首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Fatty acids are the primary energy source for the heart. The heart acquires fatty acids associated with albumin or derived from lipoprotein lipase (LpL)-mediated hydrolysis of lipoprotein triglyceride (TG). We generated heart-specific LpL knock-out mice (hLpL0) to determine whether cardiac LpL modulates the actions of peroxisome proliferator-activated receptors and affects whole body lipid metabolism. Male hLpL0 mice had significantly elevated plasma TG levels and decreased clearance of postprandial lipids despite normal postheparin plasma LpL activity. Very large density lipoprotein-TG uptake was decreased by 72% in hLpL0 hearts. However, heart uptake of albumin-bound free fatty acids was not altered. Northern blot analysis revealed a decrease in the expression of peroxisome proliferator-activated receptor alpha-response genes involved in fatty acid beta-oxidation. Surprisingly, the expression of glucose transporters 1 and 4 and insulin receptor substrate 2 was increased and that of pyruvate dehydrogenase kinase 4 and insulin receptor substrate 1 was reduced. Basal glucose uptake was increased markedly in hLpL0 hearts. Thus, the loss of LpL in the heart leads to defective plasma metabolism of TG. Moreover, fatty acids derived from lipoprotein TG and not just albumin-associated fatty acids are important for cardiac lipid metabolism and gene regulation.  相似文献   

2.
Impaired glucose metabolism is implicated in cardiac failure during ischemia-reperfusion. This study examined cardiac glucose uptake and expression of glucose transport-4 (GLUT-4) in dogs undergoing ischemia-reperfusion. Cardiac ischemia was induced by cardiopulmonary bypass for 30 min or 120 min in dogs. Plasma insulin and glucose concentrations were measured at pre-bypass (control), and aortic cross-clamp off (ischemia-reperfusion) at 15, 45, and 75 min. At the same time, the left ventricle biopsies were taken for GLUT-4 immunohistochemistry and glycogen content analysis. In dogs receiving 120-min ischemia, coronary arterial and venous glucose concentrations were increased, but the net glucose uptake in ischemia-reperfusion heart were significantly decreased from 25% (control) to zero at 15 and 45 min of reperfusion, and recovered to only 7% after 75 min reperfusion. Myocardium glycogen contents were decreased by 65%. Plasma insulin levels and Insulin Resistant Index were markedly increased in dogs undergoing 120-min ischemia and reperfusion. These changes were relatively mild and reversible in dogs receiving only 30-min ischemia followed by reperfusion. Expression of total GLUT-4 in myocardium was decreased 40% and translocation of GLUT-4 from cytoplasm to surface membrane was decreased 90% in dogs receiving 120-min ischemia followed by 15-min reperfusion. Suppressed translocation of GLUT-4 was also evident in dogs receiving 30-min ischemia, but to a lesser extent. Reduced myocardium glucose uptake, utilization, and glycogen content are clearly associated with ischemia-reperfusion heart injury. This appears to be due, at least in part, to suppressed expression and translocation of myocardium GLUT-4.  相似文献   

3.
Free fatty acid metabolism during myocardial ischemia and reperfusion   总被引:6,自引:0,他引:6  
Long chain free fatty acids (FFA) are the preferred metabolic substrates of myocardium under aerobic conditions. However, under ischemic conditions long chain FFA have been shown to be harmful both clinically and experimentally. Serum levels of free fatty acids frequently are elevated in patients with myocardial ischemia. The proposed mechanisms of the detrimental effects of free fatty acids include: (1) accumulation of toxic intermediates of fatty acid metabolism, such as long chain acyl-CoA thioesters and long chain acylcarnitines, (2) inhibition of glucose utilization, particularly glycolysis, during ischemia and/or reperfusion, and (3) uncoupling of oxidative metabolism from electron transfer. The relative importance of these mechanisms remains controversial. The primary site of FFA-induced injury appears to be the sarcolemmal and intracellular membranes and their associated enzymes. Inhibitors of free fatty acid metabolism have been shown experimentally to decrease the size of myocardial infarction and lessen postischemic cardiac dysfunction in animal models of regional and global ischemia. The mechanism by which FFA inhibitors improve cardiac function in the postischemic heart is controversial. Whether the effects are dependent on decreased levels of long chain intermediates and/or enhancement of glucose utilization is under investigation. Manipulation of myocardial fatty acid metabolism may prove beneficial in the treatment of myocardial ischemia, particularly during situations of controlled ischemia and reperfusion, such as percutaneous transluminal coronary angioplasty and coronary artery bypass grafting. (Mol Cell Biochem 166: 85-94, 1997)  相似文献   

4.
5.
Rodent studies suggest that peroxisome proliferator-activated receptor-alpha (PPAR-alpha) activation reduces myocardial ischemia-reperfusion (I/R) injury and infarct size; however, effects of PPAR-alpha activation in large animal models of myocardial I/R are unknown. We determined whether chronic treatment with the PPAR-alpha activator fenofibrate affects myocardial I/R injury in pigs. Domestic farm pigs were assigned to treatment with fenofibrate 50 mg.kg(-1).day(-1) orally or no drug treatment, and either a low-fat (4% by weight) or a high-fat (20% by weight) diet. After 4 wk, 66 pigs underwent 90 min low-flow regional myocardial ischemia and 120 min reperfusion under anesthetized open-chest conditions, resulting in myocardial stunning. The high-fat group received an infusion of triglyceride emulsion and heparin during this terminal experiment to maintain elevated arterial free fatty acid (FFA) levels. An additional 21 pigs underwent 60 min no-flow ischemia and 180 min reperfusion, resulting in myocardial infarction. Plasma concentration of fenofibric acid was similar to the EC50 for activation of PPAR-alpha in vitro and to maximal concentrations achieved in clinical use. Myocardial expression of PPAR-alpha mRNA was prominent but unaffected by fenofibrate treatment. Fenofibrate increased expression of carnitine palmitoyltransferase (CPT)-I mRNA in liver and decreased arterial FFA and lactate concentrations (each P < 0.01). However, fenofibrate did not affect myocardial CPT-I expression, substrate uptake, lipid accumulation, or contractile function during low-flow I/R in either the low- or high-fat group, nor did it affect myocardial infarct size. Despite expression of PPAR-alpha in porcine myocardium and effects of fenofibrate on systemic metabolism, treatment with this PPAR-alpha activator does not alter myocardial metabolic or contractile responses to I/R in pigs.  相似文献   

6.
Whereas glucose transporter 1 (GLUT-1) is thought to be responsible for basal glucose uptake in cardiac myocytes, little is known about its relative distribution between the different plasma membranes and cell types in the heart. GLUT-4 translocates to the myocyte surface to increase glucose uptake in response to a number of stimuli. The mechanisms underlying ischemia- and insulin-mediated GLUT-4 translocation are known to be different, raising the possibility that the intracellular destinations of GLUT-4 following these stimuli also differ. Using immunogold labeling, we describe the cellular localization of these two transporters and investigate whether insulin and ischemia induce differential translocation of GLUT-4 to different cardiac membranes. Immunogold labeling of GLUT-1 and GLUT-4 was performed on left ventricular sections from isolated hearts following 30 min of either insulin, ischemia, or control perfusion. In control tissue, GLUT-1 was predominantly (76%) localized in the capillary endothelial cells, with only 24% of total cardiac GLUT-1 present in myocytes. GLUT-4 was found predominantly in myocytes, distributed between sarcolemmal and T tubule membranes (1.84 +/- 0.49 and 1.54 +/- 0.33 golds/microm, respectively) and intracellular vesicles (127 +/- 18 golds/microm(2)). Insulin increased T tubule membrane GLUT-4 content (2.8 +/- 0.4 golds/microm, P < 0.05) but had less effect on sarcolemmal GLUT-4 (1.72 +/- 0.53 golds/microm). Ischemia induced greater GLUT-4 translocation to both membrane types (4.25 +/- 0.84 and 4.01 +/- 0.27 golds/microm, respectively P < 0.05). The localization of GLUT-1 suggests a significant role in transporting glucose across the capillary wall before myocyte uptake via GLUT-1 and GLUT-4. We demonstrate independent spatial translocation of GLUT-4 under insulin or ischemic stimulation and propose independent roles for T-tubular and sarcolemmal GLUT-4.  相似文献   

7.
8.
Type 2 diabetes is characterized by two major defects: a dysregulation of pancreatic hormone secretion (quantitative and qualitative--early phase, pulsatility--decrease of insulin secretion, increase in glucagon secretion), and a decrease in insulin action on target tissues (insulin resistance). The defects in insulin action on target tissues are characterized by a decreased in muscle glucose uptake and by an increased hepatic glucose production. These abnomalities are linked to several defects in insulin signaling mechanisms and in several steps regulating glucose metabolism (transport, key enzymes of glycogen synthesis or of mitochondrial oxidation). These postreceptors defects are amplified by the presence of high circulating concentrations of free fatty acids. The mechanisms involved in the of long-chain fatty acids are reviewed in this paper. Indeed, elevated plasma free fatty acids contribute to decrease muscle glucose uptake (mainly by reducing insulin signaling) and to increase hepatic glucose production (stimulation of gluconeogenesis by providing cofactors such as acetyl-CoA, ATP and NADH). Chronic exposure to high levels of plasma free fatty acids induces accumulation of long-chain acyl-CoA into pancreatic beta-cells and to the death of 50 % of beta-cell by apoptosis (lipotoxicity).  相似文献   

9.
In aerobic conditions, the heart preferentially oxidizes fatty acids. However, during metabolic stress, glucose becomes the major energy source, and enhanced glucose uptake has a protective effect on heart function and cardiomyocyte survival. Thus abnormal regulation of glucose uptake may contribute to the development of cardiac disease in diabetics. Ketone bodies are often elevated in poorly controlled diabetics and are associated with increased cellular oxidative stress. Thus we sought to determine the effect of the ketone body beta-hydroxybutyrate (OHB) on cardiac glucose uptake during metabolic stress. We used 2,4-dinitrophenol (DNP), an uncoupler of the mitochondrial oxidative chain, to mimic hypoxia in cardiomyocytes. Our data demonstrated that chronic exposure to OHB provoked a concentration-dependent decrease of DNP action, resulting in 56% inhibition of DNP-mediated glucose uptake at 5 mM OHB. This was paralleled by a diminution of DNP-mediated AMP-activated protein kinase (AMPK) and p38 MAPK phosphorylation. Chronic exposure to OHB also increased reactive oxygen species (ROS) production by 1.9-fold compared with control cells. To further understand the role of ROS in OHB action, cardiomyocytes were incubated with H(2)O(2). Our results demonstrated that this treatment diminished DNP-induced glucose uptake without altering activation of the AMPK/p38 MAPK signaling pathway. Incubation with the antioxidant N-acetylcysteine partially restored DNP-mediated glucose but not AMPK/p38 MAPK activation. In conclusion, these results suggest that ketone bodies, through inhibition of the AMPK/p38 MAPK signaling pathway and ROS overproduction, regulate DNP action and thus cardiac glucose uptake. Altered glucose uptake in hyperketonemic states during metabolic stress may contribute to diabetic cardiomyopathy.  相似文献   

10.
Inhibition of endothelial nitric oxide (NO) synthase (eNOS) is associated with an increase in glucose uptake by the heart. We have already shown that Type I diabetes also causes a decrease in eNOS protein expression and altered NO control of both coronary vascular resistance and oxygen consumption. Therefore, we predict that the increase in plasma glucose and the reduction in eNOS during diabetes together would result in a large increase in cardiac glucose uptake. Arterial (A) and coronary sinus (C) plasma levels of glucose, free fatty acid (FFA), beta-hydroxybutyric acid (beta-HBA), and lactate were measured, and myocardial uptake was calculated before and at week 1, 2, 3, and 4 of alloxan-induced diabetes. The heart of healthy dogs consumed FFA (19.2 +/- 2.6 microeq/min) and lactate (19.7 +/- 3.4 micromol/min). Dogs in the late stage of diabetes (at week 4) had elevated arterial beta-HBA concentrations (1.6 +/- 0.7 micromol/l) that were accompanied by an increased beta-HBA uptake (0.3 +/- 0.2 micromol/min). In contrast, myocardial lactate (-4.8 +/- 3.0 micromol/min) and FFA uptake (2.5 +/- 1.9 microeq/min) were significantly reduced in diabetic animals. Despite a marked hyperglycemia (449 +/- 25 mg/dl), the heart did not take up glucose (-7.9 +/- 4.1 mg/dl). Our results indicate significant changes in the myocardial substrate utilization in dogs only in the late stage of diabetes, at a time when myocardial NO production is already decreased.  相似文献   

11.
Exercise-induced cardiac hypertrophy has been recently identified to be regulated in a sex-specific manner. In parallel, women exhibit enhanced exercise-mediated lipolysis compared with men, which might be linked to cardiac responses. The aim of the present study was to assess if previously reported sex-dependent differences in the cardiac hypertrophic response during exercise are associated with differences in cardiac energy substrate availability/utilization. Female and male C57BL/6J mice were challenged with active treadmill running for 1.5 h/day (0.25 m/s) over 4 wk. Mice underwent cardiac and metabolic phenotyping including echocardiography, small-animal PET, peri-exercise indirect calorimetry, and analysis of adipose tissue (AT) lipolysis and cardiac gene expression. Female mice exhibited increased cardiac hypertrophic responses to exercise compared with male mice, measured by echocardiography [percent increase in left ventricular mass (LVM): female: 22.2 ± 0.8%, male: 9.0 ± 0.2%; P < 0.05]. This was associated with increased plasma free fatty acid (FFA) levels and augmented AT lipolysis in female mice after training, whereas FFA levels from male mice decreased. The respiratory quotient during exercise was significantly lower in female mice indicative for preferential utilization of fatty acids. In parallel, myocardial glucose uptake was reduced in female mice after exercise, analyzed by PET {injection dose (ID)/LVM [%ID/g]: 36.8 ± 3.5 female sedentary vs. 28.3 ± 4.3 female training; P < 0.05}, whereas cardiac glucose uptake was unaltered after exercise in male counterparts. Cardiac genes involved in fatty acid uptake/oxidation in females were increased compared with male mice. Collectively, our data demonstrate that sex differences in exercise-induced cardiac hypertrophy are associated with changes in cardiac substrate availability and utilization.  相似文献   

12.
Glucose and fatty acid metabolism was assessed in isolated working hearts from control C57BL/KsJ-m+/+db mice and transgenic mice overexpressing the human GLUT-4 glucose transporter (db/+-hGLUT-4). Heart rate, coronary flow, cardiac output, and cardiac power did not differ between control hearts and hearts overexpressing GLUT-4. Hearts overexpressing GLUT-4 had significantly higher rates of glucose uptake and glycolysis and higher levels of glycogen after perfusion than control hearts, but rates of glucose and palmitate oxidation were not different. Insulin (1 mU/ml) significantly increased glycogen levels in both groups. Insulin increased glycolysis in control hearts but not in GLUT-4 hearts, whereas glucose oxidation was increased by insulin in both groups. Therefore, GLUT-4 overexpression increases glycolysis, but not glucose oxidation, in the heart. Although control hearts responded to insulin with increased rates of glycolysis, the enhanced entry of glucose in the GLUT-4 hearts was already sufficient to maximally activate glycolysis under basal conditions such that insulin could not further stimulate the glycolytic rate.  相似文献   

13.
Plasma glucose, free fatty acid and uric acid levels were measured in lead-poisoned Canada geese (Branta canadensis). Although plasma glucose levels were only slightly elevated, uric acid was significantly higher and free fatty acids were significantly lower. Altered plasma levels were attributed to increased protein catabolism and perhaps renal disfunction. Plasma level of growth hormone and prolactin was assessed by radioimmunoassay. Growth hormone remained unchanged while prolactin was unusually high. The increased prolactin levels may reflect an effort to stabilize free fatty acids.  相似文献   

14.
A rat four vessel occlusion model was utilized to examine the effects of ischemia/reperfusion on cortical window superfusate levels of amino acids, glucose, and lactate. Superfusate aspartate, glutamate, phosphoethanolamine, taurine, and GABA were significantly elevated by cerebral ischemia, then declined during reperfusion. Other amino acids were affected to a lesser degree. Superfusate lactate rose slightly during the initial ischemic period, declined during continued cerebral ischemia and then was greatly elevated during reperfusion. Superfusate glucose levels declined to near zero levels during ischemia and then rebounded beyond basal levels during the reperfusion period. Inhibition of neuronal lactate uptake with alpha-cyano-4-hydroxycinnamate dramatically elevated superfusate lactate levels, enhanced the ischemia/reperfusion evoked release of aspartate but reduced glutamine levels. Topical application of an alternative metabolic fuel, glutamine, had a dose dependent effect. Glutamine (1 mM) elevated basal superfusate glucose levels, diminished the decline in glucose during ischemia, and accelerated its recovery during reperfusion. Lactate levels were elevated during ischemia and reperfusion. These effects were not evident at 5 mM glutamine. At both concentrations, glutamine significantly elevated the superfusate levels of glutamate. Topical application of sodium pyruvate (20 mM) significantly attenuated the decline in superfusate glucose during ischemia and enhanced the levels of both glucose and lactate during reperfusion. However, it had little effect on the ischemia-evoked accumulation of amino acids. Topical application of glucose (450 mg/dL) significantly elevated basal superfusate levels of lactate, which continued to be elevated during both ischemia and reperfusion. The ischemia-evoked accumulations of aspartate, glutamate, taurine and GABA were all significantly depressed by glucose, while phosphoethanolamine levels were elevated. These results support the role of lactate in neuronal metabolism during ischemia/reperfusion. Both glucose and glutamine were also used as energy substrates. In contrast, sodium pyruvate does not appear to be as effectively utilized by the ischemic/reperfused rat brain since it did not reduce ischemia-evoked amino acid efflux.  相似文献   

15.
Hearts from diabetic db/db mice, a model of Type 2 diabetes, exhibit left ventricular failure and altered metabolism of exogenous substrates. Peroxisome proliferator-activated receptor-alpha (PPAR-alpha) ligands reduce plasma lipid and glucose concentrations and improve insulin sensitivity in db/db mice. Consequently, the effect of 4- to 5-wk treatment of db/db mice with a novel PPAR-alpha ligand (BM 17.0744; 25-38 mg x kg(-1) x day(-1)), commencing at 8 wk of age, on ex vivo cardiac function and metabolism was determined. Elevated plasma concentrations of glucose, fatty acids, and triacylglycerol (34.0 +/- 3.6, 2.0 +/- 0.4, and 0.9 +/- 0.1 mM, respectively) were reduced to normal after treatment with BM 17.0744 (10.8 +/- 0.6, 1.1 +/- 0.1, and 0.6 +/- 0.1 mM). Plasma insulin was also reduced significantly in treated compared with untreated db/db mice. Chronic treatment of db/db mice with the PPAR-alpha agonist resulted in a 50% reduction in rates of fatty acid oxidation, with a concomitant increase in glycolysis (1.7-fold) and glucose oxidation (2.3- fold). Correction of the diabetes-induced abnormalities in systemic and cardiac metabolism after BM 17.0744 treatment did not, however, improve left ventricular contractile function.  相似文献   

16.
The increase of cellular fatty acids appears to be one of the causes of the myocardial injury during ischemia and reperfusion. This study was designed to examine whether a hypolipidemic drug such as clofibrate can reduce the myocardial injury during ischemia and reperfusion. Clofibrate was fed to experimental pigs for 9 days. Isolated in situ hearts from both experimental and control pigs were subjected to 60 min of regional ischemia induced by occluding the left anterior descending coronary artery, followed by 60 min of global ischemia by hypothermic cardioplegic arrest and 60 min of reperfusion. The clofibrate feeding resulted in the better cardiac performance as judged by increased coronary blood flow, improved left ventricular function, and reduced myocardial injury as judged by creatine kinase release. Although the clofibrate-fed animals contained higher levels of thiobarbituric reactive materials, the free fatty acid levels of plasma and myocardium were much lower compared with control animals. The clofibrate feeding was also associated with increased peroxisomal catalase and beta-oxidation of fatty acids. These results suggest that decreased levels of free fatty acids in the plasma and the myocardium and increased catalase activity induced by antilipolytic therapy appear to provide beneficial effects to the myocardium during ischemia and reperfusion.  相似文献   

17.
A G Douen  T Ramlal  G D Cartee  A Klip 《FEBS letters》1990,261(2):256-260
Insulin and acute exercise (45 min of treadmill run) increased glucose uptake into perfused rat hindlimbs 5-fold and 3.2-fold, respectively. Following exercise, insulin treatment resulted in a further increase in glucose uptake. The subcellular distribution of the muscle glucose transporters GLUT-1 and GLUT-4 was determined in plasma membranes and intracellular membranes. Neither exercise nor exercise----insulin treatment altered the distribution of GLUT-1 transporters in these membrane fractions. In contrast, exercise, insulin and exercise----insulin treatment caused comparable increases in GLUT-4 transporters in the plasma membrane. The results suggest that exercise might limit insulin-induced GLUT-4 recruitment and that following exercise, insulin may alter the intrinsic activity of plasma membrane glucose transporters.  相似文献   

18.
Exposure of insulin-sensitive tissues to free fatty acids can impair glucose disposal through inhibition of carbohydrate oxidation and glucose transport. However, certain fatty acids and their derivatives can also act as endogenous ligands for peroxisome proliferator-activated receptor gamma (PPARgamma), a nuclear receptor that positively modulates insulin sensitivity. To clarify the effects of externally delivered fatty acids on glucose uptake in an insulin-responsive cell type, we systematically examined the effects of a range of fatty acids on glucose uptake in 3T3-L1 adipocytes. Of the fatty acids examined, arachidonic acid (AA) had the greatest positive effects, significantly increasing basal and insulin-stimulated glucose uptake by 1.8- and 2-fold, respectively, with effects being maximal at 4 h at which time membrane phospholipid content of AA was markedly increased. The effects of AA were sensitive to the inhibition of protein synthesis but were unrelated to changes in membrane fluidity. AA had no effect on total cellular levels of glucose transporters, but significantly increased levels of GLUT1 and GLUT4 at the plasma membrane. While the effects of AA were insensitive to cyclooxygenase inhibition, the lipoxygenase inhibitor, nordihydroguaiaretic acid, substantially blocked the AA effect on basal glucose uptake. Furthermore, adenoviral expression of a dominant-negative PPARgamma mutant attenuated the AA potentiation of basal glucose uptake. Thus, AA potentiates basal and insulin-stimulated glucose uptake in 3T3-L1 adipocytes by a cyclooxygenase-independent mechanism that increases the levels of both GLUT1 and GLUT4 at the plasma membrane. These effects are at least partly dependent on de novo protein synthesis, an intact lipoxygenase pathway and the activation of PPARgamma with these pathways having a greater role in the absence than in the presence of insulin.  相似文献   

19.
Time-dependent effects of fatty acids on skeletal muscle metabolism   总被引:4,自引:0,他引:4  
Increased plasma levels of free fatty acids (FFA) occur in states of insulin resistance such as type 2 diabetes mellitus, obesity, and metabolic syndrome. These high levels of plasma FFA seem to play an important role for the development of insulin resistance but the mechanisms involved are not known. We demonstrated that acute exposure to FFA (1 h) in rat incubated skeletal muscle leads to an increase in the insulin-stimulated glycogen synthesis and glucose oxidation. In conditions of prolonged exposure to FFA, however, the insulin-stimulated glucose uptake and metabolism is impaired in skeletal muscle. In this review, we discuss the differences between the effects of acute and prolonged exposure to FFA on skeletal muscle glucose metabolism and the possible mechanisms involved in the FFA-induced insulin resistance.  相似文献   

20.
Intrauterine growth restriction is associated with chronically elevated levels of serum fatty acids and reduced glucose-stimulated insulin secretion. Lipid metabolism in pancreatic beta cells is critical for the regulation of insulin secretion, and the chronic exposure to fatty acids results in higher palmitate oxidation rates and an altered insulin response to glucose. Using a rat model of isocaloric protein restriction, we examined whether pre- and postnatal protein malnutrition influences the properties of pancreatic islet carnitine palmitoyltransferase-1 (liver isoform, L-CPT-1), a rate-limiting enzyme that regulates fatty acid oxidation in mitochondria. The activity of L-CPT-1 in pancreatic islets increased in the low protein (LP), although the L-CPT-1 mRNA levels were unaffected by malnutrition. The susceptibility of enzyme to inhibition by malonyl-CoA was unaltered and the content of malonyl-CoA was reduced in LP cells. Because the mitochondrial oxidation of fatty acids is related to the altered expression of a number of genes encoding proteins involved in insulin secretion, the levels of expression of insulin and GLUT-2 mRNA were assessed. A reduced expression of both genes was observed in malnourished rats. These results provide further evidence that increased L-CPT-1 activity and changes in gene expression in pancreatic islets may be involved in the reduced insulin secretion seen in malnourished rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号