首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both protein kinase C (PKC) and extracellular signal-regulated kinases (ERK1/2) are involved in mediating vascular smooth muscle contraction. We tested the hypotheses that in addition to PKC activation of ERK1/2, by negative feedback ERKs modulate PKC-induced contraction, and that their interactions modulate both thick and thin myofilament pathways. In ovine middle cerebral arteries (MCA), we measured isometric tension and intracellular free calcium concentration ([Ca(2+)](i)) responses to PKC stimulation [phorbol 12,13-dibutyrate (PDBu), 3 x 10(-6) M] in the absence or presence of ERK1/2 inhibition (U-0126, 10(-5) M). After PDBu +/- ERK1/2 inhibition, we also examined by Western immunoblot the levels of total and phosphorylated ERK1/2, caldesmon(Ser789), myosin light chain(20) (MLC(20)), and CPI-17. PDBu induced significant increase in tension in the absence of increased [Ca(2+)](i). PDBu also increased phosphorylated ERK1/2 levels, a response blocked by U-0126. In turn, U-0126 augmented PDBu-induced contractions. PDBu also was associated with significant increases in phosphorylated caldesmon(Ser789) and MLC(20) levels, each of which peaked at 5 to 10 min. PDBu also increased phosphorylated CPI-17 levels, which peaked at 2 to 3 min. Rho kinase inhibition (Y-27632, 3 x 10(-7) M) did not alter PDBu-induced contraction. These results support the idea that PKC activation can increase CPI-17 phosphorylation to decrease myosin light chain phosphatase activity. In turn, this increases MLC(20) phosphorylation in the thick filament pathway and increases Ca(2+) sensitivity. In addition, ERK1/2-dependent phosphorylation of caldesmon(Ser789) was not necessary for PDBu-induced contraction and appears not to be involved in the reversal of caldesmon's inhibitory effect on actin-myosin ATPase.  相似文献   

2.
Ca(2+) sensitivity of smooth muscle contraction is modulated by several systems converging on myosin light chain phosphatase (MLCP). Rho-Rho kinase is considered to inhibit MLCP via phosphorylation, whereas protein kinase C (PKC) induced sensitization has been shown to be dependent on phosphorylation of the inhibitory protein CPI-17. We have explored the interaction of cGMP-dependent protein kinase (PKG) with Ca(2+) sensitization pathways using permeabilized mouse smooth muscle. Three conditions giving approximately 50% of maximal active force were compared in small intestinal preparations: 1). Ca(2+)-activated unsensitized muscle (pCa 5.9 with Rho kinase inhibitor Y27632); 2). Rho-Rho kinase-sensitized muscle (pCa 6.1 with guanosine 5'-3-O-(thio)triphosphate); and 3). PKC-sensitized muscle (pCa 6.0 with Y27632 and PKC activator phorbol 12,13-dibutyrate). 8-Br-cGMP relaxed the sensitized muscles but had marginal effects on unsensitized preparations, showing that PKG reverses both PKC and Rho-mediated Ca(2+) sensitization. CPI-17 was present in permeabilized intestinal tissue. In PKC-sensitized preparations, CPI-17 phosphorylation decreased in response to 8-Br-cGMP. The rate of PKC-mediated phosphorylation in the presence of the MLCP inhibitor microcystin-LR was not influenced by 8-Br-cGMP. PKC-induced Ca(2+) sensitization also was reversed in vascular smooth muscle tissues (portal vein and femoral artery). We conclude that actions downstream of cGMP/PKG can reverse PKC-mediated phosphorylation of CPI-17 and Ca(2+) sensitization in smooth muscle.  相似文献   

3.
Ca2+-sensitization of smooth muscle occurs through inhibition of myosin light chain phosphatase (MLCP) leading to an increase in the MLCK:MLCP activity ratio. MLCP is inhibited through phosphorylation of its regulatory subunit (MYPT-1) following activation of the RhoA/Rho kinase (ROK) pathway or through phosphorylation of the PP1c inhibitory protein, CPI-17, by PKC delta or ROK. Here, we explore the crosstalk between these two modes of MLCP inhibition in a smooth muscle of a natural CPI-17 knockout, chicken amnion. GTPgammaS elicited Ca2+-sensitized force which was relaxed by GDI or Y-27632, however, U46619, carbachol and phorbol ester failed to induce Ca2+-sensitized force, but were rescued by recombinant CPI-17, and were sensitive to Y-27632 inhibition. In the presence, but not absence, of CPI-17, U46619 also significantly increased GTP.RhoA. There was no affect on MYPT-1 phosphorylation at T695, however, T850 phosphorylation increased in response to GTPgammaS stimulation. Together, these data suggest a role for CPI-17 upstream of RhoA activation possibly through activation of another PP1 family member targeted by CPI-17.  相似文献   

4.
Interleukin-1beta (IL-1beta) is a proinflammatory cytokine that plays a central role in inflammatory bowel disease (IBD). In order to elucidate the mechanism of motility disorders frequently observed in IBD, we investigated the long term effects of IL-1beta on rat ileal smooth muscle contractility by using an organ culture system. When ileal smooth muscle strips were cultured with IL-1beta (10 ng/ml), contractions elicited by high K+ and carbachol were inhibited in a time-dependent manner. IL-1beta more strongly inhibited the carbachol-induced contractions than high K+ with decreasing myosin light chain phosphorylation. In the alpha-toxin-permeabilized ileal muscle, carbachol with GTP or guanosine 5'-3-O-(thio)triphosphate increased the Ca2+ sensitivity of contractile elements, and this G protein-coupled Ca2+ sensitization was significantly reduced in the IL-1beta-treated ileum. Among the functional proteins involved in the smooth muscle Ca2+ sensitization, CPI-17 expression was significantly reduced after the culture with IL-1beta, whereas the expressions of RhoA, ROCK-I, ROCK-II, MYPT-1, myosin light chain kinase, and myosin phosphatase (PP1) were unchanged. The phosphorylation level of CPI-17 by carbachol was low in accordance with the decrease in CPI-17 expression due to IL-1beta treatment. In contrast, constitutively phosphorylated MYPT-1 was also decreased in the IL-1beta-treated muscles. These results suggest that long term treatment with IL-1beta decreases either CPI-17 expression or MYPT-1 phosphorylation, which may result in an increase in myosin phosphatase activity to reduce force generation. Based on these findings, we consider IL-1beta to be an important mediator of gastrointestinal motility disorders in IBD, and CPI-17 and MYPT-1 are key molecules in the decreased smooth muscle contractility due to IL-1beta.  相似文献   

5.
Myosin light chain phosphatase (MLCP) plays a pivotal role in smooth muscle contraction by regulating Ca(2+) sensitivity of myosin light chain phosphorylation. A smooth muscle phosphoprotein called CPI-17 specifically and potently inhibits MLCP in vitro and in situ and is activated when phosphorylated at Thr-38, which increases its inhibitory potency 1000-fold. We produced a phosphospecific antibody for this site in CPI-17 and used it to study in situ phosphorylation of endogenous CPI-17 in arterial smooth muscle in response to agonist stimulation. In the intact femoral artery, CPI-17 phosphorylation was negligible at the resting state and was not increased during contraction induced by K(+) depolarization. The Ca(2+)-sensitizing agonists histamine and phenylephrine induced nearly equivalent contractions, but histamine generated significantly higher levels of CPI-17 phosphorylation. In alpha-toxin-permeabilized strips at pCa 6.7, contractile force and CPI-17 phosphorylation were proportional in response to histamine, guanosine 5'-O-(gamma-thiotriphosphate), and histamine plus guanyl-5'-yl thiophosphate, implying that histamine increased CPI-17 phosphorylation through activation of G proteins. Inhibitors of Rho-kinase (Y27632) and protein kinase C (PKC; GF109203X) reduced contraction and CPI-17 phosphorylation in parallel, suggesting that CPI-17 functions downstream of Rho kinases and PKC. The results show that agonists such as histamine signal through phosphorylation of CPI-17 to produce Ca(2+) sensitization of smooth muscle contraction.  相似文献   

6.
Herein, we provide evidence that in chicken smooth muscle, G-protein stimulation by a Rho-kinase pathway leads to an increase in myosin light chain phosphorylation. Additionally, G-protein stimulation did not increase MYPT1 phosphorylation at Thr695 or Thr850, and CPI-17, was not expressed in chicken smooth muscle. However, PHI-1 was present in chicken smooth muscle tissues. Both agonist and GTP(gamma)S stimulation result in an increase in PHI-1 phosphorylation, which is inhibited by inhibitors to both Rho-kinase (Y-27632) and (PKC) GF109203x. These data suggest that PHI-1 may act as a CPI-17 analog in chicken smooth muscle and inhibit myosin phosphatase activity during G-protein stimulation to produce Ca2+ sensitization.  相似文献   

7.
CPI-17 is a phosphorylation-dependent inhibitory protein for smooth muscle myosin phosphate. Phosphorylation at Thr(38), in vitro, by protein kinase C or Rho-kinase enhances the inhibitory potency toward myosin phosphatase. Phosphorylation of CPI-17 by protein kinase N (PKN), a fatty acid- and Rho-activated serine/threonine kinase, and its effect on smooth muscle myosin phosphatase activity were investigated. CPI-17 was phosphorylated by GST-PKN-CAT, a constitutively active GST-fusion fragment of PKN, to 1.46 mol of P/mol of CPI-17, in vitro. The K(m) value of CPI-17 for PKN was 0.96 microM. Phosphorylation of PKN dramatically increased the inhibitory effect of CPI-17 on myosin phosphatase activity. The major and inhibitory phosphorylation site was identified as Thr(38) using a point mutant of CPI-17 and a phosphorylation-state specific antibody. Thus, CPI-17 is a substrate of PKN and might be involved in the Ca(2+) sensitization of smooth muscle contraction as a downstream effector of Rho and/or arachidonic acid.  相似文献   

8.
Histamine stimulus triggers inhibition of myosin phosphatase-enhanced phosphorylation of myosin and contraction of vascular smooth muscle. In response to histamine stimulation of intact femoral artery, a smooth muscle-specific protein called CPI-17 (for protein kinase C-potentiated inhibitory protein for heterotrimeric myosin light chain phosphatase of 17 kDa) is phosphorylated and converted to a potent inhibitor for myosin phosphatase. Phosphorylation of CPI-17 is diminished by pretreatment with either or GF109203x, suggesting involvement of multiple kinases (Kitazawa, T., Eto, M., Woodsome, T. P., and Brautigan, D. L. (2000) J. Biol. Chem. 275, 9897--9900). Here we purified and identified CPI-17 kinases endogenous to pig artery that phosphorylate CPI-17. DEAE-Toyopearl column chromatography of aorta extracts separated two CPI-17 kinases. One kinase was protein kinase C (PKC) alpha, and the second kinase was purified to homogeneity as a 45-kDa protein, and identified by sequencing as PKC delta. Purified PKC delta was 3-fold more reactive with CPI-17 compared with myelin basic protein, whereas purified PKC alpha and recombinant RhoA-activated kinases (Rho-associated coiled-coil forming protein Ser/Thr kinase and protein kinase N) showed equal activity with CPI-17 and myelin basic protein. inhibited CPI-17 phosphorylation by purified PKC delta with IC(50) of 0.6 microm (in the presence of 0.1 mm ATP) or 14 microm (2.0 mm ATP). significantly suppressed CPI-17 phosphorylation in smooth muscle cells, and the contraction of permeabilized rabbit femoral artery induced by stimulation with phorbol ester. GF109203x inhibited phorbol ester-induced contraction of rabbit femoral artery by 80%, whereas a PKC alpha/beta inhibitor, Go6976, reduced contraction by 47%. The results imply that histamine stimulation elicits contraction of vascular smooth muscle through activation of PKC alpha and especially PKC delta to phosphorylate CPI-17.  相似文献   

9.
We have demonstrated that extracellular signal-regulated kinase (ERK) plays an important role in the regulation of uterine artery contraction. The present study tested the hypothesis that ERK regulates thick and thin filament regulatory pathways in the uterine artery. Isometric tension, intracellular free Ca2+ concentration ([Ca2+]i), and 20-kDa myosin light chain (LC20) phosphorylation were measured simultaneously in uterine arteries isolated from near-term (140 days gestation) pregnant sheep. Phenylephrine produced time-dependent increases in [Ca2+]i and LC20 phosphorylation that preceded the contraction, which were inhibited by the MEK (ERK) inhibitor PD-098059. In addition, PD-098059 decreased the intercept of the regression line of LC20 phosphorylation vs. [Ca2+]i but increased the rate of tension development vs. LC20 phosphorylation. In contrast to phenylephrine, phorbol 12,13-bibutyrate (PDBu) produced contractions without changing [Ca2+]i or LC20 phosphorylation. PD-098059 potentiated PDBu-induced contractions without affecting [Ca2+]i and LC20 phosphorylation. PDBu produced time-dependent increases in phosphorylation of p42 and p44 ERK and ERK-dependent phosphorylation of caldesmon at Ser789 in the uterine artery. PD-098059 blocked PDBu-mediated phosphorylation of p42 and p44 ERK and caldesmon. The results indicate that ERK may regulate force by a dual regulation of thick and thin filaments in uterine artery smooth muscle. ERK potentiates the thick filament regulatory pathway by enhancing LC20 phosphorylation via increases in [Ca2+]i and Ca2+ sensitivity of LC20 phosphorylation. In contrast, ERK attenuates the thin filament regulatory pathway and suppresses contractions independent of changes in LC20 phosphorylation in the uterine artery.  相似文献   

10.
Agonist-induced activation of the RhoA/Rho kinase (ROCK) pathway results in inhibition of myosin phosphatase and maintenance of myosin light chain (MLC20) phosphorylation. We have shown that RhoA/ROCKII translocates and associates with heat shock protein (HSP)27 in the particulate fraction. We hypothesize that inhibition of the 130-kDa regulatory myosin-binding subunit (MYPT) requires its association with HSP27 in the particulate fraction. Furthermore, it is not certain whether regulation of MYPT by CPI-17 or by ROCKII is due to cross talk between RhoA and PKC-alpha. Presently, we examined the cross talk between RhoA and PKC-alpha in the regulation of MYPT phosphorylation in rabbit colon smooth muscle cells. Acetylcholine induced 1) sustained phosphorylation of PKC-alpha, CPI-17, and MYPT; 2) an increase in the association of phospho-MYPT with HSP27 in the particulate fraction; 3) a decrease in myosin phosphatase activity (66.21+/-3.52 and 42.19+/-3.85% nM/ml lysate at 30 s and 4 min); and 4) an increase in PKC activity (298.12+/-46.60% and 290.59+/-22.07% at 30 s and 4 min). Inhibition of RhoA/ROCKII by Y-27632 inhibited phosphorylation of MYPT and its association with HSP27. Both Y27632 and a negative dominant construct of RhoA inhibited phosphorylation of MYPT and CPI-17. Inhibition of PKCs or calphostin C or selective inhibition of PKC-alpha by negative dominant constructs inhibited phosphorylation of MYPT and CPI-17. The results suggest that 1) acetylcholine induces activation of both RhoA and/or PKC-alpha pathways, suggesting cross talk between RhoA and PKC-alpha resulting in phosphorylation of MYPT, inhibition of myosin phosphatase activity, and maintenance of MLC phosphorylation; and 2) phosphorylated MYPT is associated with HSP27 and translocated to the particulate fraction, suggesting a scaffolding role for HSP27 in mediating the association of the complex MYPT/RhoA-ROCKII. Thus both pathways (PKC and RhoA) converge on the regulation of myosin phosphatase activities and modulate sustained phosphorylation of MLC20.  相似文献   

11.
We have previously shown that myosin light chain (MLC) phosphatase (MLCP) is critically involved in the regulation of agonist-mediated endothelial permeability and cytoskeletal organization (Verin AD, Patterson CE, Day MA, and Garcia JG. Am J Physiol Lung Cell Mol Physiol 269: L99-L108, 1995). The molecular mechanisms of endothelial MLCP regulation, however, are not completely understood. In this study we found that, similar to smooth muscle, lung microvascular endothelial cells expressed specific endogenous inhibitor of MLCP, CPI-17. To elucidate the role of CPI-17 in the regulation of endothelial cytoskeleton, full-length CPI-17 plasmid was transiently transfected into pulmonary artery endothelial cells, where the background of endogenous protein is low. CPI-17 had no effect on cytoskeleton under nonstimulating conditions. However, stimulation of transfected cells with direct PKC activator PMA caused a dramatic increase in F-actin stress fibers, focal adhesions, and MLC phosphorylation compared with untransfected cells. Inflammatory agonist histamine and, to a much lesser extent, thrombin were capable of activating CPI-17. Histamine caused stronger CPI-17 phosphorylation than thrombin. Inhibitory analysis revealed that PKC more significantly contributes to agonist-induced CPI-17 phosphorylation than Rho-kinase. Dominant-negative PKC-alpha abolished the effect of CPI-17 on actin cytoskeleton, suggesting that the PKC-alpha isoform is most likely responsible for CPI-17 activation in the endothelium. Depletion of endogenous CPI-17 in lung microvascular endothelial cell significantly attenuated histamine-induced increase in endothelial permeability. Together these data suggest the potential importance of PKC/CPI-17-mediated pathway in histamine-triggered cytoskeletal rearrangements leading to lung microvascular barrier compromise.  相似文献   

12.
Protein kinase C-potentiated phosphatase inhibitor of 17 kDa (CPI-17) mediates some agonist-induced smooth muscle contraction by suppressing the myosin phosphatase in a phosphorylation-dependent manner. The physiologically relevant kinases that phosphorylate CPI-17 remain to be identified. Several previous studies have shown that some agonist-induced CPI-17 phosphorylation in smooth muscle tissues was attenuated by the Rho kinase (ROCK) inhibitor Y-27632, suggesting that ROCK is involved in agonist-induced CPI-17 phosphorylation. However, Y-27632 has recently been found to inhibit protein kinase C (PKC)-, a well-recognized CPI-17 kinase. Thus the role of ROCK in agonist-induced CPI-17 phosphorylation remains uncertain. The present study was designed to address this important issue. We selectively activated the RhoA pathway using inducible adenovirus-mediated expression of a constitutively active mutant RhoA (V14RhoA) in primary cultured rabbit aortic vascular smooth muscle cells (VSMCs). V14RhoA caused expression level-dependent CPI-17 phosphorylation at Thr38 as well as myosin phosphatase phosphorylation at Thr853. Importantly, we have shown that V14RhoA-induced CPI-17 phosphorylation was not affected by the PKC inhibitor GF109203X but was abolished by Y-27632, suggesting that ROCK but not PKC was involved. Furthermore, we have shown that the contractile agonists thrombin and U-46619 induced CPI-17 phosphorylation in VSMCs. Similarly to V14RhoA-induced CPI-17 phosphorylation, thrombin-induced CPI-17 phosphorylation was not affected by inhibition of PKC with GF109203X, but it was blocked by inhibition of RhoA with adenovirus-mediated expression of exoenzyme C3 as well as by Y-27632. Taken together, our present data provide the first clear evidence indicating that ROCK is responsible for thrombin- and U-46619-induced CPI-17 phosphorylation in primary cultured VSMCs. protein kinase C; signal transduction; adenovirus  相似文献   

13.
Phosphorylation of CPI-17 by Rho-associated kinase (Rho-kinase) and its effect on myosin phosphatase (MP) activity were investigated. CPI-17 was phosphorylated by Rho-kinase to 0.92 mol of P/mol of CPI-17 in vitro. The inhibitory phosphorylation site was Thr(38) (as reported previously) and was identified using a point mutant of CPI-17 and a phosphorylation state-specific antibody. Phosphorylation by Rho-kinase dramatically increased the inhibitory effect of CPI-17 on MP activity. Thus, CPI-17 as a substrate of Rho-kinase could be involved in the Ca(2+) sensitization of smooth muscle contraction as a downstream effector of Rho-kinase.  相似文献   

14.
Reduced colonic motility has been observed in aged rats with a parallel reduction in acetylcholine (ACh)-induced myosin light chain (MLC(20)) phosphorylation. MLC(20) phosphorylation during smooth muscle contraction is maintained by a coordinated signal transduction cascade requiring both PKC-alpha and RhoA. Caveolae are membrane microdomains that permit rapid and efficient coordination of different signal transduction cascades leading to sustained smooth muscle contraction of the colon. Here, we show that normal physiological contraction can be reinstated in aged colonic smooth muscle cells (CSMCs) upon transfection with wild-type caveolin-1 through the activation of both the RhoA/Rho kinase and PKC pathways. Our data demonstrate that impaired contraction in aging is an outcome of altered membrane translocation of PKC-alpha and RhoA with a concomitant reduction in the association of these molecules with the caveolae-specific protein caveolin-1, resulting in a parallel decrease in the myosin phosphatase-targeting subunit (MYPT) and CPI-17 phosphorylation. Decreased MYPT and CPI-17 phosphorylation activates MLC phosphatase activity, resulting in MLC(20) dephosphorylation, which may be responsible for decreased colonic motility in aged rats. Importantly, transfection of CSMCs from aged rats with wild-type yellow fluorescent protein-caveolin-1 cDNA restored translocation of RhoA and PKC-alpha and phosphorylation of MYPT, CPI-17, and MLC(20), thereby restoring the contractile response to levels comparable with young adult rats. Thus, we propose that caveolin-1 gene transfer may represent a promising therapeutic treatment to correct the age-related decline in colonic smooth muscle motility.  相似文献   

15.
Ca(2+)/calmodulin (CaM)-dependent phosphorylation of myosin regulatory light chain (RLC) in smooth muscle by myosin light chain kinase (MLCK) and dephosphorylation by myosin light chain phosphatase (MLCP) are subject to modulatory cascades that influence the sensitivity of RLC phosphorylation and hence contraction to intracellular Ca(2+) concentration ([Ca(2+)](i)). We designed a CaM-sensor MLCK containing smooth muscle MLCK fused to two fluorescent proteins linked by the MLCK CaM-binding sequence to measure kinase activation in vivo and expressed it specifically in mouse smooth muscle. In phasic bladder muscle, there was greater RLC phosphorylation and force relative to MLCK activation and [Ca(2+)](i) with carbachol (CCh) compared with KCl treatment, consistent with agonist-dependent inhibition of MLCP. The dependence of force on MLCK activity was nonlinear such that at higher concentrations of CCh, force increased with no change in the net 20% activation of MLCK. A significant but smaller amount of MLCK activation was found during the sustained contractile phase. MLCP inhibition may occur through RhoA/Rho-kinase and/or PKC with phosphorylation of myosin phosphatase targeting subunit-1 (MYPT1) and PKC-potentiated phosphatase inhibitor (CPI-17), respectively. CCh treatment, but not KCl, resulted in MYPT1 and CPI-17 phosphorylation. Both Y27632 (Rho-kinase inhibitor) and calphostin C (PKC inhibitor) reduced CCh-dependent force, RLC phosphorylation, and phosphorylation of MYPT1 (Thr694) without changing MLCK activation. Calphostin C, but not Y27632, also reduced CCh-induced phosphorylation of CPI-17. CCh concentration responses showed that phosphorylation of CPI-17 was more sensitive than MYPT1. Thus the onset of agonist-induced contraction in phasic smooth muscle results from the rapid and coordinated activation of MLCK with hierarchical inhibition of MLCP by CPI-17 and MYPT1 phosphorylation.  相似文献   

16.
Lukas TJ 《Biophysical journal》2004,87(3):1417-1425
An agonist-initiated Ca(2+) signaling model for calmodulin (CaM) coupled to the phosphorylation of myosin light chains was created using a computer-assisted simulation environment. Calmodulin buffering was introduced as a module for directing sequestered CaM to myosin light chain kinase (MLCK) through Ca(2+)-dependent release from a buffering protein. Using differing simulation conditions, it was discovered that CaM buffering allowed transient production of more Ca(2+)-CaM-MLCK complex, resulting in elevated myosin light chain phosphorylation compared to nonbuffered control. Second messenger signaling also impacts myosin light chain phosphorylation through the regulation of myosin light chain phosphatase (MLCP). A model for MLCP regulation via its regulatory MYPT1 subunit and interaction of the CPI-17 inhibitor protein was assembled that incorporated several protein kinase subsystems including Rho-kinase, protein kinase C (PKC), and constitutive MYPT1 phosphorylation activities. The effects of the different routes of MLCP regulation depend upon the relative concentrations of MLCP compared to CPI-17, and the specific activities of protein kinases such as Rho and PKC. Phosphorylated CPI-17 (CPI-17P) was found to dynamically control activity during agonist stimulation, with the assumption that inhibition by CPI-17P (resulting from PKC activation) is faster than agonist-induced phosphorylation of MYPT1. Simulation results are in accord with literature measurements of MLCP and CPI-17 phosphorylation states during agonist stimulation, validating the predictive capabilities of the system.  相似文献   

17.
It has been demonstrated that CPI-17 provokes an inhibition of myosin light chain phosphatase to increase myosin light chain phosphorylaton and Ca(2+) sensitivity during contraction of vascular smooth muscle. However, expression and agonist-mediated regulation of CPI-17 in bronchial smooth muscle have not been documented. Thus, expression and phosphorylation of CPI-17 mediated by PKC and ROCK were investigated using rat bronchial preparations. Acetylcholine (ACh)-induced contraction and Ca(2+) sensitization were both attenuated by 10(-6) mol Y-27632 /L, a ROCK inhibitor, 10(-6) mol calphostin C/L, a PKC inhibitor, and their combination. A PKC activator, PDBu, induced a Ca(2+) sensitization in alpha-toxin-permeabilized bronchial smooth muscle. In this case, the Ca(2+) sensitizing effect was significantly inhibited by caphostin C but not by Y-27632. An immunoblot study demonstrated CPI-17 expression in the rat bronchial smooth muscle. Acetylcholine induced a phosphorylation of CPI-17 in a concentration-dependent manner, which was significantly inhibited by Y-27632 and calphostin C. In conclusion, these data suggest that both PKC and ROCK are involved in force development, Ca(2+) sensitization, and CPI-17 phosphorylation induced by ACh stimulation in rat bronchial smooth muscle. As such, RhoA/ROCK, PKC/CPI-17, and RhoA/ROCK/CPI pathways may play important roles in the ACh-induced Ca(2+) sensitization of bronchial smooth muscle contraction.  相似文献   

18.
Smooth muscle contraction is initiated by myosin light chain (MLC) phosphorylation catalyzed by the Ca(2+) dependent MLC kinase. However, many aspects of smooth muscle contraction cannot be accounted for by MLC phosphorylation. One hypothesis that has received experimental support involves the thin filament protein caldesmon. Caldesmon inhibits myosin ATPase activity; phosphorylation of caldesmon relieves this inhibitory effect. The primary candidates for catalysis of caldesmon phosphorylation are the p42/p44 ERK MAP kinases. However, we and others have shown that inhibition of the ERK MAP kinases has no effect on many smooth muscles. The goal of this study was to determine if evidence for a second endogenous caldesmon kinase may be obtained. We used Triton X-100 skinned and intact tissues of the swine carotid artery to address this goal. Caldesmon phosphorylation was evident in resting and Ca(2+) stimulated Triton X-100 skinned fibers. Ca(2+)-dependent caldesmon phosphorylation was partially sensitive to the ERK MAP kinase inhibitor PD98059, whereas all caldesmon phosphorylation was sensitive to the general kinase inhibitor, staurosporine. Histamine increased caldesmon phosphorylation levels in intact swine carotid artery, which was sensitive to both PD98059 and staurosporine. Histamine increased ERK MAP kinase activity, which was reversed by PD98059, staurosporine, and EGTA. Histamine-induced contractions were inhibited by staurosporine but not by PD98059. We interpret these results to suggest that although ERK MAP kinases catalyze caldesmon phosphorylation, a second staurosporine sensitive kinase is also important in caldesmon phosphorylation and it is this pathway that may be more important in contractile regulation.  相似文献   

19.
Protein kinase C (PKC) plays an important role in the regulation of uterine artery contractility and its adaptation to pregnancy. The present study tested the hypothesis that PKC differentially regulates alpha(1)-adrenoceptor-mediated contractions of uterine arteries isolated from nonpregnant (NPUA) and near-term pregnant (PUA) sheep. Phenylephrine-induced contractions of NPUA and PUA sheep were determined in the absence or presence of the PKC activator phorbol 12,13-dibutyrate (PDBu). In NPUA sheep, PDBu produced a concentration-dependent potentiation of phenylephrine-induced contractions and shifted the dose-response curve to the left. In contrast, in PUA sheep, PDBu significantly inhibited phenylephrine-induced contractions and decreased their maximum response. Simultaneous measurement of contractions and intracellular free Ca(2+) concentrations ([Ca(2+)](i)) in the same tissues revealed that PDBu inhibited phenylephrine-induced [Ca(2+)](i) and contractions in PUA sheep. In NPUA sheep, PDBu increased phenylephrine-induced contractions without changing [Ca(2+)](i). Western blot analysis showed six PKC isozymes, alpha, beta(I), beta(II), delta, epsilon, and zeta, in uterine arteries, among which beta(I), beta(II), and zeta isozymes were significantly increased in PUA sheep. In contrast, PKC-alpha was decreased in PUA sheep. In addition, analysis of subcellular distribution revealed a significant decrease in the particulate-to-cytosolic ratio of PKC-epsilon in PUA compared with that in NPUA sheep. The results suggest that pregnancy induces a reversal of PKC regulatory role on alpha(1)-adrenoceptor-mediated contractions from a potentiation in NPUA sheep to an inhibition in PUA sheep. The differential expression of PKC isozymes and their subcellular distribution in uterine arteries appears to play an important role in the regulation of Ca(2+) mobilization and Ca(2+) sensitivity in alpha(1)-adrenoceptor-mediated contractions and their adaptation to pregnancy.  相似文献   

20.
The regulatory circuit controlling cellular protein phosphatase-1 (PP1), an abundant group of Ser/Thr phosphatases, involves phosphorylation of PP1-specific inhibitor proteins. Malfunctions of these inhibitor proteins have been linked to a variety of diseases, including cardiovascular disease and cancer. Upon phosphorylation at Thr38, the 17-kDa PP1 inhibitor protein, CPI-17, selectively inhibits a specific form of PP1, myosin light chain phosphatase, which transduces multiple kinase signals into the phosphorylation of myosin II and other proteins. Here, the mechanisms underlying PP1 inhibition and the kinase/PP1 cross-talk mediated by CPI-17 and its related proteins, PHI, KEPI, and GBPI, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号