首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is hypothesized that autoimmune diseases manifest when tolerance to self-Ags fails. One possible mechanism to break tolerance is presentation of self-Ag in an altered form. Most Ags are presented by APCs via the traditional presentation pathway that includes "epitope editing" by intracellular HLA-DM, a molecule that selects for stable MHC-peptide complexes. We were interested in testing the hypothesis that autoreactive MHC-peptide complexes may reach the cell surface by an alternate pathway without being edited by HLA-DM. We selected a cartilage autoantigen human cartilage glycoprotein 39 to which T cell responses are observed in rheumatoid arthritis (RA) patients and some DR(*)04 healthy subjects. RA is genetically associated with certain DRB1 alleles, including DRB1(*)0401 but closely related allele DRB1(*)0402 is either neutral or mildly protective with respect to RA. We generated human B lymphoblastoid cell line cells expressing DR(*)0401 or DR(*)0402 in the presence or absence of intracellular HLA-DM and assessed their ability to present a candidate autoantigen, human cartilage glycoprotein 39. Our results show that the presence of intracellular HLA-DM is critical for presentation of this autoantigen to CD4(+) T cell hybridomas generated from DR(*)04-transgenic mice. Presentation of an autoantigen by the traditional HLA-DM-dependent pathway has implications for Ag presentation events in RA.  相似文献   

2.
HLA-DM stabilizes peptide-receptive class II alphabeta dimers and facilitates the capture of high affinity peptides, thus influencing the peptide repertoire presented by class II molecules. Variations in DM levels may therefore have a profound effect on the antigenic focus of T cell-mediated immune responses. Specifically, DM expression may influence susceptibility and resistance to autoimmune diseases. In this study the role of DM in HLA-DR4-restricted presentation of an insulin-dependent diabetes mellitus autoantigen, glutamate decarboxylase (GAD), was tested. Presentation of immunodominant GAD epitope 273-285 was regulated by endogenous DM levels in human B lymphoblasts. T cell responses to exogenous GAD as well as an endogenous cytoplasmic form of this Ag were significantly diminished with increasing cellular expression of DM. Epitope editing by DM was observed only using Ag and not small synthetic peptides, suggesting that this process occurred within endosomes. Results with cytoplasmic GAD also indicated that peptides from this compartment intersect class II proteins in endocytic vesicles where DM editing was facilitated. Changes in DM levels within APC may therefore influence the presentation of autoantigens and the development of autoimmune disorders such as type I diabetes.  相似文献   

3.
Certain HLA-DR alleles confer strong susceptibility to the autoimmune disease rheumatoid arthritis (RA). We compared RA-associated alleles, HLA-DR*0401, HLA-DR*0404, and HLA-DR*0405, with closely related, non-RA-associated alleles, HLA-DR*0402 and HLA-DR*0403, to determine whether they differ in their interactions with the class II chaperone, invariant chain (Ii). Ii binds to class II molecules in the endoplasmic reticulum, inhibits binding of other ligands, and directs class II-Ii complexes to endosomes, where Ii is degraded to class II-associated Ii peptide (CLIP). To evaluate the interaction of Ii and CLIP with these DR4 alleles, we introduced HLA-DR*0401, *0402, and *0404 alleles into a human B cell line that lacked endogenous HLA-DR or HLA-DM molecules. In a similar experiment, we introduced HLA-DR*0403 and *0405 into an HLA-DM-expressing B cell line, 8.1.6, and its DM-negative derivative, 9.5.3. Surface abundance of DR4-CLIP peptide complexes and their susceptibility to SDS-induced denaturation suggested that the different DR4-CLIP complexes had different stabilities. Pulse-chase experiments showed CLIP dissociated more rapidly from RA-associated DR molecules in B cell lines. In vitro assays using soluble rDR4 molecules showed that DR-CLIP complexes of DR*0401 and DR*0404 were less stable than complexes of DR*0402. Using CLIP peptide variants, we mapped the reduced CLIP interaction of RA-associated alleles to the shared epitope region. The reduced interaction of RA-associated HLA-DR4 molecules with CLIP may contribute to the pathophysiology of autoimmunity in RA.  相似文献   

4.
The class II MHC homolog HLA-DM catalyzes exchange of peptides bound to class II MHC proteins, and is an important component of the Ag presentation machinery. The mechanism of HLA-DM-mediated catalysis is largely obscure. HLA-DM catalyzes exchange of peptides of varying sequence, suggesting that a peptide sequence-independent component of the MHC-peptide interaction could be involved in the catalytic process. Twelve conserved hydrogen bonds between the peptide backbone and the MHC are a prominent sequence-independent feature of the MHC-peptide interaction. To evaluate the relative importance of these hydrogen bonds toward HLA-DM action, we prepared peptide variants that lacked the ability to form one or more of the hydrogen bonds as a result of backbone amide N-methylation or truncation, and tested their ability to be exchanged by HLA-DM. We found that disruption of hydrogen bonds involving HLA-DR1 residues alpha51-53, a short extended segment at the N terminus of the alpha subunit helical region, led to heightened HLA-DM catalytic efficacy. We propose that those bonds are disrupted in the MHC conformation recognized by HLA-DM to allow structural transitions in that area during DM-assisted peptide release. These results suggest that peptides or compounds that bind MHC but cannot form these interactions would be preferentially edited out by HLA-DM.  相似文献   

5.
Background: Class II molecules of the major histocompatibility complex become loaded with antigenic peptides after dissociation of invariant chainderived peptides (CLIP) from the peptide-binding groove. The human leukocyte antigen (HLA)-DM is a prerequisite for this process, which takes place in specialised intracellular compartments. HLA-DM catalyses the peptide-exchange process, simultaneously functioning as a peptide ‘editor’, favouring the presentation of stably binding peptides. Recently, HLA-DO, an unconventional class II molecule, has been found associated with HLA-DM in B cells, yet its function has remained elusive.Results: The function of the HLA-DO complex was investigated by expression of both chains of the HLA-DO heterodimer (either alone or fused to green fluorescent protein) in human Mel JuSo cells. Expression of HLA-DO resulted in greatly enhanced surface expression of CLIP via HLA-DR3, the conversion of class II complexes to the SDS-unstable phenotype and reduced antigen presentation to T-cell clones. Analysis of peptides eluted from HLA-DR3 demonstrated that CLIP was the major peptide bound to class II in the HLA-DO transfectants. Peptide exchange assays in vitro revealed that HLA-DO functions directly at the level of class II peptide loading by inhibiting the catalytic action of HLA-DM.Conclusions: HLA-DO is a negative modulator of HLA-DM. By stably associating with HLA-DM, the catalytic action of HLA-DM on class II peptide loading is inhibited. HLA-DO thus affects the peptide repertoire that is eventually presented to the immune system by MHC class II molecules.  相似文献   

6.
Peptide presentation by MHC class II is of critical importance to the function of CD4+ T cells. HLA-DM resides in the endosomal pathway and edits the peptide repertoire of newly synthesized MHC class II molecules before they are exported to the cell surface. HLA-DM ensures MHC class II molecules bind high affinity peptides by targeting unstable MHC class II:peptide complexes for peptide exchange. Research over the past decade has implicated the peptide N-terminus in modulating the ability of HLA-DM to target a given MHC class II:peptide combination. In particular, attention has been focused on both the hydrogen bonds between MHC class II and peptide, and the occupancy of the P1 anchor pocket. We sought to solve the crystal structure of a HLA-DR1 molecule containing a truncated hemagglutinin peptide missing three N-terminal residues compared to the full-length sequence (residues 306–318) to determine the nature of the MHC class II:peptide species that binds HLA-DM. Here we present structural evidence that HLA-DR1 that is loaded with a peptide truncated to the P1 anchor residue such that it cannot make select hydrogen bonds with the peptide N-terminus, adopts the same conformation as molecules loaded with full-length peptide. HLA-DR1:peptide combinations that were unable to engage up to four key hydrogen bonds were also unable to bind HLA-DM, while those truncated to the P2 residue bound well. These results indicate that the conformational changes in MHC class II molecules that are recognized by HLA-DM occur after disengagement of the P1 anchor residue.  相似文献   

7.
Rheumatoid arthritis (RA) is genetically associated with MHC class II molecules that contain the shared epitope. These MHC molecules may participate in disease pathogenesis by selectively binding arthritogenic peptides for presentation to autoreactive CD4(+) T cells. The nature of the arthritogenic Ag is not known, but recent work has identified posttranslationally modified proteins containing citrulline (deiminated arginine) as specific targets of the IgG Ab response in RA patients. To understand how citrulline might evoke an autoimmune reaction, we have studied T cell responses to citrulline-containing peptides in HLA-DRB1*0401 transgenic (DR4-IE tg) mice. In this study, we demonstrate that the conversion of arginine to citrulline at the peptide side-chain position interacting with the shared epitope significantly increases peptide-MHC affinity and leads to the activation CD4(+) T cells in DR4-IE tg mice. These results reveal how DRB1 alleles with the shared epitope could initiate an autoimmune response to citrullinated self-Ags in RA patients.  相似文献   

8.
The role of autoimmune reactions in the pathogenesis of rheumatoid arthritis (RA) is poorly understood. To address this issue we have investigated the spontaneous T cell response to two well-characterized humoral autoantigens in RA patients and controls: 1) the heterogeneous nuclear ribonucleoprotein A2, i.e., the RA33 Ag (A2/RA33), and 2) filaggrin in unmodified and citrullinated forms. In stimulation assays A2/RA33 induced proliferative responses in PBMC of almost 60% of the RA patients but in only 20% of the controls (patients with osteoarthritis or psoriatic arthritis and healthy individuals), with substantially stronger responses in RA patients (p < 0.00002). Furthermore, synovial T cells of seven RA patients investigated were also clearly responsive. In contrast, responses to filaggrin were rarely observed and did not differ between RA patients and controls. Analysis of A2/RA33-induced cytokine secretion revealed high IFN-gamma and low IL-4 production in both RA and control PBMC, whereas IL-2 production was mainly observed in RA PBMC (p < 0.03). Moreover, A2/RA33-specific T cell clones from RA patients showed a strong Th1 phenotype and secreted higher amounts of IFN-gamma than Th1 clones from controls (p < 0.04). Inhibition experiments performed with mAbs against MHC class II molecules showed A2/RA33-induced T cell responses to be largely HLA-DR restricted. Finally, immunohistochemical analyses revealed pronounced overexpression of A2/RA33 in synovial tissue of RA patients. Taken together, the presence of autoreactive Th1-like cells in RA patients in conjunction with synovial overexpression of A2/RA33 may indicate potential involvement of this autoantigen in the pathogenesis of RA.  相似文献   

9.
Joint-specific self-Ags are considered to play an important role in the induction of synovial T and B cell expansion in human rheumatoid arthritis (RA). However, the nature of these autoantigens is still enigmatic. In this study a somatically mutated IgG2 lambda B cell hybridoma was established from the synovial membrane of an RA patient and analyzed for its Ag specificity. A heptameric peptide of cartilage oligomeric matrix protein (COMP) could be characterized as the target structure recognized by the human synovial B cell hybridoma. The clonotypic V(H) sequences of the COMP-specific hybridoma could also be detected in synovectomy material derived from five different RA patients but in none of the investigated osteoarthritis cases (n = 5), indicating a preferential usage of V(H) genes closely related to those coding for a COMP-specific Ag receptor in RA synovial B cells. Moreover, the COMP heptamer was preferentially recognized by circulating IgG in RA (n = 22) compared with osteoarthritis patients (n = 24) or age-matched healthy controls (n = 20; both p < 0.0001). Hence, the COMP-specific serum IgG is likely to reflect local immune responses toward a cartilage- and tendon-restricted Ag that might be crucial to the induction of tissue damage in RA.  相似文献   

10.
11.
Following antigenic challenge, MHC-restricted T cell responses are directed against a few dominant antigenic epitopes. Here, evidence is provided demonstrating the importance of APC in modulating the hierarchy of MHC class II-restricted T cell responses. Biochemical analysis of class II:peptide complexes in B cells revealed the presentation of a hierarchy of peptides derived from the Ig self Ag. Functional studies of kappa peptide:class II complexes from these cells indicated that nearly 20-fold more of an immunodominant epitope derived from kappa L chains was bound to class II DR4 compared with a subdominant epitope from this same Ag. In vivo, T cell responses were preferentially directed against the dominant kappa epitope as shown using Ig-primed DR4 transgenic mice. The bias in kappa epitope presentation was not linked to differences in class II:kappa peptide-binding affinity or epitope editing by HLA-DM. Rather, changes in native Ag structure were found to disrupt presentation of the immunodominant but not the subdominant kappa epitope; Ag refolding restored kappa epitope presentation. Thus, Ag tertiary conformation along with processing reactions within APC contribute to the selective presentation of a hierarchy of epitopes by MHC class II molecules.  相似文献   

12.
The ability of an antigenic extract of Mycobacterium tuberculosis to induce proliferation of PMBC from rheumatoid arthritis (RA) patients and normal controls was examined. The subjects were further classified as bearing or not bearing the HLA-DR4 phenotype, since this specificity is regarded as a genetic determinant commonly associated with RA. The mycobacterial extract induced significantly higher proliferative responses in lymphocytes from all HLA-DR4 positive as compared to HLA-DR4 negative subjects regardless of whether they had RA or not. This response was maximal at day 6 of incubation and could be abrogated by anti-DR/DQ mAb added to the culture. SDS-PAGE of this extract revealed three major protein bands located at Mr 14, 47, and 65 kDa. After fractionation, Western blotting, and resuspension of protein-laden nitrocellulose particles, only the 14- and 47-kDa proteins retained the original proliferative capacity of the mycobacterial extract. The band separating with a Mr of 47 kDa was found to be the most strongly associated with the HLA-DR4 restricted lymphocyte proliferation, and represents a newly identified M. tuberculosis Ag of relevance in T cell responses. These data provide insight into the pathogenic potential of certain bacterial Ag which could trigger or perpetuate inflammatory disorders when presented in the appropriate genetical background.  相似文献   

13.
HLA-DM (DM) plays a critical role in Ag presentation to CD4 T cells by catalyzing the exchange of peptides bound to MHC class II molecules. Large lateral surfaces involved in the DM:HLA-DR (DR) interaction have been defined, but the mechanism of catalysis is not understood. In this study, we describe four small molecules that accelerate DM-catalyzed peptide exchange. Mechanistic studies demonstrate that these small molecules substantially enhance the catalytic efficiency of DM, indicating that they make the transition state of the DM:DR/peptide complex energetically more favorable. These compounds fall into two functional classes: two compounds are active only in the presence of DM, and binding data for one show a direct interaction with DM. The remaining two compounds have partial activity in the absence of DM, suggesting that they may act at the interface between DM and DR/peptide. A hydrophobic ridge in the DMbeta1 domain was implicated in the catalysis of peptide exchange because the activity of three of these enhancers was substantially reduced by point mutations in this area.  相似文献   

14.
15.
Rheumatoid arthritis (RA) is the most common, crippling human autoimmune disease. Using Western blotting and tandem mass spectroscopy, we have identified the endoplasmic reticulum chaperone BiP, a 78-kDa glucose-regulated protein, as a possible autoantigen. It preferentially stimulated increased proliferation of synovial T cells from patients with RA but not from patients with other arthritides. Mice with established collagen- or pristane-induced arthritis developed IgG Abs to BiP. Although BiP injected in CFA failed to induce arthritis in several strains of rats and mice, including HLA-DR4(+/-)- and HLA-DR1(+/+)-transgenic animals, it completely inhibited the development of arthritis when given i.v. 1 wk before the injection of type II collagen arthritis. Preimmunization with BiP suppressed the development of adjuvant arthritis in Lewis rats in a similar manner. This is the first report of a mammalian chaperone that is an autoantigen in human RA and in experimental arthritis and that can also prevent the induction of experimental arthritis. These findings may stimulate the development of new immunotherapies for the treatment of RA.  相似文献   

16.

Introduction

Genome wide association studies, replicated by numerous well powered validation studies, have revealed a large number of loci likely to play a role in susceptibility to many multifactorial diseases. It is now well established that some of these loci are shared between diseases with similar aetiology. For example, a number of autoimmune diseases have been associated with variants in the PTPN22, TNFAIP3 and CTLA4 genes. Here we have attempted to define overlapping genetic variants between rheumatoid arthritis (RA), type 1 diabetes (T1D) and coeliac disease (CeD).

Methods

We selected eight SNPs previously identified as being associated with CeD and six T1D-associated SNPs for validation in a sample of 3,962 RA patients and 3,531 controls. Genotyping was performed using the Sequenom MassArray platform and comparison of genotype and allele frequencies between cases and controls was undertaken. A trend test P-value < 0.004 was regarded as significant.

Results

We found statistically significant evidence for association of the TAGAP locus with RA (P = 5.0 × 10-4). A marker at one other locus, C1QTNF6, previously associated with T1D, showed nominal association with RA in the current study but did not remain statistically significant at the corrected threshold.

Conclusions

In exploring the overlap between T1D, CeD and RA, there is strong evidence that variation within the TAGAP gene is associated with all three autoimmune diseases. Interestingly a number of loci appear to be specific to one of the three diseases currently studied suggesting that they may play a role in determining the particular autoimmune phenotype at presentation.  相似文献   

17.
The MHC class II-like molecule HLA-DM (DM) (H-2M in mice) catalyzes the exchange of CLIP for antigenic peptides in the endosomes of APCs. HLA-DO (DO) (H-2O in mice) is another class II-like molecule that is expressed in B cells, but not in other APCs. Studies have shown that DO impairs or modifies the peptide exchange activity of DM. To further evaluate the role of DO in Ag processing and presentation, we generated transgenic mice that expressed the human HLA-DOA and HLA-DOB genes under the control of a dendritic cell (DC)-specific promoter. Our analyses of DCs from these mice showed that as DO levels increased, cell surface levels of A(b)-CLIP also increased while class II-peptide levels decreased. The presentation of some, but not all, exogenous Ags to T cells or T hybridomas was significantly inhibited by DO. Surprisingly, H-2M accumulated in DO-expressing DCs and B cells, suggesting that H-2O/DO prolongs the half-life of H-2M. Overall, our studies showed that DO expression impaired H-2M function, resulting in Ag-specific down-modulation of class II Ag processing and presentation.  相似文献   

18.
HLA-DM (DM) plays a critical role in antigen presentation through major histocompatibility complex (MHC) class II molecules. DM functions as a molecular chaperone by keeping class II molecules competent for antigenic peptide loading and serves as an editor by favoring presentation of high-stability peptides. Until now, DM has been thought to exert these activities only in late endosomal/lysosomal compartments of antigen-presenting cells. Here we show that a subset of DM resides at the cell surface of B cells and immature dendritic cells. Surface DM engages in complexes with putatively empty class II molecules and controls presentation of those antigens that rely on loading on the cell surface or in early endosomal recycling compartments. For example, epitopes derived from myelin basic protein that are implicated in the autoimmune disease multiple sclerosis are down-modulated by DM, but are presented in the absence of DM. Thus, this novel concept of functional DM on the surface may be relevant to both protective immune responses and autoimmunity.  相似文献   

19.
Myelin oligodendrocyte glycoprotein (MOG) is an Ag present in the myelin sheath of the CNS thought to be targeted by the autoimmune T cell response in multiple sclerosis (MS). In this study, we have for the first time characterized the T cell epitopes of human MOG restricted by HLA-DR4 (DRB1*0401), an MHC class II allele associated with MS in a subpopulation of patients. Using MHC binding algorithms, we have predicted MOG peptide binding to HLA-DR4 (DRB1*0401) and subsequently defined the in vivo T cell reactivity to overlapping MOG peptides by testing HLA-DR4 (DRB1*0401) transgenic mice immunized with recombinant human (rh)MOG. The data indicated that MOG peptide 97-108 (core 99-107, FFRDHSYQE) was the immunodominant HLA-DR4-restricted T cell epitope in vivo. This peptide has a high in vitro binding affinity for HLA-DR4 (DRB1*0401) and upon immunization induced severe experimental autoimmune encephalomyelitis in the HLA-DR4 transgenic mice. Interestingly, the same peptide was presented by human B cells expressing HLA-DR4 (DRB1*0401), suggesting a role for the identified MOG epitopes in the pathogenesis of human MS.  相似文献   

20.
Probable association of HLA-DR5 with bullous pemphigoid   总被引:1,自引:0,他引:1  
HLA typing was performed in 35 French Caucasoids with bullous pemphigoid and compared with 160 healthy controls. 47 HLA antigens were characterized by a lymphocytotoxicity micromethod. Analysis of the results only reveals one statistically significant difference: an increased incidence of HLA-DR5, which reaches 51.43% in patients versus 22.42% in controls, with P = 0.0007 and Pc = 0.0329. Several bullous dermatosis are associated with various HLA-DR antigens. These data suggest a direct role of HLA-DR molecules in the constitution of these autoimmune disease. An abnormal expression of DR products on some skin cells membrane would permit the presentation of a non self peptide, accumulated in skin cells, to helper T lymphocytes. An heteroimmunization against the non self peptide could lead to lesion of self cells. This peptide perhaps derives from food protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号