首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI) and epilepsy. The coupling of neurons by gap junctions (electrical synapses) increases during neuronal injury. In a recent study with the use of in vivo and in vitro models of cortical ischemia in mice, we have demonstrated that the ischemic increase in neuronal gap junction coupling is regulated by glutamate via group II metabotropic glutamate receptors (mGluR). Specifically, we found that activation of group II mGluRs increases background levels of neuronal gap junction coupling and expression of connexin 36 (Cx36; neuronal gap junction protein), whereas inactivation of group II mGluRs prevents the ischemia-mediated increases in the coupling and Cx36 expression. Using the analysis of neuronal death, we also established that inactivation of group II mGluRs or genetic elimination of Cx36 both dramatically reduce ischemic neuronal death in vitro and in vivo. Similar results were obtained using in vitro models of TBI and epilepsy. Our study demonstrated that mechanisms for the injury-mediated increase in neuronal gap junction coupling are part of the mechanisms for glutamate-dependent neuronal death.  相似文献   

2.
In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI) and epilepsy. The coupling of neurons by gap junctions (electrical synapses) increases during neuronal injury. In a recent study with the use of in vivo and in vitro models of cortical ischemia in mice, we have demonstrated that the ischemic increase in neuronal gap junction coupling is regulated by glutamate via group II metabotropic glutamate receptors (mGluR). Specifically, we found that activation of group II mGluRs increases background levels of neuronal gap junction coupling and expression of connexin 36 (Cx36; neuronal gap junction protein), whereas inactivation of group II mGluRs prevents the ischemia-mediated increases in the coupling and Cx36 expression. Using the analysis of neuronal death, we also established that inactivation of group II mGluRs or genetic elimination of Cx36 both dramatically reduce ischemic neuronal death in vitro and in vivo. Similar results were obtained using in vitro models of TBI and epilepsy. Our study demonstrated that mechanisms for the injury-mediated increase in neuronal gap junction coupling are part of the mechanisms for glutamate-dependent neuronal death.  相似文献   

3.
Glutamate is involved in cerebral ischemic injury, but its role has not been completely clarified and studies are required to understand how to minimize its detrimental effects, contemporarily boosting the positive ones. In fact, glutamate is not only a neurotransmitter, but primarily a key metabolite for brain bioenergetics. Thus, we investigated the relationships between glutamate and brain energy metabolism in an in vivo model of complete cerebral ischemia of 15 min and during post‐ischemic recovery after 1, 24, 48, 72, and 96 h in 1‐year‐old adult and 2‐year‐old aged rats. The maximum rates (V max) of glutamate dehydrogenase (GlDH ), glutamate‐oxaloacetate transaminase, and glutamate‐pyruvate transaminase were assayed in somatic mitochondria (FM ) and in intra‐synaptic ‘Light’ mitochondria and intra‐synaptic ‘Heavy’ mitochondria ones purified from cerebral cortex, distinguishing post‐ and pre‐synaptic compartments. During ischemia, none of the enzymes were modified in adult animals. In aged ones, glutamate‐oxaloacetate transaminase was increased in FM and GlDH in intra‐synaptic ‘Heavy’ mitochondria, stimulating glutamate catabolism. During post‐ischemic recovery, FM did not show modifications at both ages while, in intra‐synaptic mitochondria of adult animals, glutamate catabolism was increased after 1 h of recirculation and decreased after 48 and 72 h, whereas it remained decreased up to 96 h in aged rats. These results, with those previously published about Krebs’ cycle and Electron Transport Chain (Villa et al ., [2013] Neurochem. Int . 63, 765–781), demonstrate that: (i) V max of energy‐linked enzymes are different in the various cerebral mitochondria, which (ii) respond differently to ischemia and post‐ischemic recovery, also (iii) with respect to aging.

  相似文献   

4.
The effects of raised brain lactate levels on neuronal survival following hypoxia or ischemia is still a source of controversy among basic and clinical scientists. We have sought to address this controversy by studying the effects of glucose and lactate on neuronal survival in acute and cultured hippocampal slices. Following a 1-h hypoxic episode, neuronal survival in cultured hippocampal slices was significantly higher if glucose was present in the medium compared with lactate. However, when the energy substrate during the hypoxic period was glucose and then switched to lactate during the normoxic recovery period, the level of cell damage in the CA1 region of organotypic cultures was significantly improved from 64.3 +/- 2.1 to 74.6 +/- 2.1% compared with cultures receiving glucose during and after hypoxia. Extracellular field potentials recorded from the CA1 region of acute slices were abolished during oxygen deprivation for 20 min, but recovered almost fully to baseline levels with either glucose (82.6 +/- 10.0%) or lactate present in the reperfusion medium (108.1 +/- 8.3%). These results suggest that lactate alone cannot support neuronal survival during oxygen deprivation, but a combination of glucose followed by lactate provides for better neuroprotection than either substrate alone.  相似文献   

5.
Quantitative colocalization analysis is an advanced digital imaging tool to characterize the spatial expression of molecules of interest in immunofluorescence images obtained using confocal microscopes. It began from simple pixel counting and, with introduction of specialized algorithms, transformed into a powerful image analyzing technique capable of identifying the exact locations of various molecules in tissues and cells and describing their subtle changes in dynamics. Applications of quantitative colocalization in the field of neuroscience proved to be particularly informative by helping to obtain observations not otherwise achievable using other techniques. In this article, we review the background and applicability of quantitative colocalization with special focus on neuroscience research.  相似文献   

6.
Keyword index     
《Journal of neurochemistry》2003,87(6):1579-1582
  相似文献   

7.
Keyword index     
《Journal of neurochemistry》2002,83(6):1543-1546
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号