首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Free radical formation in heme proteins is recognised as a factor in mediating the toxicity of peroxides in oxidative stress. As well as initiating free radical damage, heme proteins damage themselves. Under extreme conditions, where oxidative stress and low pH coincide (e.g., myoglobin in the kidney following rhabdomyolysis and hemoglobin in the CSF subsequent to subarachnoid hemorrhage), peroxide can induce covalent heme to protein cross-linking. In this paper we show that, even at neutral pH, the heme in hemoglobin is covalently modified by oxidation. The product, which we term OxHm, is a "green heme" iron chlorin with a distinct optical spectrum. OxHm formation can be quantitatively prevented by reductants of ferryl iron, e.g., ascorbate. We have developed a simple, robust, and reproducible HPLC assay to study the extent of OxHm formation in the red cell in vivo. We show that hemoglobin is oxidatively damaged even in normal blood; approximately 1 in 2,000 heme groups exist as OxHm in the steady state. We used a simple model (physical exercise) to demonstrate that OxHm increases significantly during acute oxidative stress. The exercise-induced increase is short-lived, suggesting the existence of an active mechanism for repairing or removing the damaged heme proteins.  相似文献   

2.
Haemolytic events, such as those following rhabdomyolysis and subarachnoid haemorrhage, often result in pathological complications such as vasoconstriction. Haem-protein cross-linked myoglobin and haemoglobin are generated by ferric-ferryl redox cycling, and thus can be used as markers of oxidative stress. We have found haem-protein cross-linked myoglobin in the urine of patients suffering from rhabdomyolysis and haem-protein cross-linked haemoglobin in the cerebrospinal fluid of patients following subarachnoid haemorrhage. These findings provide strong evidence that these respiratory haem proteins can be involved in powerful oxidation processes in vivo. We have previously proposed that these oxidation processes in rhabdomyolysis include the formation of potent vasoconstrictor molecules, generated by the myoglobin-catalysed oxidation of membranes, inducing nephrotoxicity and renal failure. Haem-protein cross-linked haemoglobin in cerebrospinal fluid suggests that a similar mechanism of lipid oxidation is present and that this may provide a mechanistic basis for the delayed vasospasm that follows subarachnoid haemorrhage.  相似文献   

3.
Iron chelators such as desferrioxamine have been shown to ameliorate oxidative damage in vivo. The mechanism of this therapeutic action under non-iron-overload conditions is, however, complex, as desferrioxamine has properties that can impact on oxidative damage independent of its capacity to act as an iron chelator. Desferrioxamine can act as a reducing agent to remove cytotoxic ferryl myoglobin and hemoglobin and has recently been shown to prevent the formation of a highly cytotoxic heme-to-protein cross-linked derivative of myoglobin. In this study we have examined the effects of a wide range of iron chelators, including the clinically used hydroxypyridinone CP20 (deferriprone), on the stability of ferryl myoglobin and on the formation of heme-to-protein cross-linking. We show that all hydroxypyridinones, as well as many other iron chelators, are efficient reducing agents of ferryl myoglobin. These compounds are also effective at preventing the formation of cytotoxic derivatives of myoglobin such as heme-to-protein cross-linking. These results show that the use of iron chelators in vivo may ameliorate oxidative damage under conditions of non-iron overload by at least two mechanisms. The antioxidant effects of chelators in vivo cannot, therefore, be attributed solely to iron chelation.  相似文献   

4.
Metmyoglobin (Mb) was glycated by glucose in a nonenzymatic in vitro reaction. Amount of iron release from the heme pocket of myoglobin was found to be directly related with the extent of glycation. After in vitro glycation, the unchanged Mb and glycated myoglobin (GMb) were separated by ion exchange (BioRex 70) chromatography, which eliminated free iron from the protein fractions. Separated fractions of Mb and GMb were converted to their oxy forms -MbO2 and GMbO2, respectively. H2O2-induced iron release was significantly higher from GMbO2 than that from MbO2. This free iron, acting as a Fenton reagent, might produce free radicals and degrade different cell constituents. To verify this possibility, degradation of different cell constituents catalyzed by these fractions in the presence of H2O2 was studied. GMbO2 degraded arachidonic acid, deoxyribose and plasmid DNA more efficiently than MbO2. Arachidonic acid peroxidation and deoxyribose degradation were significantly inhibited by desferrioxamine (DFO), mannitol and catalase. However, besides free iron-mediated free radical reactions, role of iron of higher oxidation states, formed during interaction of H2O2 with myoglobin might also be involved in oxidative degradation processes. Formation of carbonyl content, an index of oxidative stress, was higher by GMbO2. Compared to MbO2, GMbO2 was rapidly auto-oxidized and co-oxidized with nitroblue tetrazolium, indicating increased rate of Mb and superoxide radical formation in GMbO2. GMb exhibited more peroxidase activity than Mb, which was positively correlated with ferrylmyoglobin formation in the presence of H2O2. These findings correlate glycation-induced modification of myoglobin and a mechanism of increased formation of free radicals. Although myoglobin glycation is not significant within muscle cells, free myoglobin in circulation, if becomes glycated, may pose a serious threat by eliciting oxidative stress, particularly in diabetic patients.  相似文献   

5.
The structural and functional consequences of engineering a positively charged Lys residue and replacing the natural heme with a heme-L-His derivative in the active site of sperm whale myoglobin (Mb) have been investigated. The main structural change caused by the distal T67K mutation appears to be mobilization of the propionate-7 group. Reconstitution of wild-type and T67K Mb with heme-L-His relaxes the protein fragment around the heme because it involves the loss of the interaction of one of the propionate groups which stabilize heme binding to the protein. This modification increases the accessibility of exogenous ligands or substrates to the active site. The catalytic activity of the reconstituted proteins in peroxidase-type reactions is thus significantly increased, particularly with T67K Mb. The T67K mutation slightly reduces the thermodynamic stability and the chemical stability of Mb during catalysis, but somewhat more marked effects are observed by cofactor reconstitution. Hydrogen peroxide, in fact, induces pseudo-peroxidase activity but also promotes oxidative damage of the protein. The mechanism of protein degradation involves two pathways, which depend on the evolution of radical species generated on protein residues by the Mb active species and on the reactivity of phenoxy radicals produced during turnover. Both protein oligomers and heme-protein cross-links have been detected upon inactivation.  相似文献   

6.
The reductive debromination of BrCCl3 by ferrous deoxymyoglobin leads to the covalent bonding of the prosthetic heme to the protein. We have previously shown, by the use of peptide mapping and mass spectrometry, that histidine residue 93 is covalently bound to the heme moiety. In the present study the structure of the heme adduct was more completely determined by 1H and 13C NMR techniques. We have found that the ring I vinyl group of the prosthetic heme was altered by the addition of a histidine imidazole nitrogen to the alpha-carbon and a CCl2 moiety to the beta-carbon. The electronic absorption spectra of the oxidized and reduced states of the altered heme-protein indicated that the heme-iron exists in a bis-histidine-ligated form. Analysis of the crystal structure of native myoglobin suggested that for the altered heme-protein, histidine residues 97 and 64 are ligated to the heme-iron and that residue 97 has replaced the native proximal histidine residue 93. These movements, in effect a "histidine shuffle" at the active site, may be responsible for the enhanced reducing activity of the altered protein.  相似文献   

7.
Peroxide-induced oxidative modifications of haem proteins such as myoglobin and haemoglobin can lead to the formation of a covalent bond between the haem and globin. These haem to protein cross-linked forms of myoglobin and haemoglobin are cytotoxic and have been identified in pathological conditions in vivo. An understanding of the mechanism of haem to protein cross-link formation could provide important information on the mechanisms of the oxidative processes that lead to pathological complications associated with the formation of these altered myoglobins and haemoglobins. We have re-examined the mechanism of the formation of haem to protein cross-link to test the previously reported hypothesis that the haem forms a covalent bond to the protein via the tyrosine 103 residue (Catalano, C. E., Choe, Y. S., Ortiz de Montellano, P. R., J. Biol. Chem. 1989, 10534 - 10541). Comparison of native horse myoglobin, recombinant sperm whale myoglobin and Tyr(103) --> Phe sperm whale mutant shows that, contrary to the previously proposed mechanism of haem to protein cross-link formation, the absence of tyrosine 103 has no impact on the formation of haem to protein cross-links. In contrast, we have found that engineered myoglobins that lack the distal histidine residue either cannot generate haem to protein cross-links or show greatly suppressed levels of modified protein. Moreover, addition of a distal histidine to myoglobin from Aplysia limacina, that naturally lacks this histidine, restores the haem protein's capacity to generate haem to protein cross-links. The distal histidine is, therefore, vital for the formation of haem to protein cross-link and we explore this outcome.  相似文献   

8.
Reaction of horse myoglobin with H2O2 oxidizes the iron to the ferryl (Fe(IV) = O) state and produces a protein radical that is rapidly dissipated by poorly understood mechanisms. As reported here, the reaction with H2O2 results in covalent binding of up to 18% of the prosthetic heme group to the protein. The chromophore of the protein-bound prosthetic group is very similar to that of heme itself. High performance liquid chromatography of tryptic digests indicates that the formation of heme-bound peptides is associated with disappearance of the peptide with the sequence YLE-FISDAIIHVLHSK corresponding to residues 103-118 of horse myoglobin. Amino acid analysis, terminal amino acid sequencing, and liquid secondary ion mass spectrometry establish that the heme is primarily attached to this peptide. The heme appears to be bound to the tyrosine residue because the tyrosine is the only amino acid that disappears from the amino acid analysis. The mass spectrometric data indicates that the heme-peptide is formed without addition or loss of an oxygen or other major structural fragment. The site of attachment to the heme group has not been unambiguously determined, but the heme vinyl groups are not essential for the reaction because equal cross-linking is observed in H2O2-treated mesoheme-reconstituted myoglobin. The results are most consistent with binding of tyrosine 103 to a meso-carbon of the prosthetic heme group.  相似文献   

9.
Myoglobin catalyses the breakdown of lipid hydroperoxides (e.g., HPODE) during which the absorption band of the lipid conjugated diene (234 nm) is partially bleached. The constant for this process is strongly pH-dependent (k = 9.5 x 10(-3)s(-1), pH 7: k = 2.3 x 10(-1)s(-1), pH 5). This rate enhancement is not due to acid-induced changes in protein conformation or the involvement of protein-based radical species, as demonstrated by an almost identical pH dependence of the same reaction catalyzed by ferric haemin. The rate constants for ferryl formation and auto-reduction show different pH dependencies, with a pK of 8.3 for ferryl formation and a projected pK of 3.5 for ferryl auto-reduction. The pH dependence for the auto-reduction of the ferryl species is the same as that of the myoblobin catalyzed breakdown of HPODE. We propose that the protonated form of ferryl myoglobin (Fe(4+) - OH(-)) is the reactive species regulating the peroxidatic activity of myoglobin. The protonated ferryl species abstracts an electron from either the protein or porphyrin, allowing fast regeneration of the ferric species. Alkaline conditions stabilize the ferryl species, making myoglobin considerably less reactive towards lipids and lipid hydroperoxides. These findings are significant for understanding myoglobin-induced oxidative stress in vivo and the development of therapies.  相似文献   

10.
The oxidative reaction of equine myoglobin with alkylhydrazines results primarily in introduction of the alkyl group at the sterically hindered gamma-meso position. The gamma-meso adducts formed with ethyl- and n-butylhydrazine have been isolated and unambiguously identified. With high pressure liquid chromatography, evidence for the formation of similar adducts with methyl- and n-propylhydrazine but not tert-butyl-, 2,2,2-trifluoroethyl-, or 2-phenylethylhydrazine has also been obtained. The gamma regiospecificity of the reaction of myoglobin with alkylhydrazines contrasts with the delta meso regiospecificity in the alkylation of peroxidases. Addition to the porphyrin vinyl groups is not detected, but N-alkylheme adducts appear to be formed in very low yield. Cofactor studies establish that H2O2 is absolutely required for meso heme alkylation and EPR/spin trapping studies show that alkyl free radicals are the probable alkylating species. In contrast, the reductive reaction of sperm whale myoglobin with CBrCl3 results in addition of the CCl3.radical to the 2-vinyl moiety of the heme group (Osawa, Y., Highet, R. J., Murphy, C. M., Cotter. R.J., and Pohl, L.R. (1989) J. Am. Chem. Soc. 111, 4462-4467). Carbon radicals thus apparently add to different sites of the myoglobin prosthetic group under reductive and oxidative conditions, presumably because of differences in the oxidation state of the heme and/or the intrinsic reactivities of alkyl and polyhaloalkyl radicals.  相似文献   

11.
Kinetic studies on a cross-linked complex between plastocyanin cytochrome f   总被引:2,自引:0,他引:2  
A cross-linked complex between plastocyanin and cytochrome f was prepared by incubation in the presence of a water soluble carbodiimide and its kinetic properties were studied. The optical spectra, oxidation-reduction potentials and isoelectric pH of plastocyanin and cytochrome f did not change upon the formation of the cross-linked complex. Studies on the ionic strength effect on the electron transfer rate from cross-linked plastocyanin to ferricyanide indicated that the negative charge on the reaction site of plastocyanin was masked upon the cross-linking. It was also suggested that the sign of the net charge near the cytochrome f heme edge changed from positive to negative upon the cross-linking. On the other hand, electrostatic interactions between cross-linked plastocyanin and P700 seemed to be essentially the same as those in the case of native plastocyanin, although the rate of electron transfer from cross-linked plastocyanin to P700 was severely reduced. We also measured the intra-complex electron transfer from cytochrome f to plastocyanin. This suggested that the covalently cross-linked complex is a valid model of the electron transfer encounter complex. Based on these results, the reaction sites of plastocyanin with P700 and cytochrome f were discussed.  相似文献   

12.
Metmyoglobin (Mb) was glycated by glucose in a nonenzymatic in vitro reaction. Amount of iron release from the heme pocket of myoglobin was found to be directly related with the extent of glycation. After in vitro glycation, the unchanged Mb and glycated myoglobin (GMb) were separated by ion exchange (BioRex 70) chromatography, which eliminated free iron from the protein fractions. Separated fractions of Mb and GMb were converted to their oxy forms -MbO2 and GMbO2, respectively. H2O2-induced iron release was significantly higher from GMbO2 than that from MbO2. This free iron, acting as a Fenton reagent, might produce free radicals and degrade different cell constituents. To verify this possibility, degradation of different cell constituents catalyzed by these fractions in the presence of H2O2 was studied. GMbO2 degraded arachidonic acid, deoxyribose and plasmid DNA more efficiently than MbO2. Arachidonic acid peroxidation and deoxyribose degradation were significantly inhibited by desferrioxamine (DFO), mannitol and catalase. However, besides free iron-mediated free radical reactions, role of iron of higher oxidation states, formed during interaction of H2O2 with myoglobin might also be involved in oxidative degradation processes. Formation of carbonyl content, an index of oxidative stress, was higher by GMbO2. Compared to MbO2, GMbO2 was rapidly auto-oxidized and co-oxidized with nitroblue tetrazolium, indicating increased rate of Mb and superoxide radical formation in GMbO2. GMb exhibited more peroxidase activity than Mb, which was positively correlated with ferrylmyoglobin formation in the presence of H2O2. These findings correlate glycation-induced modification of myoglobin and a mechanism of increased formation of free radicals. Although myoglobin glycation is not significant within muscle cells, free myoglobin in circulation, if becomes glycated, may pose a serious threat by eliciting oxidative stress, particularly in diabetic patients.  相似文献   

13.
The H(2)O(2)-dependent reaction of lactoperoxidase (LPO) with sperm whale myoglobin (SwMb) or horse myoglobin (HoMb) produces LPO-Mb cross-linked species, in addition to LPO and SwMb homodimers. The HoMb products are a LPO(HoMb) dimer and LPO(HoMb)(2) trimer. Dityrosine cross-links are shown by their fluorescence to be present in the oligomeric products. Addition of H(2)O(2) to myoglobin (Mb), followed by catalase to quench excess H(2)O(2) before the addition of LPO, still yields LPO cross-linked products. LPO oligomerization therefore requires radical transfer from Mb to LPO. In contrast to native LPO, recombinant LPO undergoes little self-dimerization in the absence of Mb but occurs normally in its presence. Simultaneous addition of 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS) and LPO to activated Mb produces a spin-trapped radical electron paramagnetic resonance signal located primarily on LPO, confirming the radical transfer. Mutation of Tyr-103 or Tyr-151 in SwMb decreased cross-linking with LPO, but mutation of Tyr-146, Trp-7, or Trp-14 did not. However, because DBNBS-trapped LPO radicals were observed with all the mutants, DBNBS traps LPO radicals other than those involved in protein oligomerization. The results clearly establish that radical transfer occurs from Mb to LPO and suggest that intermolecularly transferred radicals may reside on residues other than those that are generated by intramolecular reactions.  相似文献   

14.
The oxidation of the heme iron of metmyoglobin by H2O2 yields an oxo ferryl complex (FeIV = O), similar to Compound II of peroxidases, as well as a protein radical; this high oxidation state of myoglobin is known as ferrylmyoglobin. The interaction of Trolox, a water-soluble vitamin E analog, with ferrylmyoglobin entailed two sequential one-electron oxidations of the phenolic antioxidant with intermediate formation of a phenoxyl radical and accumulation of a quinone end product. These oxidation reactions were linked to individual reductions of ferrylmyoglobin to metmyoglobin, as indicated by the value of the relationship [metmyoglobin]formed/[Trolox]consumed: 1.92 +/- 0.28. The Trolox-mediated reduction of ferrylmyoglobin to metmyoglobin could proceed directly, i.e., electron transfer from the phenolic-OH group in Trolox to the oxoferryl moiety, or indirectly, i.e., sequential electron transfer from Trolox to a protein radical to the oxoferryl moiety. The former mechanism is supported by the finding that the high oxidation heme iron is reduced under conditions where the tyrosyl residues are blocked by o-acetylation and when hemin is substituted for myoglobin. The latter mechanism is consistent with the following observations: (a) the EPR signal ascribed to the protein radical is suppressed by Trolox, with the concomitant appearance of the EPR spectrum of the Trolox phenoxyl radical and (b) the rate of ferrylmyoglobin reduction by Trolox is decreased with increasing number of tyrosyl residues in the proteins of horse myoglobin (titrated by o-acetylation) and sperm whale myoglobin. The apparent discrepancy between these observations can be reconciled by considering that both electrophilic centers in ferrylmyoglobin--the oxoferryl heme moiety and the protein radical--function independently of each other and that recovery of ferrylmyoglobin by Trolox could be effected through the tyrosyl residues, albeit at slower rates. The mechanistic aspects of these results are discussed in terms of the two main redox transitions in the myoglobin molecule encompassing valence changes of the heme iron and electron transfer of the tyrosyl residue in the protein and linked to the two sequential one-electron oxidations of Trolox.  相似文献   

15.
Song EJ  Kim YS  Chung JY  Kim E  Chae SK  Lee KJ 《Biochemistry》2000,39(33):10090-10097
Nucleoside diphosphate kinase (NDPK, Nm23) has been implicated as a multifunctional protein. However, the regulatory mechanism of NDPK is poorly understood. We have examined the modification of NDPK in oxidative stresses. We found that oxidative stresses including diamide and H(2)O(2) treatment cause disulfide cross-linking of NDPK inside cells. This cross-linking was reversible in response to mild oxidative stress, and irreversible to strong stress. This suggests that disulfide cross-linked NDPK may be a possible mechanism in the modification of cellular regulation. To confirm this idea, oxidative modification of NDPK has been performed in vitro using purified human NDPK H(2)O(2) inactivated the nucleoside diphosphate (NDP) kinase activity of NDPK by producing intermolecular disulfide bonds. Disulfide cross-linking of NDPK also dissociated the native hexameric structure into a dimeric form. The oxidation sites were identified by the analysis of tryptic peptides of oxidized NDPK, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Intermolecular cross-linking between Cys109-Cys109, which is highly possible based on the X-ray crystal structure of NDPK-A, and oxidations of four methionine residues were identified in H(2)O(2)-treated NDPK. This cross-linkng was confirmed using mutant C109A (NDPK-A(C109A)) which had similar enzymatic activity as a wild NDPK-A. Mutant NDPK-A(C109A) was not cross-linked and was not easily denatured by the oxidant. Therefore, enzymatic activity and the quaternary structure of NDPK appear to be regulated by cross-linking with oxidant. These findings suggest one of the regulatory mechanisms of NDPK in various cellular processes.  相似文献   

16.
The ionotropic gelation method for formation of crosslinked chitosan particles can be easily modified from ionic cross-linking to deprotonation by adjusting the pH of TPP. Chitosan was cross-linked ionically with TPP at lower pH and by deprotonation mechanism at higher pH. The swelling behavior of cross-linked chitosan appeared to depend on the pH of TPP. The ionically cross-linked chitosan showed higher swelling ability. Thus the nature of crosslinked chitosan can be tailor made to obtain the desired properties in terms of cross-linking density, crystallinity, and hydrophilicity.  相似文献   

17.
Hemoglobin (Hb)-based oxygen carriers (HBOCs) also known as "blood substitutes" have been under active clinical development over the last two decades. Cell-free Hb outside its natural protective red blood cell environment, as is the case with all HBOCs, has been shown to be vasoactive in part due to the scavenging of vascular endothelial nitric oxide (NO) and may in some instances induce heme-mediated oxidative stress. Chemical modification intended to stabilize HBOCs in the tetrameric or polymeric forms introduces conformational constraints that result in proteins with diverse allosteric responses as well as oxidative and nitrosative redox side reactions. Intra and inter-molecular cross-linking may in some instances also determine the interactions between HBOCs and normal oxidative inactivation and clearance mechanisms. Oxygen and oxidative reactions of normal and several cross-linked Hbs as well as their interactions with endogenous plasma protein (haptoglobin) and cellular receptor pathways (macrophage CD163) differ significantly. Therefore, safety and efficacy may be addressed by designing HBOCs with modifications that limit hypertension, minimize heme destabilization and take into account endogenous Hb removal mechanisms to optimize exposure times for a given indication.  相似文献   

18.
The contribution of superoxide-mediated injury to oxidative stress is not fully understood. A potential mechanism is the reaction of superoxide with tyrosyl radicals, which either results in repair of the tyrosine or formation of tyrosine hydroperoxide by addition. Whether these reactions occur with protein tyrosyl radicals is of interest because they could alter protein structure or modulate enzyme activity. Here, we have used a xanthine oxidase/acetaldehyde system to generate tyrosyl radicals on sperm whale myoglobin in the presence of superoxide. Using mass spectrometry we found that superoxide prevented myoglobin dimer formation by repairing the protein tyrosyl radical. An addition product of superoxide at Tyr151 was also identified, and exogenous lysine promoted the formation of this product. In our system, reaction of tyrosyl radicals with superoxide was favored over dimer formation with the ratio of repair to addition being approximately 10:1. Our results demonstrate that reaction of superoxide with protein tyrosyl radicals occurs and may play a role in free radical-mediated protein injury.  相似文献   

19.
Ascorbate peroxidase (APX) isoforms localized in the stroma and thylakoid membrane of chloroplasts play a central role in scavenging reactive oxygen species generated by photosystems. These enzymes are inactivated within minutes by H2O2 when the reducing substrate, ascorbate, is depleted. We found that, when the enzyme is inactivated by H2O2, a heme at the catalytic site of a stromal APX isoform is irreversibly cross-linked to a tryptophan residue facing the distal cavity. Mutation of this tryptophan to phenylalanine abolished the cross-linking and increased the half-time for inactivation from <10 to 62 s. In contrast with H2O2-tolerant peroxidases, rapid formation of the cross-link in APXs suggests that a radical in the reaction intermediate tends to be located in the distal tryptophan so that heme is easily cross-linked to it. This is the first report of a mutation that improves the tolerance of chloroplast APXs to H2O2.  相似文献   

20.
In this work, we investigated the mechanism involved in the photoinitiated cross-linking of the polyester poly(propylene fumarate) (PPF) using the initiator bis(2,4,6-trimethylbenzoyl) phenylphosphine oxide (BAPO). It was hypothesized that BAPO has the ability to cross-link PPF into solid polymer networks, without the use of a cross-linking monomer, because two pairs of radicals, both involving a fast adding phosphinoyl radical, were formed upon UV irradiation of BAPO. Spectroscopic investigation first confirmed the addition of BAPO derived radicals to the PPF olefin. Investigations of fumarate conversion and bulk network properties were then undertaken, using the BAPO initiator and a monoacylphosphine oxide (MAPO) initiator which contains a single photolabile bond. Results show that a single BAPO phosphinoyl radical was primarily responsible for the formation of a highly cross-linked PPF network and the additional radical pair which may be formed does not dramatically alter fumarate conversion or bulk network properties. From these results, the network structure of BAPO initiated, photo-cross-linked PPF may be deduced. Finally, this study demonstrates a method for inferring cross-linked network structures by contrasting properties of bulk materials formed from similar cross-linking initiators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号