tRNAs that lack a D arm. EF-Tu2 seems unique in its amino acid specificity because it recognizes the aminoacyl moiety of seryl-tRNAs and the tRNA structure itself. Such EF-Tu evolution might explain tRNA structural divergence in animal mitochondria.  相似文献   

16.
Analyses of mitochondrial DNA sequences from three species of Habronattus jumping spiders (Chelicerata: Arachnida: Araneae) reveal unusual inferred tRNA secondary structures and gene arrangements, providing new information on tRNA evolution within chelicerate arthropods. Sequences from the protein-coding genes NADH dehydrogenase subunit 1 (ND1), cytochrome oxidase subunit I (COI), and subunit II (COII) were obtained, along with tRNA, tRNA, and large-subunit ribosomal RNA (16S) sequences; these revealed several peculiar features. First, inferred secondary structures of tRNA and, likely, tRNA, lack the TPsiC arm and the variable arm and therefore do not form standard cloverleaf structures. In place of these arms is a 5-6-nt T arm-variable loop (TV) replacement loop such as that originally described from nematode mitochondrial tRNAs. Intraspecific variation occurs in the acceptor stem sequences in both tRNAs. Second, while the proposed secondary structure of the 3' end of 16S is similar to that reported for insects, the sequence at the 5' end is extremely divergent, and the entire gene is truncated about 300 nt with respect to Drosophila yakuba. Third, initiation codons appear to consist of ATY (ATT and ATC) and TTG for ND1 and COII, respectively. Finally, Habronattus shares the same ND1-tRNA-16S gene arrangement as insects and crustaceans, thus illustrating variation in a tRNA gene arrangement previously proposed as a character distinguishing chelicerates from insects and crustaceans.  相似文献   

17.
Mitochondrial genomes of onychophorans (velvet worms) present an interesting problem: Some previous studies reported them lacking several transfer RNA (tRNA) genes, whereas others found that all their tRNA genes were present but severely reduced. To resolve this discrepancy, we determined complete mitochondrial DNA (mtDNA) sequences of the onychophorans Oroperipatus sp. and Peripatoides sympatrica as well as cDNA sequences from 14 and 10 of their tRNAs, respectively. We show that tRNA genes in these genomes are indeed highly reduced and encode truncated molecules, which are restored to more conventional structures by extensive tRNA editing. During this editing process, up to 34 nucleotides are added to the tRNA sequences encoded in Oroperipatus sp. mtDNA, rebuilding the aminoacyl acceptor stem, the TΨC arm, and in some extreme cases, the variable arm and even a part of the anticodon stem. The editing is less extreme in P. sympatrica in which at least a part of the TΨC arm is always encoded in mtDNA. When the entire TΨC arm is added de novo in Oroperipatus sp., the sequence of this arm is either identical or similar among different tRNA species, yet the sequences show substantial variation for each tRNA. These observations suggest that the arm is rebuilt, at least in part, by a template-independent mechanism and argue against the alternative possibility that tRNA genes or their parts are imported from the nucleus. By contrast, the 3' end of the aminoacyl acceptor stem is likely restored by a template-dependent mechanism. The extreme tRNA editing reported here has been preserved for >140 My as it was found in both extant families of onychophorans. Furthermore, a similar type of tRNA editing may be present in several other groups of arthropods, which show a high degree of tRNA gene reduction in their mtDNA.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号