首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polar auxin transport inhibitors, including N-1-naphthylphthalamicacid (NPA) and 2,3,5-triiodobenzoic acid (TIBA), have variouseffects on physiological and developmental events, such as theelongation and tropism of roots and stems, in higher plants.We isolated NPA-resistant mutants of Arabidopsis thaliana, withmutations designated pir1 and pir2, that were also resistantto TIBA. The mutations specifically affected the root-elongationprocess, and they were shown ultimately to be allelic to aux1and ein2, respectively, which are known as mutations that affectresponses to phytohormones. The mechanism of action of auxintransport inhibitors was investigated with these mutants, inrelation to the effects of ethylene, auxin, and the polar transportof auxin. With respect to the inhibition of root elongationin A. thaliana, we demonstrated that (1) the background levelof ethylene intensifies the effects of auxin transport inhibitors,(2) auxin transport inhibitors might act also via an inhibitorypathway that does not involve ethylene, auxin, or the polartransport of auxin, (3) the hypothesis that the inhibitory effectof NPA on root elongation is due to high-level accumulationof auxin as a result of blockage of auxin transport is not applicableto A. thaliana, and (4) in contrast to NPA, TIBA itself hasa weak auxin-like inhibitory effect. (Received April 12, 1996; Accepted September 2, 1996)  相似文献   

2.
The auxin transport inhibitors 2, 3, 5-triiodobenzoic acid (TIBA)and naphthylphthalamic acid (NPA) inhibited adventitious rootformation (ARF) induced by indol-3-butyric acid (IBA) on cuttingsfrom etiolated mung-bean seedlings floated on solutions of thegrowth regulators. The concentrations of TIBA and NPA requiredfor a 25 per cent reduction in ARF with 10 µM IBA wereestimated by linear interpolation to be 11.3 µm and 0.42µM respectively. NPA is a particularly potent inhibitorof IBA-induced ARF. The inhibitory effect of either compoundwas reversible by higher concentrations of IBA. NPA had no effectwhen applied after the auxin treatment. The inhibitory effects of TIBA or NPA could not be explainedby effects on the uptake or metabolism of [2-14C]IAA. Consideringthis and other evidence, it is suggested that NPA and possiblyTIBA are acting as specific antagonists of auxin in the inductionof ARF. Vigna radiata (L.), mung-bean, root induction, hypocotyl cuttings, auxin inhibitors, indol-3-butyric acid, 2,3,5-triiodobenzoic acid, naphthylphthalamic acid, auxin uptake, auxin metabolism, adventitious roots  相似文献   

3.
The effect of N-1 -naphthylphthalamic acid (NPA), indole-3-aceticacid (IAA) and kinetin on callus growth and bud formation wasstudied mainly by a tobacco callus culture method. Callus producedfrom Nicotiana tabacum var. Wisconsin 38 was used as the testplant material. Callus growth on nutrient agar containing 2mg/liter of IAA was promoted by NPA added at a concentrationof 0.5 mg/liter with 0.4 mg/liter of kinetin or by NPA addedat 5 mg/liter in the absence of kinetin. At a high concentrationof 50 mg/liter, however, NPA inhibited growth on the mediumcontaining 2 mg/liter IAA and no kinetin. Kinetin reduced thisNPA inhibition. In the presence of 0.4 mg/liter kinetin and2 mg/liter IAA, when the concentration of NPA was 50 mg/liter,buds were initiated after calluses were grown on the test mediumfor 7 weeks in dim light, but no buds formed when NPA was omittedfrom the above medium. The control of callus growth and bud initiation is based onthe active ratio of auxin (IAA) to cytokinin (kinetin) in themedium and NPA added to the medium can promote or inhibit callusgrowth and induce bud formation. Therefore, it is proposed thatNPA can itself reduce auxin activity or enhance cytokinin activityand hence change the active ratio of the two regulators. NPAmay enhance the activity of cytokinin (here supplied as kinetin)but cannot substitute for it. 1Present address: Department of Biology, Wisconsin State University,Oshkosh, Wisconsin 54901, U. S. A. (Received March 10, 1969; )  相似文献   

4.
We have previously shown that both endogenous auxin and ethylenepromote adventitious root formation in the hypocotyls of derootedsunflower (Helianthus annuus) seedlings. Experiments here showedthat promotive effects on rooting of the ethylene precursor,1-aminocyclopropane-l-carboxylic acid (ACC) and the ethylene-releasingcompound, ethephon (2-chloro-ethylphosphonic acid), dependedon the existence of cotyledons and apical bud (major sourcesof auxin) or the presence of exogenously applied indole-3-aceticacid (IAA). Ethephon, ACC, aminoethoxyvinylglycine (an inhibitorof ethylene biosynthesis), and silver thiosulphate (STS, aninhibitor of ethylene action), applied for a length of timethat significantly influenced adventitious rooting, showed noinhibitory effect on the basipetal transport of [3H]IAA. Theseregulators also had no effect on the metabolism of [3H]IAA andendogenous IAA levels measured by gas chromatography-mass spectrometry.ACC enhanced the rooting response of hypocotyls to exogenousIAA and decreased the inhibition of rooting by IAA transportinhibitor, N-1-naphthylphthalamic acid (NPA). STS reduced therooting response of hypocotyls to exogenous IAA and increasedthe inhibition of rooting by NPA. Exogenous auxins promotedethylene production in the rooting zone of the hypocotyls. Decapitationof the cuttings or application of NPA to the hypocotyl belowthe cotyledons did not alter ethylene production in the rootingzone, but greatly reduced the number of root primordia. We concludethat auxin is a primary controller of adventitious root formationin sunflower hypocotyls, while the effect of ethylene is mediatedby auxin. Key words: Auxin, ethylene, adventitious rooting, sunflower  相似文献   

5.
Germinating seeds and regenerating shoot apical meristems oftomato exposed to the polar auxin transport inhibitors NPA andHFCA converted normal indeterminate growth of the shoot to thatof a determinate pattern. The inhibitors produced linear, tendril-likeshoots which phenocopied several forms of the homozygous lanceolatemutant in tomato. Key words: Tomato, Lycopersicon esculentum, tendril, IAA transport inhibitor, indoleacetic acid, NPA, HFCA  相似文献   

6.
The polar transport of indol-3yl-acetic acid (IAA-2-14C) instem explants and decapitated shoots of tumour-prone Nicotianahybrids (2n, 3n, and 4n) was compared with that in the normal,non-tumorous parent species N. glauca and N. langsdorffii. Thetotal uptake of the auxin from donor blocks was greatest inthe hybrids and N. glauca. The velocity of the basipetal movementof IAA-14C was the same in all species tested, i.e. 8 mm/h.The transport capacity for the hormone, however, was decreasedin the three tumour-prone hybrids. Gas chromatography showedthat between 70 and 90 per cent of the transported auxin waspresent in the form of IAA, between 10 and 30 per cent in theform of indol-3yl-aldehyde (IAld). The basipetal transport exceeded the acropetal transport inyoung (third) intemodes of all plants studied, whereas in olderstem segments (tenth intenodes) the reverse was found. The polarity of auxin transport was less well expressed in thetumorous hybrids. Blocking the active transport by pre-treatment of stem cuttingswith 2,4-dinitrophenol (2,4-DNP) caused a drastic reductionin the polar IAA-14C movement; in all plants tested the auxintransport was reduced to the same low level. The accumulation of auxin at the base of cuttings was higherin N. glauca and the 2n hybrid than in N. langsdorffii, i.e.about seven times higher after 1-h and three times higher after12-h transport experiments. The release of 14C from the cuttinginto an agar receiver block, however, was markedly reduced inthe 2n hybrid, whereas in N. glauca the labelled substancesmoved more freely into the receiver blocks. Differences in the capacity for the accumulation and the releaseof IAA-14C in hybrid and N. glauca stem tissues were studiedusing decapitated greenhouse plants wounded by incision abovethe fourth internode. Accumulation of the auxin occurred onlyabove the wound-cut in hybrid plants. This observation is consistentwith the view that tumour formation on hybrid stems occurs atsites of wounding. Our data suggest an elevated auxin levelto be present during tumour initiation at these sites. These results on polar transport and accumulation of IAA-14Cin tumorous Nicotiana plants together with our previous dataon various endogenous auxins suggest that the induction of neoplasticgrowth in tobacco plants is correlated with increased auxinlevels and an accumulation of the hormone at sites of wounding.  相似文献   

7.
Pretreatment of 2?0 mm segments of etiolated zucchini (Cucurbitapepo L.) hypocotyl with cycloheximide (CH) or 2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamide(MDMP) eliminated the stimulation by N-1-naphthylphthalamicacid (NPA) of net uptake of [1-14C]indol-3yl-acetic acid ([1-14C]IAA),but had relatively little effect on the net uptake of IAA inthe absence of NPA. The efflux of [1-14C]IAA from preloadedsegments was not substantially affected by inhibitor pretreatmentin the absence of NPA, but CH pretreatment significantly inhibitedthe reduction of efflux caused by NPA. Pretreatment with CHor MDMP did not affect net uptake by segments of the pH probe[2-14C]5,5-dimethyl-oxazolidine-2,4-dione ([2-14C]DMO), or thenet uptake of [14C]-labelled 3-O-methylglucose ([14C]3-0-MeGlu),suggesting that neither inhibitor affected intracellular pHor the general function of proton symporters in the plasma membrane.Both compounds reduced the incorporation of label from [35S]methionineinto trichloroacetic acid (TCA)-insoluble fractions of zucchinitissue, confirming their inhibitory effect on protein synthesis. The steady-state association of [3H]IAA with microsomal vesiclesprepared from zucchini hypocotyl tissue was enhanced by theinclusion of NPA in the uptake medium. The stimulation by NPAof [3H]IAA association with microsomes was substantially reducedwhen the tissue was pretreated with CH. However, CH pretreatmentdid not affect the level of high affinity NPA binding to themembranes indicating that treatments did not result in lossof NPA receptors. It is suggested that the auxin transport site on the effluxcarrier system and the receptor site for NPA may reside on separateproteins linked by a third, rapidly turned-over, transducingprotein. Key words: Auxin carriers, auxin efflux, Cucurbita pepo, phytotropin receptors  相似文献   

8.
We have isolated a cytokinin up-regulated cDNA clone, H13, froman early stage of cultured tobacco mesophyll protoplasts bya differential display method. The expression of this gene wasspecifically induced by natural and synthetic cytokinins includingN-(2-chloro-4-pyridyl)-N'-phenylurea (4PU30), a diphenylurea-typecytokinin, although the simultaneous presence of auxin was alsorequired. It seems that the preceding treatment of the tobaccomesophyll protoplasts by auxin is necessary for the gene torespond to cytokinin. The addition of a cytokinin antagonist,compound 182, which suppressed the induction of cell divisionin tobacco mesophyll protoplasts, completely abolished the expressionof this gene. Though the predicted gene product of H13 did notsuggest us any sequences of defined functions, two domains ofthe predicted sequence had significant homology to several reportedsequences in the data base. The gene product of H13 is proposedto have a role in regenerating cell wall in cultured protoplasts,since a cDNA clone E6, from cotton fiber cells, which has themost closely related structure to H13, has been isolated fromcells which showed active cellulose synthesis. This suppositionis supported by the evidence that in the absence of cytokinin,cell wall regeneration was significantly suppressed, resultingin failure of the induction of cell division. Thus, the geneproduct of H13 is supposed to have a role in regenerating cellwalls and facilitating the progression of the cell cycle, resultingin the sustained cell division of tobacco mesophyll protoplasts. 1These authors are equally contributed to this work.  相似文献   

9.
The entry and exit phases of radioactive indoleacetic acid transportwere investigated in corn coleoptile sections. Compounds capableof inhibiting auxin transport, particularly p-chloromercuribenzoicacid and N-1-naphthylphthalamic acid, were found to only slightlyblock auxin entry but severely suppress auxin exit. An oxygendeficiency had little effect on auxin entry but was found tostrongly inhibit auxin transport and auxin exit. While indoleaceticacid uptake was proportional to concentration, the exit phasebecame apparently saturated at concentrations above 10–5M. Both entry and exit were found to have temperature coefficientsof about 2 or more. The low sensitivity of auxin entry to inhibitors,or to oxygen deficiency, and the linearity of entry over a wideconcentration range suggest a diffusion component in entry.The strong sensitivity of exit to inhibitors and to oxygen deficiencyconfirms the involvement of active processes in exit, as expectedof a secretion process. 1Present address: Research Division, Ontario Water ResourcesCommission, Toronto, Canada. Indiana, U.S.A  相似文献   

10.
11.
Keitt GW  Baker RA 《Plant physiology》1966,41(10):1561-1569
Six dichloro-, 3 trichloro-, 2 triiodo-, and 3 heterosubstituted benzoic acids (amiben, dinoben, dicamba), and N-1-naphthylphthalamic acid have been tested for effects on growth and on polar auxin transport. Growth activity with and without kinetin was measured by effects on fresh and dry weights of 30-day cultures of fresh tobacco pith. Transport inhibition was measured by following uptake and output of IAA-2-14C through 10 mm bean epicotyl sections. The distribution of callus growth on vascularized tobacco stem segments was also observed. Avena first internode extension assays established the relative activities: dicamba > amiben > dinoben suggested by pith growth results. Growth effects of active compounds were similar with and without kinetin, except that amiben was less active with kinetin, while 2,3,6-trichlorobenzoic acid was more active with kinetin than alone. The weak auxin activity of NPA was confirmed. Transport experiments showed that NPA was the most inhibitory compound tested, followed by TIBA. Other compounds tested were at least 300 times less inhibitory to IAA transport. The best growth promoters were the least inhibitory to transport, and the most effective transport inhibitors were at best poor auxins. It is suggested that the weak auxin and auxin synergistic activity of TIBA (and perhaps 2,3-dichlorobenzoic acid) in extension growth tests arises from its inhibition of transport of endogenous or added auxin out of the sections, rather than from its intrinsic auxin activity. Chemically induced apolar callus growth on vascularized tobacco stem explants can arise from inhibition of native auxin transport, apolar growth stimulation by auxinic action of the test compound, or both.  相似文献   

12.
The calabrese cultivar Brassica oleracea var. italica cv. GreenComet was used in a study of the effects of exogenous hormoneson the growth and differentiation of seedling organs in vitro.Four types of explants were tested: hypocotyl segments, rootsegments, primary leaf discs and cotyledon discs. These explantswere incubated on media containing factorial combinations ofBAP x IBA, BAP x NAA, KN x IBA and KN x NAA (all at 0, 0.1,10 and 10.0mg l–1). Hypocotyls were the most regenerativeexplants; shoot production was favoured by cytokinin: auxinratios greater than one and was decreased by IBA at 10 mg l–1when callus was produced. Shoot formation from root explantsoccurred either in the absence of hormones or with low concentrations;no shoot was produced when any hormone was present at 10 mgl–1. In contrast, shoot production from primary leaf diseswas favoured by high concentrations of both auxin and cytokininwith the combination of BAP and IBA the most effective. Shootproduction from cotyledon discs was sporadic with no consistentresponse on any auxin/cytokinin combination. After further experimentson the optimization of hormone concentration, the followingcombinations were chosen as allowing reliable regeneration:0.1 mg l–1 BAP+0.1mg l–1 IBA for hypocotyl segments,0.075 mg l–1 KN +0.025 mg l–1 IBA for root segments,and 5.0 mg l–1 BAP+5.0 mg l–1 IBA for leaf discs. Brassica oleracea var. italica, calabrese, tissue culture, seedling, auxin, cytokinin  相似文献   

13.
Development of xylem cells is affected by environmental stresses such as drought and oxidative stress, and recent findings suggested that jasmonic acid (JA) mediates this process through interaction with other phytohormones such as cytokinin. In this study, we showed that polar auxin transport regulated by PIN3 and PIN7 is involved in the JA-mediated xylem development in vascular tissues. The mutant plants that lack the activity of PIN3 and PIN7 responsible for the auxin transport developed extra xylems in vascular tissues such as the JA-treated wild-type plants. Visualization of auxin response and xylem development in the roots treated with NPA, an inhibitor of polar auxin transport, suggested that disruption of polar auxin transport is involved in the xylem phenotype of pin3 pin7 double mutants. We also found that cytokinin increases expressions of PIN3 and PIN7 responsible for the auxin transport while JA decreases only PIN7. These suggested that PIN7-mediated polar auxin transport system modulates xylem development in response to JA. The finding that JA affects auxin distribution in root vascular tissues further supported this. Collectively, these suggest that JA promotes xylem development by disrupting auxin transport in vascular tissues, and the auxin efflux genes, more especially PIN7 whose expression is suppressed by JA mediates this process.  相似文献   

14.
White lupin (Lupinus albus L.) develops proteoid (cluster) rootsin response to phosphorus deficiency. Proteoid roots are composedof tight clusters of rootlets that initiate from the pericycleopposite protoxylem poles and emerge from every protoxylem polewithin the proteoid root axis. Auxins are required for lateralroot development, but little is known of their role in proteoidroot formation. Proteoid root numbers were dramatically increasedin P-sufficient (+P) plants by application of the syntheticauxin, naphthalene acetic acid (NAA), to leaves, and were reducedin P-deficient (-P) plants by the presence of auxin transportinhibitors [2,3,5-triiodobenzoic acid (TIBA) and naphthylphthalamicacid (NPA)]. While ethylene concentrations in the root zonewere 1.5-fold higher in -P plants, there was no effect on proteoidroot numbers of the ethylene inhibitors aminoethoxyvinvylglycine(AVG) and silver thiosulphate. Phosphonate, which interfereswith plant perception of internal P concentration, dramaticallyincreased the number of proteoid root segments in +P plants.Activities of phosphoenolpyruvate carboxylase (PEPC), malatedehydrogenase (MDH) and exuded acid phosphatase in proteoidroot segments were not different from +P controls when NAA wasapplied to +P lupin plants, but increased to levels comparableto -P plants in the phosphonate treatment. Addition of TIBAor NPA to -P plants reduced PEPC and MDH activity of -P proteoidroots to levels found in +P or -P normal root tissues, but didnot affect acid phosphatase in root exudates. These resultssuggest that auxin transport from the shoot plays a role inthe formation of proteoid roots during P deficiency. Auxin-stimulatedproteoid root formation is necessary, but not sufficient, tosignal the up-regulation of PEPC and MDH in proteoid root segments.In contrast, phosphonate applied to P-sufficient white lupinelicits the full suite of coordinated responses to P deficiencyCopyright2000 Annals of Botany Company Lupinus albus L., white lupin, proteoid roots, auxin, ethylene, phosphonate, phosphorus deficiency  相似文献   

15.
In Torenia stem segments cultured in vitro, active meristematicdivisions are induced in the epidermis by treatment with cytokinin,resulting in the formation of adventitious buds. Applicationof the calcium ionophore A23187 [GenBank] was found to induce meristematicdivisions in the absence of cytokinin. The induction by A23187 [GenBank] was inhibited by simultaneous addition of auxin, but not byanti-cytokinin. A two hour pre-treatment with A23187 [GenBank] was alsoeffective, but only when it was applied to the explants justafter their excision from mother plants. The A23187 [GenBank] -inducedmeristematic zones developed into dome-shaped structures, butnot into complete adventitious buds. Complete elimination ofcalcium from the culture medium caused 50% inhibition of A23187 [GenBank] -and/or cytokinin-induced initiation of meristematic divisions.When the explants were preincubated with EGTA and then culturedon a Ca-free medium containing EGTA, cytokinin failed to inducebud initiation. Similar inhibition was also obtained by lanthanum,a calcium antagonist, by verapamil, a calcium channel inhibitor,and by trifluoperazine and chlorpromazine, calmodulin inhibitors.These results support the idea that adventitious bud initiationinduced by cytokinin in Torenia stem segments may be mediated,at least partially, by an increase in the level of intracellularCa2+. 1Bioscience Research Center, Mitsui Petrochemical IndustriesLtd., Waki-cho, Kuga-gun, Yamaguchi 740, Japan. (Received May 9, 1985; Accepted October 5, 1985)  相似文献   

16.
We have described the inhibition of polar auxin transport by several phytotropins including 1-N-naphthylphthalamic acid (NPA) and quercetin. Semicarbazones (substituted phenylsemicarbazones of 2-acetylarylcarboxylic acids) are inhibitors consistent with previously predicted general structural requirements for auxin transport inhibitors. The best semicarbazone derivative tested to date, hereafter called SCB-I, binds to the NPA binding protein with high affinity, Kb = 4 nanomolar. Quantification of the binding of various phytotropins allows us to make some general statements concerning the structure/properties of the NPA binding protein. The data suggest that the ligand binding region of this protein is multifaceted, a conclusion supported by the chemical predictions of Katekar and Geissler ([1977] Plant Physiol 60: 826-829). Although the data do not allow us to make specific conclusions on the structure of the binding site, they do show that both NPA and SCB-I could each occupy two regions of the protein. At least one of these binding regions appears to be common for both inhibitors of auxin transport. We suggest that the diversity of the binding site structure reflects the possible existence of more than one type of natural ligand controlling the process of auxin transport.  相似文献   

17.
Abstract: Gravitropism of the protonemata of the moss Ceratodon purpureus (Hedw.) Brid. was studied after treatment with auxin transport inhibitors and auxin-related substances. The phytotropins NPA (naphthylphthalamic acid) and PBA (pyrenoylbenzoic acid), known to block auxin efflux in higher plants, strongly inhibited gravitropic curvature of the apical protonemal cell. At 3 μM NPA or PBA, approximately 60 % inhibition of curvature was observed; growth rates were less affected. Tyrphostin A47, a known antagonist of NPA effects in higher plants, released the inhibition of moss protonemal gravitropism and restored the full curvature response. Exogenous IAA, even at high concentrations (40 μM), did not interfere with protonemal gravitropism. To account for the results, modified hypotheses for auxin transport and action are discussed.  相似文献   

18.
Stem segments of non-tumorous Nicotiana glauca and N. langsdorffiiplants and of their tumor-producing amphidiploid F1 hybrid weretreated with 6-furfurylaminopurine (kinetin) prior to transporttests with applied labeled indoleacetic acid (IAA-2-14C). Kinetin-treatmentsincreased the uptake of IAA in non-tumorous shoots; the IAAuptake by N. langsdorffii segments was increased up to 3-fold.The auxin uptake in stem-segments of the tumor-forming hybrid,however, could not be increased significantly by kinetin. Theeven distribution of IAA-14C in segments of normal and tumorproneNicotiana shoots is stimulated by kinetin. Data are discussedin conjunction with previous results on auxin transport andtumorformation in Nicotiana. (Received August 8, 1972; )  相似文献   

19.
In order to clarify the mechanism underlying the polar auxin transport system, the pis1 mutant in Arabidopsis thaliana that is hypersensitive to N -1-naphthylphthalamic acid (NPA), an auxin transport inhibitor was isolated and characterized. Whereas the pis1 mutant is normally sensitive to phytohormones, auxins, cytokinin and ethylene precursor, this mutant is hypersensitive to NPA over the broad spectrum of its effects such as growth of seedlings, root elongation, root gravitropism, root phototropism and root curling. This result indicates that the pis1 mutant is specifically affected in the polar auxin transport system. This result also defines a genetic factor controlling both gravitropism and phototropism, and strongly indicates the involvement of auxin transport during both tropic responses. NPA, 2,3,5-triiodobenzoic acid (TIBA) and 9-hydroxyfluorene-9-carboxylic acid (HFCA) represent different classes of auxin transport inhibitors. The pis1 mutation conferred hypersensitivity to both NPA and TIBA but not to HFCA. These results show the genetic separation of the actions of NPA/TIBA and of HFCA. The PIS1 gene product might be specifically involved in the response pathway of NPA/TIBA, leading to interference with auxin-efflux carriers, and might act as a negative regulator of the action of NPA/TIBA.  相似文献   

20.
A method was developed for evaluating the empirical alterationof xylem vessel differentiation in the central leaf trace ofPopulus deltoides, a species that exhibits helical phyllotaxis.Effects of experimental treatments for a period of six plastochronswere evaluated by vessel parameter ratios = 2.PT/ (PT+1 + PT–1),where P was either vessel number or mean transverse vessel areameasured at mid-intern ode at Leaf Plastochron Indices of T– 1, T, and T + 1. Excising leaf laminae reduced vesselnumber and mean vessel area in the associated central leaf traceby 50% and 70%, respectively, compared to unexcised laminaecontrols. Replacing excised laminae with a concentration seriesof exogenous indoleacetic acid (IAA) resulted in a 5% increaseper log mol m–3 of IAA in the number of vessels differentiatingin the associated central leaf traces compared to excised controls.Mean vessel areas within these leaf traces were 50% of thoseof intact leaf traces. No significant effects of different concentrationsof exogenously applied IAA on mean vessel area could be demonstrated.A lanolin paste ring of N-1 -naphthylphthalamic acid (NPA),an auxin transport inhibitor, around the petioles of intactleaves reduced the number of differentiating vessels by 7% andmean vessel area by 29% per log mol m–3 of NPA comparedto central leaf traces of leaves ringed with plain lanolin paste.The results suggest that NPA treatments may be used to distinguishexperimentally, at least in part, the cell division from thecell enlargement phases of primary xylogenesis within centralleaf traces of P. deltoides stems. Key words: Auxin transport, Vessel area, Vessel number  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号