首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Meiglyptini comprise eight species of woodpeckers grouped into three genera, two of which contain three species ( Meiglyptes and Mulleripicus), while one genus includes two species ( Hemicircus). The purpose of this study is to describe the mandibular apparatus found in six species of Meiglyptini and to compare them with each other and with other woodpecker species. The results reveal a number of structures that are worth mentioning: (i) the components of the external mandibular adductor system of Hemicircus concretus, particularly the M. adductor mandibulae externus caudalis medialis, are underdeveloped compared with the other investigated species; (ii) the muscles of the internal mandibular system are structurally different among Meiglyptes species and are less developed, both in size and in structure, in H. concretus; (iii) the M protractor quadrati is vestigial in Meiglyptes species; (iv) the muscles of the protractor system of the quadrate are relatively undeveloped in H. concretus; (v) most of the muscles of the pterygoideus system are structurally differentiated in Meiglyptes species. It appears that the complexity of the mandibular apparatus is associated with the type of food consumed, as the apparatus of the frugivorous species H. concretus is markedly different from that of the insectivorous species.  相似文献   

2.
The investigation of the development of the trigeminal jaw adductor musculature in the turtle Chelydra serpentina documents the early aggregation of muscle rudiments around the innervating nerve branches, probably a consequence of inductive interaction. This may explain the early continuity of the intramandibularis with the intermandibularis muscle. Several aspects of muscle development differ in the turtle as compared to lizards. These differences highlight the fact that conjectures of homology, based on a static topographical correspondence of adult structures, cannot capture the dynamics of the developmental process. The intramandibularis muscle of turtles, comparable to that of crocodiles, represents a plesiomorphous structure which is not homologous to the intramandibularis muscle of lacertoid lizards, a derived feature of the Lacertoidea. A derived feature of the chelonian jaw adductor musculature is the posterodorsal expansion of the external adductor along a supraoccipital crest, developing according to a pattern of Haeckelian recapitulation. Muscle development serves to corroborate the concept of a monophyletic Eureptilia, including diapsids and synapsids, as opposed to the (paraphyletic) Anapsida. The impact of the differentiation of the external adductor into a pulley system on cranial kinesis is analysed in biomechanical terms.  相似文献   

3.
Comments on the evolution of the jaw adductor musculature of snakes   总被引:1,自引:0,他引:1  
The aim of this study is to provide a general view of the adductor musculature of the alethinophidian snakes. The aponeurotic system present in anilioid snakes is here described as being also present in colubroid and booid snakes. Although modified in various groups, this aponeurotic system retains the same topographical pattern in the anilioids, booids and colubroids, and is thus hypothesized to be homologous. An analysis of the aponeurotic system and related muscular bundles within the alethinophidian snakes is given. A new terminology is proposed for the jaw adductor muscles where the muscles levator anguli oris and adductor mandibulae externus superficialis (proper) of snakes (sensu Lakjer, 1926; Haas, 1962) retain these names even if this fails to reflect the presumed homologies with the bundles of the same name in lizards (see Rieppel, 1988b); the fibres originating from the temporal tendon in the Anilioidea, and presumed to form a bundle of composite nature (Rieppel, 1980b), are named the M. adductor mandibulae externus temporalis (lost by the Macrostomata); the M. adductor mandibulae externus medialis is a composite muscle in the Anilioidea (Rieppel, 1980b) which give rise to two different muscles in the ‘booids’, the M. adductor mandibulae externus medialis, pars anterior and the M. adductor mandibulae externus profundus, the former being secondarily lost by the Caenophidia which retains only fibres homologues of the 3b and 3c heads of the profundus layer of lizards; the so-called M. adductor mandibular externus profundus of snakes (sensu Lackjer, 1926; Haas, 1962) is also a composite muscle in the Anilioidea (Rieppel, 1980b), in the alethinophidians it is essentially made of fibres homologous with the posterior pinnate part of the medialis layer of lizards, and is here named the M. adductor mandibulae externus medialis, pars posterior. As a result from this analysis it follows that: (1) the Macrostomata are characterized by the downward extension of the fibres forming the M. adductor mandibulae externus medialis, pars anterior and the loss of the M. adductor mandibulae externus temporalis: (2) the Xenopeltidae are set apart from the remaining macrostomatan snakes by the retention of the M. levator anguli oris and of a well developed lateral sheet of the quadrate aponeurosis; (3) the ‘booids’ form a monophyletic group comprising only the Boidae and Bolyeriidae (with the exclusion of the Xenopeltidae and Tropidophiidae) which is characterized by a differentiated M. adductor mandibulae externus medialis, pars anterior inserting on the lateral surface of the compound bone via its own aponeurosis; (4) the Tropidophiidae are set apart from all other snakes by the peculiar course of their lateral head vein; however, they belong to the Caenophidia as they show a facial carotid artery which passes dorsally to the mandibular and maxillary branches of the trigeminus; (5) a possible additional character in favour of an Acrochordoidea + Colubroidea monophyletic unit may be given by the pattern of innervation of the jaw adductor muscles in these two taxa; (6) a new interpretation of the compressor glandulae muscular complex of Atractaspis resulted in a morphologically similar pattern to that of the viperids; the phylogenetic implications of such similarity are discussed in detail.  相似文献   

4.
The sea turtles are a group of cretaceous origin containing seven recognized living species: leatherback, hawksbill, Kemp's ridley, olive ridley, loggerhead, green, and flatback. The leatherback is the single member of the Dermochelidae family, whereas all other sea turtles belong in Cheloniidae. Analyses of partial mitochondrial sequences and some nuclear markers have revealed phylogenetic inconsistencies within Cheloniidae, especially regarding the placement of the flatback. Population genetic studies based on D-Loop sequences have shown considerable structuring in species with broad geographic distributions, shedding light on complex migration patterns and possible geographic or climatic events as driving forces of sea-turtle distribution. We have sequenced complete mitogenomes for all sea-turtle species, including samples from their geographic range extremes, and performed phylogenetic analyses to assess sea-turtle evolution with a large molecular dataset. We found variation in the length of the ATP8 gene and a highly variable site in ND4 near a proton translocation channel in the resulting protein. Complete mitogenomes show strong support and resolution for phylogenetic relationships among all sea turtles, and reveal phylogeographic patterns within globally-distributed species. Although there was clear concordance between phylogenies and geographic origin of samples in most taxa, we found evidence of more recent dispersal events in the loggerhead and olive ridley turtles, suggesting more recent migrations (<1Myr) in these species. Overall, our results demonstrate the complexity of sea-turtle diversity, and indicate the need for further research in phylogeography and molecular evolution.  相似文献   

5.
Male songbirds usually sing when they have occupied a territory, but the territory prospecting of non-territorial males is more elusive and has been rarely studied. Here, we simulated newly arriving, non-territorial males by translocating unmated male nightingales (Luscinia megarhynchos) to our study site. We show that territory prospecting of translocated males was largely confined to the hour before sunrise. The radio-tagged males made extensive excursions visiting several singing males at dawn, but after dawn they remained stationary outside occupied territories. As in many other songbird species, dawn was also the time when resident males sang the most. These results suggest that nonterritorial male nightingales use the dawn chorus to assess singing residents or territory occupancy. For resident males, dawn singing may be important to announce territory occupancy to prospecting males and may thus play a role in territory maintenance.  相似文献   

6.
Despite the great diversity in theropod craniomandibular morphology, the presence and distribution of biting function types across Theropoda has rarely been assessed. A novel method of biomechanical profiling using mechanical advantage computed for each biting position along the entirety of the tooth row was applied to 41 extinct theropod taxa. Multivariate ordination on the polynomial coefficients of the profiles reveals the distribution of theropod biting performance in function space. In particular, coelophysoids are found to occupy a unique region of function space, while tetanurans have a wide but continuous function space distribution. Further, the underlying phylogenetic structure and evolution of biting performance were investigated using phylogenetic comparative methods. There is a strong phylogenetic signal in theropod biomechanical profiles, indicating that evolution of biting performance does not depart from Brownian motion evolution. Reconstructions of ancestral function space occupation conform to this pattern, but phylogenetically unexpected major shifts in function space occupation can be observed at the origins of some clades. However, uncertainties surround ancestor estimates in some of these internal nodes, so inferences on the nature of these evolutionary changes must be viewed with caution.  相似文献   

7.
8.
Sterli J 《Biology letters》2008,4(3):286-289
Turtles have been known since the Upper Triassic (210Myr old); however, fossils recording the first steps of turtle evolution are scarce and often fragmentary. As a consequence, one of the main questions is whether living turtles (Testudines) originated during the Late Triassic (210Myr old) or during the Middle to Late Jurassic (ca 160Myr old). The discovery of the new fossil turtle, Condorchelys antiqua gen. et sp. nov. from the Middle to Upper Jurassic (ca 160-146Myr old) of South America (Patagonia, Argentina), presented here sheds new light on early turtle evolution. An updated cladistic analysis of turtles shows that C. antiqua and other fossil turtles are not crown turtles, but stem turtles. This cladistic analysis also shows that stem turtles were more diverse than previously thought, and that until the Middle to Upper Jurassic there were turtles without the modern jaw closure mechanism.  相似文献   

9.
10.
The chelonian carapace is composed of the endochondral ribs and vertebrae associated with a specialized dermis. The ribs are found in an aberrant position compared to those of all other tetrapods; they are superficial and dorsal to the limb girdles. This morphological arrangement, which constitutes the unique chelonian Bauplan, is examined from a developmental perspective. Embryos of Chelydra serpentina were studied during stages of carapace development. Tissue morphology, autoradiography, and indirect immunofluorescent localization of adhesion molecules indicate that the outgrowth of the embryonic carapace occurs as the result of an epithelial–mesenchymal interaction in the body wall. A carapacial ridge composed of mesenchyme of the dermis and overlying ectoderm is formed dorsal to the ectodermal boundary between somitic and lateral plate mesoderm. It is the anlage of the carapace margin, in which the ribs will eventually terminate. The ectoderm of the carapacial ridge is thickened into a pseudostratified columnar epithelium, which overlies a condensation in the mesenchyme of the dermis. Patterns of cell proliferation and the distribution of N-CAM and fibronectin in the carapacial ridge are consistent with patterns seen in other structures initiated by epithelial–mesenchymal interactions such as feathers and limb buds. Based on an analogy to this developmental mechanism in the development of the limb skeleton, a further analogy with the evolution of the limbs from lateral fin folds is used to form a hypothesis on the evolution of the carapace from elements of the primitive reptilian integument.  相似文献   

11.
Costly signals can evolve under sexual selection, as only thosesignals that are difficult to produce and reflect the relativequality of individuals should be important in mate choice. Onesuch signal may be dawn singing behavior in birds. We assessedwhether the song output at dawn of breeding male black-cappedchickadees Parus atricapilhis honestly reflects quality, whererelative quality is assessed by relative dominance rank in winterflocks. Dawn choruses were recorded from 20 male chickadeesfrom 10 flocks during the fertile period of their mates in 1992,1994, and 1995. Dominance ranks of males were assessed by tabulatinginteractions at winter feeders from 1993 to 1995. A comparisonof the dawn singing behavior of the high-ranking and the low-rankingmales from each of the 10 flocks showed that high-ranking malesbegan singing earlier, sang longer, and sang at higher averageand maximum rates than low-ranking flockmates. Age of the maleshad less effect on song output at dawn than rank; older malestended to sing longer dawn choruses, but there was no differencein onset of singing, average song rate, or maximum song rateat dawn between hatch year and after-hatch year males. Our findingssuggest the dawn chorus can provide an accurate signal to femalesof the relative quality of their mate compared to neighboringmales  相似文献   

12.
Kear BP  Lee MS 《Biology letters》2006,2(1):116-119
Sea turtles (Chelonioidea) are a prominent group of modern marine reptiles whose early history is poorly understood. Analysis of exceptionally well preserved fossils of Bouliachelys suteri gen. et sp. nov. a large-bodied basal protostegid (primitive chelonioid) from the Early Cretaceous (Albian) of Australia, indicates that early sea turtles were both larger and more diverse than previously thought. The analysis implies at least five distinct sea turtle lineages existed around 100 million years ago. Currently, the postcranially primitive Ctenochelys and Toxochelys are interpreted as crown-group sea turtles closely related to living cheloniids (e.g. Chelonia); in contrast, the new phylogeny suggests that they are transitional (intermediate stem-taxa) between continental testudines and derived, pelagic chelonioids.  相似文献   

13.
14.
15.
16.
17.
The study assessed the effect of current activation potentiation by evaluating jaw clenching and its effect on the rate of force development (RFD), time to peak force (TTPF), and peak force (PF) during the countermovement jump. Fourteen subjects performed the countermovement jump on a force platform while maximally clenching their jaw on a dental vinyl mouthguard (JAW) as well as without clenching their jaw by jumping with an open mouth (NON-JAW). Results reveal that the RFD was 19.5% greater in the JAW compared with the NON-JAW condition (p < 0.05). The TTPF was 20.15% less in the JAW compared with the NON-JAW condition (p < 0.05). There were no significant differences (p = 0.60) in PF between the JAW and NON-JAW conditions. These findings indicate that concurrent activation potentiation is manifested through jaw clenching during the countermovement jump. As a result, athletes may employ this strategy of maximally clenching their jaws to gain an ergogenic advantage during the countermovement jump.  相似文献   

18.
19.
Summary The caudal musculature of the free-swimming tadpole of the ascidian, B. schlosseri consists of cylindrical mononucleated cells connected in longitudinal rows flanking the axial notochord. During resorption of the larval tail, which is apparently induced by the contraction of the epidermis, muscle cells are dissociated and pushed into the body cavity where most of them are rapidly engulfed by phagocytes. In the initial stages of tail withdrawal muscle cells display surface alterations due to the disruption of intercellular junctions and disarrangement of myofibrils. Extensive degenerative changes, with shrinkage of mitochondria and disintegration of the contractile material are subsequently observed. Lysosomes and autophagic vacuoles are rarely seen and appear to play a secondary role in the degradation of the muscle cells, which occurs predominantly within the phagocytes. Myofilaments and myofibrils have never been observed within autophagic vacuoles. Clumps of muscle fragments and degenerated phagocytes undergo eventual dissolution in the blood lacunae, concomitantly with the differentiation of the young oozooid.This investigation was supported in part by a grant from the Muscular Dystrophy Associations of America and by CNR contract No. 7100396/04115542 from the Istituto di Biologia del Mare, Venice. We gratefully acknowledge the skillful assistance of Mr. G. Gallian, Mr. M. Fabbri and Mr. G. Tognon. We also thank the staff of the Stazione Idrobiologica at Chioggia for collecting the colonies.  相似文献   

20.
Cinematographic measurements of whisker movements generated by behaving rats were compared with electromyographic (EMG) activity recorded simultaneously from mystacial pad musculature. Muscle activity consisted of repetitive bursts, each of which initiated a "whisking" cycle consisting of a protraction followed by a retraction. Protraction amplitude and velocity were directly proportional to the amount of EMG activity during forward whisker movement. Overtime, the intensity of muscle discharge determined the set point about which the vibrissae moved; higher levels of muscle activity resulted in a greater degree of overall whisker protraction. These findings are consistent with the known anatomy of the facial musculature and underscore the importance of whisker protraction in the acquisition of tactile information by the vibrissae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号