首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Short-term studies have suggested that analogs of prostaglandin E may have favorable effects on the carbohydrate and lipid metabolism in patients with type II diabetes mellitus. The present study was undertaken to investigate the long-term effects of a prostaglandin E1 analog on the regulation of glycemic control and plasma lipids. Twenty patients with type II diabetes received enisoprost, 300 mcg/day, for three months. Fasting serum glucose, glycosylated hemoglobin, insulin and C-peptide levels as well as triglyceride, total cholesterol, high density lipoprotein cholesterol and its subfractions, apolipoproteins B and AI and post-heparin lipoprotein lipase and hepatic triglyceride lipase activities were determined. During the first month, enisoprost treatment caused significant decreases in plasma glucose (baseline = 8.72 +/- 0.39 mmol/L, 4 week = 7.78 +/- 0.5 mmol/L, change = -0.94 +/- 0.28 mmol/L, p less than 0.01) and total cholesterol (baseline = 5.30 +/- 0.23 mmol/L, 4 week = 5.01 +/- 0.26 mmol/L, change = -0.28 +/- 0.06 mmol/L, p less than 0.05). The decrease in cholesterol level was due to a reduction in high density lipoprotein, specifically in high density lipoprotein2 fraction (baseline = 1.29 +/- 0.1 mmol/L, 4 week = 1.12 +/- 0.08 mmol/L, change = -0.018 +/- 0.04 mmol/L, p less than 0.05 for the former and baseline = 0.40 +/- 0.06 mmol/L, 4 week = 0.27 +/- 0.03 mmol/L, change = -0.12 +/- 0.03 mmol/L, p less than 0.05 for the latter): All of these values returned to the pretreatment levels despite continuation of enisoprost.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
OBJECTIVES: The aim of this study was to examine hormonal counterregulation during insulin-induced hypoglycemia in type-1 diabetic patients during long-term near normoglycemic insulin therapy and intensive clinical care. METHODS: Type-1 diabetic patients (age 35.3 +/- 2 years, body mass index 22.8 +/- 1 kg x m(-2), mean diabetes duration 13.6 (11-17 years), mean HbA1c during the last year 6.6 +/- 0.1%) and nondiabetic subjects were studied during (0-120 min) and after (120-240 min) hypoglycemic (3.05 mmol/l) hyperinsulinemic (approximately 330 pmol/l) clamp tests. RESULTS: During hypoglycemia peak plasma concentrations of glucagon (199 +/- 16 vs. 155 +/- 11 ng/l, p < 0.05), epinephrine (4,514 +/- 644 vs. 1,676 +/- 513 pmol/l, p < 0.001), norepinephrine (2.21 +/- 0.14 vs. 1.35 +/- 0.19 nmol/l, p < 0.01) and cortisol (532 +/- 44 vs. 334 +/- 61 nmol/l) were reduced in the diabetic patients. Plasma lactate did not change from baseline values (0.51 +/- 0.06 mmol/l) in diabetic but doubled in healthy subjects (1.13 +/- 0.111 mmol/l, p < 0.001 vs. control). During the posthypoglycemic recovery period plasma concentrations of free fatty acids were higher in diabetic patients at 240 min (1.34 +/- 0.12 vs. 2.01 +/- 0.23 mmol/l, p < 0.05). CONCLUSION: Despite long-term near physiologic insulin substitution and the low incidence of hypoglycemia, hormonal hypoglycemia counterregulation was impaired in type-1 diabetic patients after a diabetes duration of more than 10 years.  相似文献   

3.
In a randomized, double-blind, controlled trial, the effects of oral treatment with coenzyme Q10 (CoQ10, 120 mg/day), a bioenergetic and antioxidant cytoprotective agent, were compared for 1 year, on the risk factors of atherosclerosis, in 73 (CoQ, group A) and 71 (B vitamin group B) patients after acute myocardial infarction (AMI). After 1 year, total cardiac events (24.6 vs. 45.0%, p < 0.02) including non-fatal infarction (13.7 vs. 25.3%, p < 0.05) and cardiac deaths were significantly lower in the intervention group compared to control group. The extent of cardiac disease, elevation in cardiac enzymes, left ventricular enlargement, previous coronary artery disease and elapsed time from symptom onset to infarction at entry to study showed no significant differences between the two groups. Plasma level of vitamin E (32.4 ± 4.3 vs. 22.1 ± 3.6 umol/L) and high density lipoprotein cholesterol (1.26 ± 0.43 vs. 1.12 ± 0.32 mmol/L) showed significant (p < 0.05) increase whereas thiobarbituric acid reactive substances, malondialdehyde (1.9 + 0.31 vs. 3.1 + 0.32 pmol/L) and diene conjugates showed significant reduction respectively in the CoQ group compared to control group. Approximately half of the patients in each group (n = 36 vs. 31) were receiving lovastatin (10 mg/day) and both groups had a significant reduction in total and low density lipoprotein cholesterol compared to baseline levels. It is possible that treatment with CoQ10 in patients with recent MI may be beneficial in patients with high risk of atherothrombosis, despite optimal lipid lowering therapy during a follow-up of 1 year. Adverse effect of treatments showed that fatigue (40.8 vs. 6.8%, p < 0.01) was more common in the control group than CoQ group.  相似文献   

4.
Hyperlipoproteinemia impairs endothelium-dependent vasodilation   总被引:3,自引:0,他引:3  
Atherogenic lipoproteins can cause endothelial dysfunction in the initial stage of atherogenesis. In our study we examined 134 patients with defined hyperlipoproteinemia (non-HDL cholesterol>4.1 mmol/l or triglycerides>2.5 mmol/l or taking any of lipid lowering drugs)--94 men and 40 women. The subgroup of controls of comparable age contained 54 normolipidemic individuals--30 men and 24 women. Patients with hyperlipoproteinemia revealed significantly lower ability of endothelium-dependent flow-mediated vasodilation (EDV) measured on brachial artery (4.13+/-3.07 vs. 5.41+/-3.82 %; p=0.032) and higher carotid intima media thickness than normolipidemic controls (0.68+/-0.22 vs. 0.58+/-0.15 mm; p=0.005). In regression analysis, EDV correlated significantly with plasma concentrations of oxLDL (p<0.05) HDL-cholesterol (p<0.05), Apo A1 (p<0.05), ATI (p<0.01) and non-HDL cholesterol (p<0.05). Patients with hyperlipoproteinemia showed higher plasma levels of oxLDL (65.77+/-9.54 vs. 56.49+/-7.80 U/l; p=0.015), malondialdehyde (0.89+/-0.09 vs. 0.73+/-0.08 micromol/l; p=0.010) and nitrites/nitrates (20.42+/-4.88 vs. 16.37+/-4.44 micromol/l; p=0.018) indicating possible higher long-term oxidative stress in these patients.  相似文献   

5.
The turnover rates of low density lipoprotein-apolipoprotein B (LDL-apoB) were determined in 32 men with coronary heart disease (CHD) and 11 control men with normal plasma lipids. Thirty patients with CHD had normal levels of LDL-cholesterol (LDL-C); of these patients, 9 had hypertriglyceridemia and 21 had normal plasma lipids. Mean concentrations of total cholesterol and LDL-C were similar among the control subjects and CHD patients, although the latter had significantly lower HDL-C. In control subjects, transport rates and fractional catabolic rates (FCR) of LDL-B were 10.6 +/- 0.5 (SEM) mg/kg-day and 0.31 +/- 0.01 pools/day, respectively. In 10 hypertriglyceridemic patients with CHD, transport rates were 21.7 +/- 1.7 mg/kg-day, and FCRs averaged 0.56 +/- 0.06 pools/day; both were significantly higher than normal (P less than 0.05). Six normolipidemic patients also had abnormally high transport rates of LDL-apoB (19.4 +/- 2.8 mg/kg-day) and FCRs (0.51 +/- 0.03 pools/day); again both were higher than normal. The remaining 16 normolipidemic patients with CHD had normal transport rates (9.9 +/- 0.6 mg/kg-day) and FCRs (0.28 +/- 0.01 pools/day). Thus, hypertriglyceridemic patients with CHD and a portion of normolipidemic patients with CHD were characterized by increases in both transport and fractional catabolic rate of LDL-apoB; these abnormalities in LDL metabolism may have contributed to their coronary heart disease. However, the majority of normolipidemic patients with CHD did not show a distinct defect in their LDL metabolism.  相似文献   

6.
Familial defective apolipoprotein B-100 (FDB) is a genetic disorder caused by a substitution of glutamine for arginine at residue 3500 of the apolipoprotein B-100 molecule. We have identified 23 heterozygotes and one homozygote for FDB (frequency 1:20) in a group of 510 patients with hypercholesterolemia. Mean age of the patients (18 females and 6 males) was 46 years. The diagnosis of FDB was based on point mutation PCR analysis of exon 26 of the apo B gene. Plasma lipids in heterozygous patients were: total cholesterol 8.76+/-1.2 mmol/l, triglycerides 1.42+/-0.5 mmol/l, HDL-cholesterol 1.43+/-0.3 mmol/l, LDL-cholesterol 6.69+/-1.2 mmol/l, apoB 1.69+/-0.4 g/l, Lp(a) 0.26+/-0.2 g/l. The most frequent apoE genotype was 3/3 (19 patients), apoE 3/4 genotype was found in 3 patients and one person had apoE 2/3. Xanthelasma palpebrarum was present in 4 patients and tendon xanthomas in 3 patients including the homozygote. Premature manifestation of coronary heart disease was revealed in 3 patients. Sixteen patients were treated with statins, a combination of statin and resin was used in 2 patients (including the homozygote), whereas six patients were treated with the diet only. We conclude that although the plasma lipid levels of total and LDL cholesterol in FDB patients are lower than in patients with familial hypercholesterolemia, the patients with FDB suffer from premature atherosclerosis. The therapeutic approach to FDB individuals and patients with familial hypercholesterolemia is very similar.  相似文献   

7.
We studied the effect of the acute administration of gliclazide at 160 mg on insulin release during hyperglycaemic clamps in 12 type 2 diabetes patients, age 50 +/- 9.0 years, diabetes duration 5.5 +/- 4.8 years, fasting blood glucose 9.6 +/- 2.1 mmol/L (means +/- SD). After a 210 min of hyperinsulinaemic euglycaemic clamp (blood glucose 4.6 +/- 0.14mmol/L), gliclazide or placebo (randomised, double-blind, cross-over) was administered; 60 minutes later, a hyperglycaemic clamp (4hr) at 8mmol/L was started. Plasma C-peptide levels increased significantly after the administration of gliclazide (increment 0.17 +/- 0.15 vs. 0.04 +/- 0.07 nmol/L, p = 0.024) before the clamp. After the start of the hyperglycaemic clamp, the areas under the curve (AUC) for insulin and C-peptide did not differ from 0-10 min (first phase) with gliclazide. However, second-phase insulin release (30-240 min) was markedly enhanced by gliclazide. AUC plasma insulin (30 to 240 min) was statistically significantly higher after gliclazide (12.3 +/- 13.9 vs. -0.56 +/- 9.4 nmol/L x 210 min, p = 0.022); similarly, AUC plasma C-peptide (30 to 240 min) was also higher: 128 +/- 62 vs. 63 +/- 50 nmol/L x 210 min, p = 0.002). In conclusion, in long-standing type 2 diabetes the acute administration of gliclazide significantly enhances second phase insulin release at a moderately elevated blood glucose level. In contrast to previous findings in mildly diabetic subjects, these 12 type 2 diabetes patients who had an inconsiderable first phase insulin release on the placebo day, only showed an insignificant increase in first phase with gliclazide.  相似文献   

8.
Numerous studies in vitro have shown a close relationship between the chemical structure and biologic activity of flavonoids, whereby their basic structure is modified to increase or decrease their biologic activity. The effects of naringenin (1) and its synthetic derivative, naringenin 7-O-cetyl ether (2), on the lipid profile, the cholesterol-regulating enzyme activity and the excretion of sterol were compared in rats fed a high-cholesterol (1% wt/wt) diet. Either 1 or 2 was supplemented with a high-cholesterol diet for 6 weeks at a dose of 0.073 mmol/100g diet. The supplementation of 1 or 2 significantly lowered the levels (mean+/-SE) of the plasma total cholesterol (4.93+/-0.19 and 4.75+/-0.16 mmol/L vs 5.87+/-0.36 mmol/L, p<0.05) and hepatic triglyceride (0.12+/-0.01 and 0.11+/-0.01 mmol/g vs 0.18+/-0.01 mmol/g, p<0.05) and cholesterol (0.23+/-0.01 and 0.21+/-0.01 mmol/g vs 0.31+/-0.01 mmol/g, p<0.05) compared to those of the control. The compound 1 or 2 supplementation appeared to decrease the excretion of neutral sterols. The plasma HDL-cholesterol concentration and ratio of HDL to total cholesterol were significantly higher in 1 and 2 groups than in control group. Although the biological effect of 2 on inhibiting hepatic HMG-CoA reductase and ACAT activities was only significant compared to the control group, both compounds exhibited a significant hypocholesterolemic effect in rats fed a high-cholesterol diet. The results suggest that cholesterol biosynthesis and esterification were concomitantly reduced by 2, as indicated by the decreased HMG-CoA reductase and ACAT activities.  相似文献   

9.
《CMAJ》1990,142(12):1371-1382
Elevated plasma levels of cholesterol and triglycerides, low levels of high-density lipoproteins, hypertension, diabetes mellitus, smoking and abdominal obesity are risk factors for coronary heart disease (CHD) and stroke. Because of the preventable threat to life, well-being and productivity from perturbations of plasma lipoproteins (which affect about 60% of adults), we recommend a population-based strategy with public education on diet, exercise and the hazards of smoking and legislation for better food labelling. This should be combined with the medical guidelines we describe to detect and treat those at highest risk for CHD (including about 15% of adults), who merit priority for the medical, dietetic and laboratory services required. Among people aged 40 years or more this includes those with plasma total cholesterol levels greater than 7 mmol/L, fasting triglyceride levels greater than 3 mmol/L or cholesterol level greater than 6 mmol/L when associated with CHD or other risk factors for CHD. For younger people the criteria for highest risk include cholesterol levels greater than 6.5 mmol/L for those aged 30 to 39 years, greater than 6 mmol/L for those aged 20 to 29 and greater than 5 mmol/L for those under age 20.  相似文献   

10.
A pilot survey was performed to determine the presence of known risk factors for cardiovascular disease in Croatian patients with diagnosed coronary heart disease (CHD) using a new questionnaire. The idea was to test this new and very simple questionnaire but also to compare the data collected in this pilot survey with the results of the last Croatian national survey (TASPIC-CRO V) and so to obtain the information whether secondary prevention has improved between 2003 and 2010. 122 patients with established CHD (88 men, 34 women, mean age 66.3 years) treated in Zagreb University Hospital Center were included. Data collection was based on filling the SURF questionnaire right after the clinical exam or later using review of medical records. Patients were hospitalized because of CABG (1%), PCI (8%), ACS (35%) or chronic stable angina (56%). The history of arterial hypertension had 95%patients (however, on admission mean systolic pressure was 130.1 mmHg, diastolic 76.8 mmHg), 90% had dyslipidaemia (total cholesterol <4.5 mmol/L had 43%; <4.0 mmol/L 33%; LDL-cholesterol <2.5 mmol/L 49%; <2.0 mmol/L 32%; HDL>1.2 mmol/L (women) or >1.0 mmol/L (men) had 67%), 25% had diabetes which was poorly regulated (mean HbA1c 8.2%), 18% were active smokers. After discharge only 24% performed cardiac rehabilitation. Mean body mass index of the patients was 28.3 kg/m2 (32% were obese, 72% overweight). Compared to TASPIC-CRO V there was lower usage of aspirin than recommended on discharge. This was also true for statin therapy. More patients were taking beta blockers, calcium antagonists and diuretics than 7 years ago. This pilot survey showed that CRO-SURF questionnaire is short, quick, effective and simple to use. It is a good and cost effective tool to collect data on CVD risk factors and their management. The results obtained by using it indicate that there is still a high prevalence of modifiable risk factors in Croatian patients with CHD.  相似文献   

11.
OBJECTIVE: To determine how lipoprotein lipase mass in the pre-heparin plasma is affected by body fat distribution, which is known to be closely related to lipid disorder, either directly or through insulin resistance. SUBJECTS: A total of 57 subjects consisting of 50 hyperlipidemic and 7 normolipidemic subjects (age 54 +/- IIy; 31 men, 26 women; body mass index 24+/- 2.5 kg/m2; serum total cholesterol 6.4+/-1.5 mmol/l; triglycerides, 2.4 +/- 1.7 mmol/l; HDL-cholesterol 1.3 +/- 0.5 mmol/l) were enrolled. MEASUREMENTS: We investigated the correlation between pre-heparin plasma LPL mass and intra-abdominal visceral fat area (or subcutaneous fat area) evaluated by computed tomography, and serum lipids and lipoproteins. RESULTS: Pre-heparin plasma LPL mass correlated inversely against intra-abdominal visceral fat area (r = - 0.51, p < 0.0001) and body mass index (r = - 0.46, p = 0.0003), but did not show any significant correlation with subcutaneous fat area. Pre-heparin plasma LPL mass had a positive correlation with serum high density lipoprotein cholesterol (r = 0.45, p = 0.0004) and a negative correlation against serum triglycerides (r = - 0.48, p = 0.0002). CONCLUSIONS: Pre-heparin plasma LPL mass is closely associated with intra-abdominal fat distribution, and the measurement of its value gives useful information concerning metabolic disorder.  相似文献   

12.
Optimally effective lipid-lowering agents should not only restore plasma lipids to normal levels but also correct potentially atherogenic alterations in lipoprotein composition and function often present in hyperlipidemic patients. Lovastatin, a competitive inhibitor of cholesterol biosynthesis, clearly lowers plasma cholesterol levels. Its effects on lipoprotein composition and cholesteryl ester transfer (CET), a key step in reverse cholesterol transport, however, are not known. Since abnormalities in CET and lipoprotein composition are present in patients with hypercholesterolemia, we studied these parameters of plasma lipoprotein transport in twelve hypercholesterolemic (HC; Type IIa) subjects (six male, six female) before and 2 months after lovastatin treatment (20 mg qd). Before lovastatin, the free cholesterol (FC)/lecithin (L) ratio in plasma, a new index of cardiovascular risk that reflects lipoprotein surface composition, was abnormally increased (1.18 +/- 0.26 vs controls 0.83 +/- 0.14; P less than 0.001) in very low density lipoproteins (VLDL) and high density lipoprotein-3 (HDL3), and remained so after treatment despite significant declines in whole plasma cholesterol (311.7 +/- 68.2 vs 215.6 +/- 27.2 mg/dl; P less than 0.001), low density lipoprotein (LDL)-cholesterol (206.3 +/- 47.9 vs 146.8 +/- 29.4; P less than 0.001), and apolipoprotein B (149 +/- 30 vs 110 +/- 17; P less than 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Hypothyroidism is a major cause of secondary hypercholesterolemia. Amiodarone treatment alters both the levels of serum lipids and thyroid hormones. We investigated whether the amiodarone-induced changes in lipid metabolism are related to the changes in thyroid hormone levels. Eighteen patients received amiodarone (31 +/- 3 g cumulative dose) for six weeks. Serum triglyceride, total-cholesterol, high density lipoprotein-cholesterol and its subfractions, apolipoproteins B and AI, and plasma post-heparin lipoprotein lipase and hepatic triglyceride lipase activities were determined. Amiodarone treatment caused significant increases in serum total-cholesterol (baseline 4.4 +/- 0.21 (SE), 6 weeks 5.12 +/- 0.26 mmol/l, P less than 0.01), in low density lipoprotein cholesterol (baseline 2.61 +/- 0.26, 6 weeks 3.36 +/- 0.21 mmol/l, P less than 0.05) and in apolipoprotein B (baseline 1.95 +/- 0.15, 6 weeks 2.26 +/- 0.13 mmol/l, P less than 0.01) concentrations. Serum high density lipoprotein and its subfractions, or apolipoprotein AI levels did not change. Plasma post-heparin lipoprotein lipase activity increased (baseline 137 +/- 21, 6 weeks 168 +/- 21 U/ml, P less than 0.01) while hepatic triglyceride lipase did not change. Amiodarone also caused an increase in serum thyroxine (baseline 110 +/- 8, 6 weeks 136 +/- 6 mmol/l, P less than 0.05), although values remained in euthyroid range. In summary, amiodarone therapy increased the concentrations of atherogenic lipoproteins in the serum similar to that seen in hypothyroidism. On the other hand the effect of amiodarone on lipoprotein lipase was opposite to that seen in hypothyroidism. Therefore, amiodarone-induced changes in lipid metabolism cannot be explained solely on the basis of the changes in circulating thyroid hormone levels.  相似文献   

14.
Cereals are an important part of diets for hypercholesterolemic patients. However, some of these patients are allergic to these natural products. The purpose of the current study was to compare oatmeal with equal in nutritional values two allergy-free amaranth meals to determine whether this pseudocereal can be a substitute for allergic to cereals individuals. The total phenols of the samples were determined with the Folin-Chocalteu reagent, anthocyanins, and flavonoids spectrophotometrically. The antioxidant activities were estimated with nitric oxide scavenging radical (NO) and by beta-carotene bleaching (beta-carotene). It was found that the contents of different protein fractions, antioxidant compounds, and the antioxidant activities of oatmeal were significantly higher than those of the two amaranth samples. The results of kinetic reactions showed that samples differed in their capacities to quench these radicals, and oats have shown more antioxidant activity than amaranth. High correlation was observed between antioxidant activities and phenols (R(2) = 0.99). In the in vivo part of the investigation, 60 male Wistar rats were divided into five diet groups of 12 animals each; these groups were designated as Control, Chol, Chol/Oat, Chol/AmarI, and Chol/AmarII. The rats of the Control group were fed basal diet (BD) only. To the BD of the four other groups were added the following: 1% of cholesterol (Chol), 10% of oat meal and 1% of cholesterol (Chol/Oat), 10% of amaranth I meal, and 1% of cholesterol (Chol/AmarI) and 10% of amaranth II meal and 1% of cholesterol (Chol/AmarII). After 32 days of different feeding, diets supplemented with oat meal and, to lesser degree, with amaranth I and amaranth II hindered the rise in the plasma lipids: a) TC: 3.14 vs. 4.57 mmol/L, - 31.3%; 3.31 vs. 4.57 mmol/L - 27.6%; and 3.40 vs. 4.57, - 25.6%, respectively b) LDL-C: 1.69 vs. 3.31 mmol/L, - 49.9%; 2.05 vs. 3.31 mmol/L, - 38.1%; and 2.16 vs. 3.31 mmol/L, - 34.8%, respectively; c) TG: 0.73 vs. 0.88 mmol/L, - 17.1%; 0.75 vs. 0.88 mmol/L, - 14.8%; and 0.79 vs. 0.88 mmol/L, -10.2%, respectively. The HDL-PH was increased as follows: 0.79 vs. 0.63 mmol/L, -25.3%; 0.75 vs. 0.63 mmol/L, -23.0%; and 0.71 vs. 0.63 mmol/L, -12.7% for the Chol/Oat, Chol/AmarI and Chol/AmarII, respectively. No significant changes in the concentrations of HDL-C and TPH were found; however the HDL-C in the Chol/Oat group was slightly higher than in other groups. No changes in the Control group were registered. In conclusion, oat and amaranth meals positively affect plasma lipid profile in rats fed cholesterol-containing diets. The degree of this positive influence is directly connected to the contents of the bioactive components and the antioxidant activities of the studied samples. It is suggested that amaranth could be a valuable substitute for hypercholesterolemic patients allergic to cereals.  相似文献   

15.

Background

Recent lipid guidelines recommend aggressive low-density lipoprotein (LDL) cholesterol lowering in patients with coronary artery disease. To clarify the evidence for this recommendation, we conducted a meta-analysis of randomized controlled trials that compared different intensities of statin therapy.

Methods

We searched electronic databases (MEDLINE, EMBASE, Cochrane Central Registery of Controlled Trials, Web of Science) for randomized controlled trials published up to July 19, 2007, that compared statin regimens of different intensities in adults with coronary artery disease and that reported cardiovascular events or mortality. Data were pooled using random-effects models to calculate odds ratios (OR).

Results

A total of 7 trials (29 395 patients) were included. Compared with less intensive statin regimens, more intensive regimens further reduced LDL levels (0.72 mmol/L reduction, 95% confidence interval [CI] 0.60–0.84 mmol/L), and reduced the risk of myocardial infarction (OR 0.83, 95% CI 0.77–0.91) and stroke (OR 0.82, 95% CI 0.71–0.95). Although there was no effect on mortality among patients with chronic coronary artery disease (OR 0.96, 95% CI 0.80–1.14), all-cause mortality was reduced among patients with acute coronary syndromes treated with more intensive statin regimens (OR 0.75, 95% CI 0.61–0.93). Compared with lower intensity regimens, more intensive regimens were associated with small absolute increases in rates of drug discontinuation (2.5%), elevated levels of aminotransferases (1%) and myopathy (0.5%), and there was no difference in noncardiovascular mortality. All 7 trials reported events by randomization arm rather than by LDL level achieved. About half of the patients treated with more intensive statin therapy did not achieve an LDL level of less than 2.0 mmol/L, and none of the trials tested combination therapies.

Interpretation

Our analysis supports the use of more intensive statin regimens in patients with established coronary artery disease. There is insufficient evidence to advocate treating to particular LDL targets, using combination lipid-lowering therapy to achieve these targets or for using more intensive regimens in patients without established coronary artery disease.Dyslipidemia is the most important modifiable risk factor for myocardial infarction worldwide,1 and serum cholesterol levels are directly related to mortality from coronary artery disease in all populations studied.2–4 Over the past decade, randomized controlled trials enrolling a wide variety of patients have confirmed that for every 1-mmol/L reduction in serum low-density lipoprotein (LDL) cholesterol achieved by statin therapy, the relative risks of cardiovascular events and mortality are reduced (by 21% and 12% respectively).5Statins exert their beneficial effects primarily by reducing the level of LDL cholesterol,6 and the reductions in the relative risk of cardiovascular events achieved by statin therapy appears to be similar regardless of baseline cholesterol levels.5 As a result, attention has increasingly focused on defining optimal target LDL levels, particularly in patients at highest risk (i.e., those with coronary artery disease). Based on the observational studies mentioned above,2,3 the apparent lack of a lower threshold for statin benefit in the randomized controlled trials, and recent trials reporting greater benefits with more intensive statin regimens (compared with less intensive regimens), Canadian7 and American8 guidelines for secondary prevention now recommend target LDL levels below 2.0 mmol/L in patients with coronary artery disease. On the other hand, European guidelines specify a target LDL of 2.5 mmol/L in these patients.9 Questions have been raised about the safety and incremental benefits of more intensive statin regimens.10–12We performed a systematic review and meta-analysis to critically examine the evidence for the safety, efficacy (LDL lowering) and clinical effectiveness from trials comparing more intensive statin therapy with less intensive statin therapy in patients with coronary artery disease.  相似文献   

16.
PURPOSE: Recently, our laboratory group has reported that rats with Type 1 diabetes have decreased plasma homocysteine and cysteine levels compared to non-diabetic controls and that organic vanadium treatment increased plasma homocysteine concentrations to non-diabetic concentrations. However, to date, no studies have been done investigating the effects of organic vanadium compounds on plasma homocysteine and its metabolites in Type 2 diabetic animal model. These studies examined the effect of organic vanadium compounds [bis(maltolato)oxovanadium(IV) and bis(ethylmaltolato)oxovanadium(IV); BMOV and BEOV] administered orally on plasma concentrations of homocysteine and its metabolites (cysteine and cysteinylglycine) in lean, Zucker fatty (ZF) and Zucker diabetic fatty (ZDF) rats. ZF rats are a model of pre-diabetic Type 2 diabetes characterized by hyperinsulinemia and normoglycemia. The ZDF rat is a model of Type 2 diabetes characterized by relative hypoinsulinemia and hyperglycemia. METHODS: Zucker lean and ZF rats received BMOV in the drinking water at a dose of 0.19 +/- 0.02 mmol/kg/day. Lean and ZDF rats received BEOV by oral gavage daily at dose of 0.1 mmol/kg. The treatment period for both studies was 21 days. At termination, animals were fasted overnight (approximately 16 h) and blood samples were collected by cardiac puncture for determination of plasma glucose, insulin and homocysteine levels. Plasma homocysteine and its metabolites levels were determined using high-pressure liquid chromatography. Plasma glucose was determined using a Glucose Analyzer 2. Plasma insulin levels were determined by radioimmunoassay. Plasma triglycerides were determined by an enzymatic assay methodology. RESULTS: ZF (n = 4) and ZDF (n = 10) rats had significantly lower plasma homocysteine as compared to their respective lean groups (ZF 0.78 +/- 0.1 micromol/L vs. Zucker lean 2.19 +/- 0.7 micromol/L; ZDF 1.71 +/- 0.2 micromol/L vs. Zucker lean 3.02 +/- 0.3 micromol/L; p < 0.05). BMOV treatment in ZF rats restored plasma homocysteine levels to those observed in lean untreated rats (ZF treated: 2.04 +/- 0.2 micromol/L; lean 2.19 +/- 0.7 micromol/L). There was a modest effect of BMOV treatment on plasma glucose levels in ZF rats. BEOV treatment significantly decreased the elevated plasma glucose levels in the ZDF rats (lean 7.9 +/- 0.1 mmol/L; lean + vanadium 7.7 +/- 0.2 mmol/L; ZDF 29.9 +/- 0.4 mmol/L; ZDF + vanadium 17.4 +/- 0.3 mmol/L, p < 0.05). Organic vanadium treatment reduced cysteine levels in both ZF and ZDF rats. No differences in total plasma cysteinylglycine concentrations were observed. CONCLUSION: Plasma homocysteine levels are significantly reduced in a pre-diabetic model of Type 2 diabetes, which was restored to lean levels upon vanadium treatment; however, this restoration of plasma homocysteine levels was not seen in ZDF Type 2 diabetic rats following vanadium treatment. In the latter case vanadium treatment may not have totally overcome the insulin resistance seen in these animals.  相似文献   

17.
Abdominal obesity and insulin resistance are central findings in metabolic syndrome. Since treatment with recombinant human growth hormone (rhGH) can reduce body fat mass in patients with organic GH deficiency, rhGH therapy may also have favourable effects on patients with metabolic syndrome. However, due to the highly increased risk for type 2 diabetes in these patients, strategies are needed to reduce the antagonistic effect of rhGH against insulin. We conducted a 18-month randomised, double-blind, placebo-controlled study to assess the effect of rhGH in combination with metformin (Met) in patients with metabolic syndrome. 25 obese men (55 +/- 6 years, BMI 33.4 +/- 2.9 kg/m (2)) with mildly elevated fasting plasma glucose (FPG) levels at screening (6.1-8.0 mmol/l) were included. All patients received metformin (850 mg twice daily) either alone or in combination with rhGH (daily dose 9.5 microg/kg body weight). An oGTT was performed at baseline, after 6 weeks, and after 3, 6, 12, and 18 months of therapy. Glucose disposal rate (GDR) was measured by euglycemic hyperinsulinemic clamp at 0 and 18 months and body composition was measured by DEXA every 6 months. In the Met + GH group, IGF-I increased from 146 +/- 56 microg/l to 373 +/- 111 microg/l (mean +/- SD) after 3 months and remained stable after that. BMI did not change significantly in either group during the study. Total body fat decreased by -4.3 +/- 5.4 kg in the Met + GH group and by -2.7 +/- 2.9 kg in the Met + Placebo group (differences between the two groups: p = n. s.). Waist circumference decreased in both groups (Met + GH: 118 +/- 8 cm at baseline, 112 +/- 10 cm after 18 months; Met + Placebo: 114 +/- 7 cm vs. 109 +/- 8 cm; differences between the two groups: p = 0.096). In the Met + GH group, FPG increased significantly after 6 months (5.9 +/- 0.7 vs. 6.7 +/- 0.4 mmol/l; p = 0.005), but subsequently decreased to baseline levels (18 months: 5.8 +/- 0.2 mmol/l). FPG remained stable in the Met + Placebo group until 12 months had elapsed, and then slightly decreased (baseline: 6.2 +/- 0.3, 18 months: 5.5 +/- 0.6 mmol/l, p = 0.02). No significant changes were seen in either group regarding glucose and insulin AUC during oGTT or HbA (1c) levels. GDR at 18 months increased by 20 +/- 39% in Met + GH-group and decreased by -11 +/- 25% in the Met + Placebo group (differences between the two groups: p = 0.07). In conclusion, treatment of patients with metabolic syndrome and elevated FPG levels did not cause sustained negative effects on glucose metabolism or insulin sensitivity if given in combination with metformin. However, since our data did not show significant differences between the two treatment groups with respect to body composition or lipid metabolism, future studies including larger numbers of patients will have to clarify whether the positive effects of rhGH on cardiovascular risk factors that have been shown in patients with GH deficiency are also present in patients with metabolic syndrome, and are additive to the effects of metformin.  相似文献   

18.
The water-extracted Touchi, a traditional Chinese food, exerted a strong inhibitory activity against rat intestinal alpha-glucosidase in foodstuffs. In borderline and developed diabetic subjects, 0.3 g of Touchi-extract (TE) significantly inhibited postprandial blood glucose levels. For confirmation of safety, 9 healthy subjects were given 1 g of TE before every meal (3 g/day) for 12 weeks. None indicated changes in hematological and relevant biochemical parameters, body weight or BMI. In a non-comparative study, 18 type-2 diabetic patients ingested 0.3 g of TE before every meal (0.9 g/day) for 6 months (mo). Blood glucose (mean; 9.31 +/- 0.71 mmol/L) and HbA(1c) (mean: 10.24 +/- 0.58%) levels gradually decreased, and significant effects were elicited on the blood glucose levels (8.61 +/- 0.66 mmol/L; p < 0.01) after 6 mo and HbA(1c) after 3 (9.13 +/- 0.43%; p < 0.05) and 6 mo (8.96 +/- 0.30%; p < 0.05) post-ingestion of TE. Indexes for serum lipids and total cholesterol level revealed moderate decreases with a slight increase in the high-density lipoprotein (HDL) level after TE ingestion. However, triglyceride (TG) levels significantly decreased at 3 (p < 0.05) and 6 mo (p < 0.01) post-ingestion of TE. In this study, other biochemical parameters were not affected in any of the patients, and no one complained of any side-effects or abdominal distension. TE, exhibiting alpha-glucosidase inhibitory activity, demonstrated an anti-hyperglycemic effect and may prove useful for improving glycemic control in patients suffering from non-insulin-dependent diabetic mellitus.  相似文献   

19.
OBJECTIVE: The aim of this study was to analyse the level and progression of oxidative stress, in both plasma and erythrocytes, during heart surgery involving cardiopulmonary bypass. MATERIALS AND METHODS: Twenty two patients undergoing cardiac surgery and considered to present a high/severe level of surgical risk were selected. We took five blood samples at different times during the cardiac surgery and analysed TBARS, alpha-tocopherol, coenzyme Q and retinol in plasma and TBARS (baseline levels and induced by Fe2+-ascorbate oxidation), alpha-tocopherol, coenzyme Q and catalase, superoxide dismutase and gluthatione peroxidase activity in erythrocytes. RESULTS: Plasma results shown a decrease in both alpha-tocopherol and retinol concentration after starting CPB with respect to the reference level (13.6 +/- 1.5 nmol ml(-1) vs. 22.0 +/- 3.0 nmol ml(-1) and 1.2 +/- 0.1nmol ml(-1) vs. 1.8 +/- 0.2 nmol ml(-1), respectively (p < 0.05)). In comparison, in erythrocytes, all antioxidants, both enzymatic and non-enzymatic, increased in activity or concentration after starting CPB. Erythrocyte TBARS, both baseline levels and induced levels, followed a similar pattern, with an increase after starting CPB with respect to the reference level (3.9 +/- 0.6 nmol mg(-1) of protein vs. 2.3 +/- 0.2 nmol mg(-1) of protein and 10.6 +/- 0.8 nmol mg(-1) of protein vs. 6.7+/- 0.6 nmol mg(-1) of protein, respectively (p < 0.05)). CONCLUSION: These results reveal an increase in oxidative stress after CPB, both in plasma and erythrocytes, and although the organism is capable of attenuating this stress by means of various antioxidative defence mechanisms, there is an increased possibility of post-CPB complications and thus of mortality.  相似文献   

20.
Statin therapy can reduce the biosynthesis of both cholesterol and coenzyme Q10 by blocking the common upstream mevalonate pathway. Coenzyme Q10 depletion has been speculated to play a potential role in statin-related adverse events, and withdrawal of statin is the choice in patients developing myotoxicity or liver toxicity. However, the effect of statin withdrawal on circulating levels of coenzyme Q10 remains unknown. Twenty-six patients with hypercholesterolemia received atorvastatin at 10 mg/day for 3 months. Serum lipid profiles and coenzyme Q10 were assessed before and immediately after 3 months and were also measured 2 and 3 days after the last day on the statin. After 3 months' atorvastatin therapy, serum levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and coenzyme Q10 (0.43 +/- 0.23 to 0.16 +/- 0.10 microg/mL) were all significantly reduced (all p<0.001). On day 2 after the last atorvastatin, the coenzyme Q10 level was significantly elevated (0.37 +/- 0.16 microg/mL) and maintained the same levels on day 3 (0.39 +/- 0.18 microg/mL) compared with those on month 3 (both p< 0.001), while TC and LDL-C did not significantly change within the same 3 days. These results suggest that statin inhibition of coenzyme Q10 synthesis is less strict than inhibition of cholesterol biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号