首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Oncostatin M (OSM), a pleiotropic cytokine of the gp130 cytokine family, has been implicated in chronic allergic inflammatory and fibrotic disease states associated with tissue eosinophilia. Mouse (m)OSM induces airway eosinophilic inflammation and interstitial pulmonary fibrosis in vivo and regulates STAT6 activation in vitro. To determine the requirement of STAT6 in OSM-induced effects in vivo, we examined wild-type (WT) and STAT6-knockout (STAT6(-/-)) C57BL/6 mouse lung responses to transient ectopic overexpression of mOSM using an adenoviral vector (AdmOSM). Intratracheal AdmOSM elicited persistent eosinophilic lung inflammation that was abolished in STAT6(-/-) mice. AdmOSM also induced pronounced pulmonary remodeling characterized by goblet cell hyperplasia and parenchymal interstitial fibrosis. Goblet cell hyperplasia was STAT6 dependent; however, parenchymal interstitial fibrosis was not. OSM also induced airway hyperresponsiveness in WT mice that was abolished in STAT6(-/-) mice. OSM stimulated an inflammatory signature in the lungs of WT mice that demonstrated STAT6-dependent regulation of Th2 cytokines (IL-4, IL-13), chemokines (eotaxin-1/2, MCP-1, keratinocyte chemoattractant), and extracellular matrix modulators (tissue inhibitor of matrix metalloproteinase-1, matrix metalloproteinase-13), but STAT6-independent regulation of IL-4Rα, total lung collagen, collagen-1A1, -1A2 mRNA, and parenchymal collagen and α smooth muscle actin accumulation. Thus, overexpression of mOSM induces STAT6-dependent pulmonary eosinophilia, mucous/goblet cell hyperplasia, and airway hyperresponsiveness but STAT6-independent mechanisms of lung tissue extracellular matrix accumulation. These results also suggest that eosinophil or neutrophil accumulation in mouse lungs is not required for OSM-induced lung parenchymal collagen deposition and that OSM may have unique roles in the pathogenesis of allergic and fibrotic lung disease.  相似文献   

3.
4.
Recently, we identified that regulation of leukocyte recruitment by IL-6 requires shedding of the IL-6R from infiltrating neutrophils. In this study, experiments have examined whether other IL-6-related cytokines possess similar properties. Levels of oncostatin M (OSM) and leukemia inhibitory factor were analyzed in patients with overt bacterial peritonitis during the first 5 days of infection. Although no change in leukemia inhibitory factor was observed throughout the duration of infection, OSM was significantly elevated on day 1 and rapidly returned to baseline by days 2-3. The source of OSM was identified as the infiltrating neutrophils, and OSM levels correlated both with leukocyte numbers and i.p. soluble IL-6R (sIL-6R) levels. FACS analysis revealed that OSM receptor beta expression was restricted to human peritoneal mesothelial cells. Stimulation of human peritoneal mesothelial cells with OSM induced phosphorylation of gp130 and OSM receptor beta, which was accompanied by activation of STAT3 and secretion of CC chemokine ligand 2/monocyte chemoattractant protein-1 and IL-6. Although OSM itself did not modulate CXC chemokine ligand 8/IL-8 release, it effectively suppressed IL-1beta-mediated expression of this neutrophil-activating CXC chemokine. Moreover, OSM synergistically blocked IL-1beta-induced CXC chemokine ligand 8 secretion in combination with the IL-6/sIL-6R complex. Thus suggesting that OSM and sIL-6R release from infiltrating neutrophils may contribute to the temporal switch between neutrophil influx and mononuclear cell recruitment seen during acute inflammation.  相似文献   

5.
6.
7.
We have previously reported that interleukin (IL)-1 beta causes beta-adrenergic hyporesponsiveness in cultured human airway smooth muscle (HASM) cells by increasing cyclooxygenase (COX)-2 expression. The purpose of this study was to determine whether p38 mitogen-activated protein (MAP) kinase is involved in these events. IL-1 beta (2 ng/ml for 15 min) increased p38 phosphorylation fourfold. The p38 inhibitor SB-203580 (3 microM) decreased IL-1 beta-induced COX-2 by 70 +/- 7% (P < 0.01). SB-203580 had no effect on PGE(2) release in control cells but caused a significant (70-80%) reduction in PGE(2) release in IL-1 beta-treated cells. IL-1 beta increased the binding of nuclear proteins to the oligonucleotides encoding the consensus sequences for activator protein (AP)-1 and nuclear factor (NF)-kappa B, but SB-203580 did not affect this binding, suggesting that the mechanism of action of p38 was not through AP-1 or NF-kappa B activation. The NF-kappa B inhibitor MG-132 did not alter IL-1 beta-induced COX-2 expression, indicating that NF-kappa B activation is not required for IL-1 beta-induced COX-2 expression in HASM cells. IL-1 beta attenuated isoproterenol-induced decreases in HASM stiffness as measured by magnetic twisting cytometry, and SB-203580 abolished this effect. These results are consistent with the hypothesis that p38 is involved in the signal transduction pathway through which IL-1 beta induces COX-2 expression, PGE(2) release, and beta-adrenergic hyporesponsiveness.  相似文献   

8.
Interleukin-6 (IL-6) subfamily of cytokines, including oncostatin M (OSM), leukemia inhibitory factor (LIF), and IL-6, has been implicated in a variety of physiological responses, such as cell growth, differentiation, and inflammation. In the present study, we demonstrated that both OSM and LIF stimulated the proliferation of human adipose tissue-derived mesenchymal stem cells (hATSCs), however, IL-6 had no effect on cell proliferation. OSM treatment induced phosphorylation of ERK, and pretreatment with U0126, a MEK inhibitor, prevented the OSM-stimulated proliferation of hATSCs, suggesting that the MEK/ERK pathway is involved in the OSM-induced proliferation. Treatment with OSM also induced phosphorylation of JAK2 and JAK3, and pretreatment of the cells with WHI-P131, a JAK3 inhibitor, but not with AG490, a JAK2 inhibitor, attenuated the OSM-induced proliferation of hATSCs. Furthermore, OSM treatment elicited phosphorylation of STAT1 and STAT3, and pretreatment with WHI-P131 specifically prevented the OSM-induced phosphorylation of STAT1, without affecting the OSM-induced phosphorylation of ERK and STAT3. These results suggest that two separate signaling pathways, such as MEK/ERK and JAK3/STAT1, are independently involved in the OSM-stimulated proliferation of hATSCs.  相似文献   

9.
Adiponectin, an adipokine secreted from adipocytes, plays a crucial role in the regulation of glucose and lipid metabolism. In the present study, we examine the role of the IL-6 family of cytokines in the expression of adiponectin in human adipocytes derived from human adipose tissue-derived stromal cells. Oncostatin M (OSM), but not IL-6, attenuated the expression level of adiponectin dose- and time-dependently, and the inhibitory effect of OSM on adiponectin expression was as potent as that of TNF-alpha. The OSM-induced down-regulation of adiponectin expression was correlated with the down-regulation of PPARgamma2 and lipoprotein lipase, markers for adipogenic differentiation, and depletion of intracellular lipid droplets, suggesting dedifferentiation of adipocytes in response to OSM. OSM induced phosphorylation of STAT1, and treatment of adipocytes with JAK3 inhibitor WHI-P131 or MEK inhibitor U0126, but not with JAK2 inhibitor AG490, prevented the activation of STAT1. Furthermore, the OSM-induced suppression of adiponectin expression and dedifferentiation of adipocytes were ameliorated by WHI-P131 or U0126, but not by AG490. These results suggest that OSM inhibits adiponectin expression by inducing dedifferentiation of adipocytes through signaling pathways involving JAK3 and MEK, but not JAK2.  相似文献   

10.

Background

Regulation of human airway smooth muscle cells (HASMC) by cytokines contributes to chemotactic factor levels and thus to inflammatory cell accumulation in lung diseases. Cytokines such as the gp130 family member Oncostatin M (OSM) can act synergistically with Th2 cytokines (IL-4 and IL-13) to modulate lung cells, however whether IL-17A responses by HASMC can be altered is not known.

Objective

To determine the effects of recombinant OSM, or other gp130 cytokines (LIF, IL-31, and IL-6) in regulating HASMC responses to IL-17A, assessing MCP-1/CCL2 and IL-6 expression and cell signaling pathways.

Methods

Cell responses of primary HASMC cultures were measured by the assessment of protein levels in supernatants (ELISA) and mRNA levels (qRT-PCR) in cell extracts. Activation of STAT, MAPK (p38) and Akt pathways were measured by immunoblot. Pharmacological agents were used to assess the effects of inhibition of these pathways.

Results

OSM but not LIF, IL-31 or IL-6 could induce detectable responses in HASMC, elevating MCP-1/CCL2, IL-6 levels and activation of STAT-1, 3, 5, p38 and Akt cell signaling pathways. OSM induced synergistic action with IL-17A enhancing MCP-1/CCL-2 and IL-6 mRNA and protein expression, but not eotaxin-1 expression, while OSM in combination with IL-4 or IL-13 synergistically induced eotaxin-1 and MCP-1/CCL2. OSM elevated steady state mRNA levels of IL-4Rα, OSMRβ and gp130, but not IL-17RA or IL-17RC. Pharmacologic inhibition of STAT3 activation using Stattic down-regulated OSM, OSM/IL-4 or OSM/IL-13, and OSM/IL-17A synergistic responses of MCP-1/CCL-2 induction, whereas, inhibitors of Akt and p38 MAPK resulted in less reduction in MCP-1/CCL2 levels. IL-6 expression was more sensitive to inhibition of p38 (using SB203580) and was affected by Stattic in response to IL-17A/OSM stimulation.

Conclusions

Oncostatin M can regulate HASMC responses alone or in synergy with IL-17A. OSM/IL-17A combinations enhance MCP-1/CCL2 and IL-6 but not eotaxin-1. Thus, OSM through STAT3 activation of HASMC may participate in inflammatory cell recruitment in inflammatory airway disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0164-4) contains supplementary material, which is available to authorized users.  相似文献   

11.
Interleukin-1beta (IL-1beta) has been shown to induce the expression of intercellular adhesion molecule-1 (ICAM-1) on airway epithelial cells and contributes to inflammatory responses. However, the mechanisms regulating ICAM-1 expression by IL-1beta in human A549 cells was not completely understood. Here, the roles of mitogen-activated protein kinases (MAPKs) and NF-kappaB pathways for IL-1beta-induced ICAM-1 expression were investigated in A549 cells. IL-1beta induced expression of ICAM-1 protein and mRNA in a time- and concentration-dependent manner. The IL-1beta induction of ICAM-1 mRNA and protein were partially inhibited by U0126 and PD98059 (specific inhibitors of MEK1/2) and SP600125 [a specific inhibitor of c-Jun-N-terminal kinase (JNK)]. U0126 was more potent than other inhibitors to attenuate IL-1beta-induced ICAM-1 expression. Consistently, IL-1beta stimulated phosphorylation of p42/p44 MAPK and JNK which was attenuated by pretreatment with U0126 or SP600125, respectively. Moreover, transfection with dominant negative mutants of MEK1/2 (MEK K97R) or ERK2 (ERK2 K52R) also attenuated IL-1beta-induced ICAM-1 expression. The combination of PD98059 and SP600125 displayed an additive effect on IL-1beta-induced ICAM-1 gene expression. IL-1beta-induced ICAM-1 expression was almost completely blocked by a specific NF-kappaB inhibitor helenalin. Consistently, IL-1beta stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha which was blocked by helenalin, U0126, or SP600125. Taken together, these results suggest that activation of p42/p44 MAPK and JNK cascades, at least in part, mediated through NF-kappaB pathway is essential for IL-1beta-induced ICAM-1 gene expression in A549 cells. These results provide new insight into the mechanisms of IL-1beta action that cytokines may promote inflammatory responses in the airway disease.  相似文献   

12.
Oncostatin-M (OSM) is an IL-6/gp130 family member that can stimulate the eosinophil-selective CC chemokine eotaxin-1 in vitro and eosinophil accumulation in mouse lung in vivo. The adhesion molecule VCAM-1 and eotaxin have been implicated in extravasation and accumulation of eosinophils into tissue in animal models of asthma. In this study, we investigated the role of OSM in regulation of VCAM-1 expression, and STAT6 tyrosine 641 phosphorylation in murine fibroblasts. OSM induced VCAM-1 expression in C57BL/6 mouse lung fibroblasts (MLF) and NIH 3T3 fibroblasts at the protein and mRNA level in vitro. OSM also induced STAT6 Y641 phosphorylation in MLF and NIH 3T3 fibroblasts, an activity not observed with other IL-6/gp130 cytokine family members (IL-6, leukemia inhibitory factor, cardiotropin-1, and IL-11) nor in cells derived from STAT6(-/-) mice (STAT6(-/-) MLF). STAT6 was not essential for OSM-induced VCAM-1 or eotaxin-1 as assessed in STAT6(-/-) MLF. Combination of IL-4 and OSM synergistically enhanced eotaxin-1 expression in MLF. IL-4 induction and the IL-4/OSM synergistic induction of eotaxin-1 was abrogated in STAT6(-/-) MLF, however, regulation of IL-6 was similar in -/- or wild-type MLF. Induction of VCAM-1 by OSM was diminished by pharmacological inhibitors of PI3K (LY294002) but not inhibitors of ERK1/2 (PD98059) or p38 MAPK (SB203580). These data support the role of OSM in eosinophil accumulation into lung tissue through eotaxin-1 and VCAM-1 expression and the notion that OSM is able to induce unique signal transduction events through its receptor complex of OSMR beta-chain and gp130.  相似文献   

13.
14.
Oncostatin M (OSM), a member of the IL-6 superfamily of cytokines, is elevated in patients with rheumatoid arthritis and, in synergy with IL-1, promotes cartilage degeneration by matrix metalloproteinases (MMPs). We have previously shown that OSM induces MMP and tissue inhibitor of metalloproteinase-3 (TIMP-3) gene expression in chondrocytes by protein tyrosine kinase-dependent mechanisms. In the present study, we investigated signaling pathways regulating the induction of MMP and TIMP-3 genes by OSM. We demonstrate that OSM rapidly stimulated phosphorylation of Janus kinase (JAK) 1, JAK2, JAK3, and STAT1 as well as extracellular signal-regulated kinase (ERK) 1/2, p38, and c-Jun N-terminal kinase 1/2 mitogen-activated protein kinases in primary bovine and human chondrocytes. A JAK3-specific inhibitor blocked OSM-stimulated STAT1 tyrosine phosphorylation, DNA-binding activity of STAT1 as well as collagenase-1 (MMP-1), stromelysin-1 (MMP-3), collagenase-3 (MMP-13), and TIMP-3 RNA expression. In contrast, a JAK2-specific inhibitor, AG490, had no impact on these events. OSM-induced ERK1/2 activation was also not affected by these inhibitors. Similarly, curcumin (diferuloylmethane), an anti-inflammatory agent, suppressed OSM-stimulated STAT1 phosphorylation, DNA-binding activity of STAT1, and c-Jun N-terminal kinase activation without affecting JAK1, JAK2, JAK3, ERK1/2, and p38 phosphorylation. Curcumin also inhibited OSM-induced MMP-1, MMP-3, MMP-13, and TIMP-3 gene expression. Thus, OSM induces MMP and TIMP-3 genes in chondrocytes by activating JAK/STAT and mitogen-activated protein kinase signaling cascades, and interference with these pathways may be a useful approach to block the catabolic actions of OSM.  相似文献   

15.
Airflow obstruction in chronic airway disease is associated with airway and pulmonary vascular remodeling, of which the molecular mechanisms are poorly understood. Paracrine actions of angiogenic factors released by resident or infiltrating inflammatory cells following activation by proinflammatory cytokines in diseased airways could play a major role in the airway vascular remodeling process. Here, the proinflammatory cytokines interleukin (IL)-1β, and tumor necrosis factor (TNF)-α were investigated on cell cultures of human airway smooth muscle (ASM) for their effects on mRNA induction and protein release of the angiogenic peptide, vascular endothelial growth factor (VEGF). IL-1β (0.5 ng/mL) and TNF-α (10ng/mL) each increased VEGF mRNA (3.9 and 1.7 kb) expression in human ASM cells, reaching maximal levels between 16 and 24 and 4 and 8h, respectively. Both cytokines also induced a time-dependent release of VEGF, which was not associated with increased ASM growth. Preincubation of cells with 1μM dexamethasone abolished enhanced release of VEGF by TNF-α. The data suggest that human ASM cells express and secrete VEGF in response to proinflammatory cytokines and may participate in paracrine inflammatory mechanisms of vascular remodeling in chronic airway disease.  相似文献   

16.
The chemokine thymus- and activation-regulated chemokine (TARC) induces selective migration of Th2, but not Th1, lymphocytes and is upregulated in the airways of asthmatic patients. The purpose of this study was to determine whether human airway smooth muscle (HASM) cells produce TARC. Neither IL-4, IL-13, IL-1beta, IFN-gamma, nor TNF-alpha alone stimulated TARC release into the supernatant of cultured HASM cells. However, both IL-4 and IL-13 increased TARC protein and mRNA expression when administered in combination with TNF-alpha but not IL-1beta or IFN-gamma. Macrophage-derived chemokine was not expressed under any of these conditions. TARC release induced by TNF-alpha + IL-13 or TNF-alpha + IL-4 was inhibited by the beta-agonist isoproterenol and by other agents that activate protein kinase A, but not by dexamethasone. To determine whether polymorphisms of the IL-4Ralpha have an impact on the ability of IL-13 or IL-4 to induce TARC release, HASM cells from multiple donors were genotyped for the Ile50Val, Ser478Pro, and Gln551Arg polymorphisms of the IL-4Ralpha. Our data indicate that cells expressing the Val50/Pro478/Arg551 haplotype had significantly greater IL-13- or IL-4-induced TARC release than cells with other IL-4Ralpha genotypes. These data indicate that Th2 cytokines enhance TARC expression in HASM cells in an IL-4Ralpha genotype-dependent fashion and suggest that airway smooth muscle cells participate in a positive feedback loop that promotes the recruitment of Th2 cells into asthmatic airways.  相似文献   

17.
18.
Oncostatin M (OSM) is a member of the IL-6/LIF (or gp130) cytokine family, and its potential role in inflammation is supported by a number of activities identified in vitro. In this study, we investigate the action of murine OSM on expression of the CC chemokine eotaxin by fibroblasts in vitro and on mouse lung tissue in vivo. Recombinant murine OSM stimulated eotaxin protein production and mRNA levels in the NIH 3T3 fibroblast cell line. IL-6 could regulate a small induction of eotaxin in NIH 3T3 cells, but other IL-6/LIF cytokines (LIF, cardiotrophin-1 (CT-1)) had no effect. Cell signaling studies showed that murine OSM, LIF, IL-6, and CT-1 stimulated the tyrosine phosphorylation of STAT-3, suggesting STAT-3 activation is not sufficient for eotaxin induction in NIH 3T3 cells. OSM induced ERK-1,2 and p38 mitogen-activated protein kinase phosphorylation in NIH 3T3 cells, and inhibitors of ERK (PD98059) or p38 (SB203580) could partially reduce OSM-induced eotaxin production, suggesting partial dependence on mitogen-activated protein kinase signaling. OSM (but not LIF, IL-6, or CT-1) also induced eotaxin release by mouse lung fibroblast cultures derived from C57BL/6 mice. Overexpression of murine OSM in lungs of C57BL/6 mice using an adenovirus vector encoding murine OSM resulted in a vigorous inflammatory response by day 7 after intranasal administration, including marked extracellular matrix accumulation and eosinophil infiltration. Elevated levels of eotaxin mRNA in whole lung were detected at days 4 and 5. These data strongly support a role of OSM in lung inflammatory responses that involve eosinophil infiltration.  相似文献   

19.
Oncostatin M (OSM) is a IL-6 family cytokine locally produced in acute lung injury. Its profibrotic properties suggest a role in lung wound repair. Hepatocyte growth factor (HGF), produced by fibroblasts, is involved in pulmonary epithelial repair. We investigated the role of OSM in HGF synthesis by human lung fibroblasts. We showed that OSM upregulated HGF mRNA in MRC5 cells and in human lung fibroblasts, whereas IL-6 and leukemia inhibitory factor did not. OSM induced HGF secretion to a similar extent as IL-1beta in both a time- and dose-dependent manner. HGF was released in its cleaved mature form, and its secretion was completely inhibited in the presence of cycloheximide, indicating a de novo protein synthesis. OSM in combination with prostaglandin E(2), a powerful HGF inductor, led to an additive effect. OSM and indomethacin in combination further increased HGF secretion. This could be explained, at least in part, by a moderate upregulation of specific OSM receptor beta mRNA expression through cyclooxygenase inhibition. These results demonstrate that OSM-induced HGF synthesis did not involve a PGE(2) pathway. OSM-induced HGF secretion was inhibited by PD-98059 (a specific pharmacological inhibitor of ERK1/2), SB-203580 (a p38 MAPK inhibitor), and SP-600125 (a JNK inhibitor) by 70, 82, and 100%, respectively, whereas basal HGF secretion was only inhibited by SP-600125 by 30%. Our results demonstrate a specific upregulation of HGF synthesis by OSM, most likely through a MAPK pathway, and support the suggestion that OSM may participate in lung repair through HGF production.  相似文献   

20.
L-buthionine-S,R-sulfoximine (BSO), an inhibitor of GSH synthesis, decreased IL-1 beta-induced nitrite release in rat islets and purified rat beta cells, nitrite formation and iNOS gene promoter activity in insulinoma cells, and iNOS mRNA expression in rat islets. The thiol depletor diethyl maleate (DEM) and an inhibitor of glutathione reductase 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) reduced IL-1 beta-stimulated nitrite release in islets. We conclude that GSH regulates IL-1 beta-induced NO production in islets, purified beta cells and insulinoma cells by modulation of iNOS gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号