首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The effect of dichlororibofuranosylbenzimidazole (DiCl-RB), an inhibitor of hnRNA synthesis and casein kinase-2 activity, on ornithine decarboxylase (ODC) was investigated in a difluoromethylornithine (DFMO) resistant, ODC overproducing cell line. 2. In cells growing in the absence of DFMO, DiCl-RB provoked a marked, but transient increase in ODC activity and immunoreactive ODC content. 3. The ODC response to DiCl-RB was prevented by cycloheximide and was not due to stabilization of the enzyme. 4. The dibromo derivative analogue (DiBr-RB) exerted similar effects on ODC, but was effective at lower concentrations. 5. The halogenated ribofuranosylbenzimidazoles were ineffective in cells growing in the presence of DFMO and containing higher levels of ODC protein.  相似文献   

2.
The present studies were undertaken to determine the importance of the polyamine biosynthetic pathway in cellular proliferation and hormone-regulated progesterone receptor synthesis in estrogen receptor-containing breast cancer cells. Treatment of MCF-7 cells with difluoromethylornithine (DFMO), the irreversible inhibitor of the enzyme ornithine decarboxylase (ODC), prevented estradiol-induced cell proliferation in a dose-dependent fashion. DFMO inhibition of estradiol-induced cell proliferation was completely recoverable by the addition of exogenous putrescine while putrescine alone did not stimulate proliferation of control cells. ODC activity was 4-fold greater in estrogen-treated cells and DFMO (5 mM) fully inhibited ODC activity. DFMO was able to suppress only slightly further the proliferation of antiestrogen (tamoxifen) treated cells and putrescine was able to recover this DFMO inhibition. In contrast to the suppressive effect of DFMO on cell proliferation, DFMO had no effect on the ability of estrogen to stimulate increased (4-fold elevated) levels of progesterone receptor. Hence, while ODC activity appears important for estrogen-induced cell proliferation, inhibition of the activity of this enzyme has no effect on the ability of estradiol to increase cellular progesterone receptor content.  相似文献   

3.
4.
Prolactin has more than 300 separate functions including affecting mammary growth, differentiation, secretion and anti-apoptosis. In the previous studies, prolactin induced Bcl-2 expression to prevent apoptosis and also provoked the activity of ornithine decarboxylase (ODC). Our previous data showed that ODC overexpression upregulates Bcl-2 and prevents tumor necrosis factor alpha (TNF-α)- and methotrexate (MTX)-induced apoptosis. Here, we further investigate whether prolactin prevents MTX-induced apoptosis through inducing ODC activity and the relationship between ODC and Bcl-2 upon prolactin stimulation. Prolactin prevented MTX-induced apoptosis in a dose-dependent manner in HL-60 cells. Following prolactin stimulation, ODC enzyme activity also shows an increase in a dose-dependent manner, expressing its maximum level at 3 h, and rapidly declining thereafter. Prolactin-induced ODC activity is completely blocked by a protein kinase C delta (PKCδ) inhibitor, rottlerin. However, there are no changes in the expressions of ODC mRNA and protein level after prolactin stimulus. It indicates that prolactin may induce ODC activity through the PCKδ pathway. Besides, Bcl-2 expresses within 1 h of prolactin treatment and this initiating effect of prolactin is not inhibited by alpha-difluoromethylornithine (DFMO). However, Bcl-2 is further enhanced following prolactin stimulation for 4 h and this enhancement is blocked by DFMO. Bcl-2 has no effect on ODC activity and protein levels, but ODC upregulates Bcl-2, which is inhibited by DFMO. Overall, there are two different forms of prolactin effect, it induces Bcl-2 primarily, and following this it stimulates ODC activity. Consequently induced ODC activity further enhances the expression of Bcl-2. The anti-apoptotic effect of prolactin is diminished by DFMO and recovered by putrescine. Obviously, ODC activity is one basis for the anti-apoptotic mechanisms of prolactin. A Bcl-2 inhibitor, HA14-1, together with DFMO, completely blocks the anti-apoptotic effects of prolactin. These results suggest that increasing ODC activity is another way of prolactin preventing MTX-induced apoptosis and that this induction of ODC activity enhances the expression of Bcl-2 strongly enough to bring about the anti-apoptotic function.  相似文献   

5.
alpha-Difluoromethylornithine (DFMO) directly infused into a brain-lateral ventricle (12.5, 25 and 50 micrograms/rat) dose- and time-dependently inhibited brain ODC activity. While having no influence per se on pain threshold, DFMO significantly inhibited the analgesic activity of morphine (15 mg/kg i.p.), this effect being obtained when brain ODC activity was reduced by at least 80%. On the other hand, DFMO had no influence on number and affinity of brain opiate binding sites. Morphine per se neither modified whole brain ODC activity nor significantly affected the ODC inhibitory effect of DFMO. In more discrete brain areas (midbrain, brainstem) morphine actually increased ODC activity. The present results indicate that brain ODC/polyamines system may play a role in the analgesic activity of opioids, probably at a post-receptorial level or through a non-opiate receptor-linked mechanism.  相似文献   

6.
Summary Ornithine decarboxylase (ODC) activities were significantly higher in proliferative endometrium during the estrogen-dominated follicular phase of the menstrual cycle than in secretory endometrium after the formation of the progesterone-secreting corpus luteum. The enzymatic activity was increased about fivefold by renewal of the medium during incubations of endometrial fragments or isolated endometrial glands. Endometrial adenocarcinoma cells (HEC-1, HEG-50), both in monolayers and suspension, also responded to medium renewal by increasing ODC activity about 10-fold after 4 h, with subsequent reduction to control levels after 7 h. These effects were blocked by actinomycin D and cycloheximide. Endometrial stromal cells exhibited highly variable ODC activities at different passages. Difluoromethylornithine (DFMO) and sodium molybdate had marked antiproliferative effects in HEC-50 cultures, reducing cell numbers to 10 to 20% of control values 11 d after plating and inhibiting ODC activity by approximately 80% on Day 7. The antiproliferative effect of DFMO, but not that of molybdate, was reversed by 10 μM putrescine, the product of ODC activity. In contrast to DFMO, molybdate had no effect on ODC activity of cell homogenates. Molybdate did not elicit antizyme formation in HEC-50 cells under conditions in which putrescine did. These results indicate that ODC activity, present in both epithelial and stromal cells, as shown analytically and also by autoradiography after labeling with [3H]DFMO, may be related to cell proliferation in vivo and that proliferation of human endometrial cancer cells in culture can be arrested by DFMO and by molybdate. This investigation was supported by PHS grant HD 07197, awarded by the National Institute of Child Health and Human Development and PHS grant CA 15648, awarded by the National Cancer Institute.  相似文献   

7.
Murine embryonal carcinoma F9 cells can be induced to differentiate by 2-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC). The differentiated phenotype is similar to that of retinoic acid (RA)-treated F9 cells. In contrast to F9 cells the differentiated cells secrete plasminogen activator and express keratin intermediate filaments. Both DFMO and RA reduce ornithine decarboxylase activity, polyamine levels and inhibit cell proliferation of F9 cells. These compounds also reduce ODC, polyamine levels and proliferation of mouse BALB/c 3T6 fibroblasts. RA inhibits the induction of ODC by insulin, serum and to a lesser extent that of epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA). The action of DFMO and RA can be distinguished by their response to putrescine. The induction of differentiation and the inhibition of cell proliferation by DFMO can be totally abolished upon the addition of putrescine, whereas the actions of RA are not affected at all. These results suggest that the inhibition of ODC and reduction of polyamines are not causal in the induction of differentiation and the inhibition of proliferation by RA.  相似文献   

8.
The multiplication of A. culbertsoni in the peptone medium was not inhibited by 10-20 mM concentration of alpha-difluoromethyl ornithine (DMFO) while a partial and transient inhibition of cell multiplication was observed by 10-20 mM DFMO in proteose peptone, yeast extract, glucose (PYG) medium. Ornithine decarboxylase (ODC) activity in the cells and cell free extracts was strongly inhibited by DFMO, excluding enzyme refractoriness and impermeability of cells for DFMO as the possible causes of DFMO resistance. The presence of polyamines in the peptone and PYG media as well as uptake of polyamines by the amoebae has been demonstrated. The growth and multiplication of A. culbertsoni in chemically defined medium was not affected by 1-5 mM DFMO while 10-20 mM DMFO yielded partial inhibition. A lowering of diaminopropane levels and enhancement of spermidine levels was observed in DFMO inhibited cells and level of ODC was drastically reduced in the inhibited cultures. Uptake of polyamines from the growth media may partly account for DFMO resistance of A. culbertsoni. Alternative mechanisms for DFMO resistance are indicated.  相似文献   

9.
Abstract: General anesthetic agents often affect the biochemical and physiologic changes triggered by cerebral ischemia. This study examined the regional activities of ornithine decarboxylase (ODC) in gerbils subjected to 5 min of bilateral carotid occlusion without anesthesia. At 2, 4, and 6 h of reperfusion, significant ODC activity was observed in both the cortex and the hippocampus. Pretreatment with α-difluoromethylornithine (DFMO) significantly blocked the ODC activity at 2, 4, and 6 h. Significant edema formation was found at 2, 4, and 6 h. At 2 h, edema formation was unaffected by administration of DFMO. However, DFMO treatment reduced later edema formation at 4 and 6 h. These results demonstrate that ODC activity and edema formation are delayed in gerbils after the induction of transient ischemia even with the removal of anesthetic agents and their potentially protective effects. These findings suggest that ODC activity and its induction of delayed cerebral edema are specific to cerebral ischemia and not to an anesthetic effect. DFMO treatment reduced both the ODC activity and edema formation, indicating a role for polyamines in postischemic edema formation.  相似文献   

10.
The roles of polyamines in intrauterine growth restriction (IUGR) is studied. The DL-alpha-difluoromethyl ornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC) which is a rate limiting enzyme of polyamine synthesis was administrated to pregnant rats so that we obtained rat fetuses with IUGR. The changes of maternal nutrition, damage of the placenta, and the direct effect of DFMO on the fetus were examined in this IUGR model. Administration of DFMO did not induced changes of maternal nutrition except for triglyceride and the fetal metabolic state. But the placental weight, ODC activity, and DNA in the placenta were decreased significantly. The ODC activity in the total placenta decreased to less than 10% of that of the control. Depression of ODC activity in the placenta may be the major cause of IUGR induced by DFMO administration, and polyamines play important roles to carry pregnancy.  相似文献   

11.
The objective of this study was to evaluate induction of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, and subsequent polyamine accumulation in interleukin-2 (IL-2)- and interleukin-3 (IL-3)-dependent growth. The CTLL-20 and FDC-P1 cell lines, which have been shown to be absolutely dependent on IL-2 and IL-3, respectively, were used in these studies. The CTLL-20 and FDC-P1 cells each had different temporal patterns of ODC induction following lymphokine stimulation. ODC levels increased rapidly in the FDC-P1 cells, peaking 4 hr after stimulation with IL-3. In contrast, peak ODC activity in the CTLL-20 cells occurred 18 hr following stimulation with IL-2 and reached eightfold higher levels than those observed in the FDC-P1 cells. Treatment with D,L-alpha-difluoromethylornithine X HCl X H2O (DFMO), a specific irreversible inhibitor of ODC activity, completely abrogated lymphokine-dependent ODC induction in both the CTLL-20 and FDC-P1 cell lines. Similarly, intracellular levels of the polyamines putrescine and spermidine were reduced in both cell lines following DFMO treatment. DFMO treatment reduced both IL-2- and IL-3-dependent proliferation in a dose-dependent manner. However, this inhibition could be reversed by the addition of exogenous putrescine. DFMO treatment had no effect on cell viability. Polyamine-depleted CTLL-20 and FDC-P1 cells showed decreased absorption of IL-2 and IL-3 activity, respectively. However, the addition of exogenous putrescine restored the ability of the cells to absorb the appropriate lymphokine. These data are the first to demonstrate that ODC induction and polyamine biosynthesis are required in lymphokine dependent growth.  相似文献   

12.
Post fertilization growth of tobacco ovary tissues treated with inhibitors of polyamine (PA) biosynthesis was examined in relation to endogenous PA titers and the activities of arginine decarboxylase (ADC, EC 4.1.1.19) and ornithine decarboxylase (ODC, EC 4.1.1.17). DL-alpha-Difluoromethylornithine (DFMO) and DL-alpha-difluoromethylarginine (DFMA), specific, irreversible ("suicide") inhibitors of ODC and ADC in vitro, were used to modulate PA biosynthesis in excised flowers. ODC represented >99% of the total decarboxylase activity in tobacco ovaries. In vivo inhibition of ODC with DFMO resulted in a significant decrease in PA titers, ovary fresh weight and protein content. Simultaneous inhibition of both decarboxylases by DFMO and DFMA produced only a marginally greater depression in growth and PA titers, indicating that ODC activity is rate-limiting for PA biosynthesis in these tissues. Paradoxically, DFMA alone inhibited PA biosynthesis, not as a result of a specific inhibition of ADC, but primarily through the inactivation of ODC. In vivo inhibition of ODC by DFMA appears to result from arginase-mediated hydrolysis of this inhibitor to urea and DFMO, the suicide substrate for ODC. Putrescine conjugates in tobacco appear to function as a storage form of this amine which, upon hydrolysis, may contribute to Put homeostasis during growth.  相似文献   

13.
The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by α-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.  相似文献   

14.
The effects of α-difluoromethylornithine (DFMO) on in vitro ornithine decarboxylase (ODC) activities from three plant pathogenic fungi, Pyrenophora avenae, Pyricularia oryzae and Uromyces viciae-fabae , were studied. DFMO concentrations from 0·01 to 1·0 mmol/l produced no significant effects on ODC activities from the three fungi. However, increasing the DFMO concentration to 5 mmol/l produced a substantial reduction in in vitro ODC activity from Pyre, avenae. The ODC inhibitor, α-monofluoromethylornithine (2 mmol/l), significantly reduced in vitro ODC activity from Pyre. avenae , whereas RR-methyl acetylenic putrescine, an ODC inhibitor based on putrescine, produced no significant effect on the fungal enzyme.  相似文献   

15.
The objective of the present investigation was to evaluate the requirement for increased ornithine decarboxylase (ODC) activity and polyamine biosynthesis in the induction of cytolytic T lymphocytes (CTL). In this regard, we have utilized alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC. DFMO treatment completely abrogated Con A-induced NW T-cell ODC activity. Similarly, DFMO treatment reduced putrescine and spermidine biosynthesis 100 and 87% respectively by the end of a 48-hr incubation period. Polyamine depletion reduced the Con A-mediated polyclonal induction of CTL by 52 and 81% at 24 and 48 hr of culture, respectively. The effect of DFMO on CTL induction could be reversed by the addition of exogenous putrescine. These data indicate that the observed effects of DFMO on CTL induction were mediated through inhibition of polyamine biosynthesis. Therefore, increased ODC activity and polyamine biosynthesis are required for optimal CTL induction. Furthermore, polyamine depletion did not impair IL-2 production; however, IL-2-dependent proliferation was reduced. These data are the first to discriminate between the requirement for polyamines with regard to IL-2 responsiveness, rather than IL-2 production, during a primary T-cell mitogenic response.  相似文献   

16.
Ornithine decarboxylase is a mediator of c-Myc-induced apoptosis.   总被引:21,自引:9,他引:12       下载免费PDF全文
c-Myc plays a central role in the regulation of cell cycle progression, differentiation, and apoptosis. However, the proteins which mediate c-Myc function(s) remain to be determined. Enforced c-myc expression rapidly induces apoptosis in interleukin-3 (IL-3)-dependent 32D.3 murine myeloid cells following IL-3 withdrawal, and this is associated with the constitutive, growth factor-independent expression of ornithine decarboxylase (ODC), a rate-limiting enzyme of polyamine biosynthesis. Here we have examined the role of ODC in c-Myc-induced apoptosis. Enforced expression of ODC, like c-myc, is sufficient to induce accelerated death following IL-3 withdrawal. ODC induced cell death in a dose-dependent fashion, and alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC enzyme activity, effectively blocked ODC-induced cell death. ODC-induced cell death was due to the induction of apoptosis. We also demonstrate that ODC is a mediator of c-Myc-induced apoptosis. 32D.3-derived c-myc clones have augmented levels of ODC enzyme activity, and their rates of death were also a function of their ODC enzyme levels. Importantly, the rates of death of c-myc clones were inhibited by treatment with DFMO. These findings demonstrate that ODC is an important mediator of c-Myc-induced apoptosis and suggest that ODC mediates other c-Myc functions.  相似文献   

17.
The somatomedins are potent stimulators of proliferation and differentiation of cultured myoblasts. In studies on the mechanism(s) of these actions, we have measured the activities of ornithine decarboxylase (ODC), an enzyme associated with rapid cell proliferation, and creatine kinase (CK), a biochemical marker for muscle differentiation, after treatment of L6 myoblast cultures with Multiplication Stimulating Activity (MSA), a member of the somatomedin family of insulinlike growth factors. ODC levels reached a peak 24 hours after MSA addition (before any detectable differentiation of the myoblasts) and then decreased as differentiation commenced and CK activity increased. Addition of alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC, caused a dramatic decrease in differentiation. Measurement of 3H-thymidine incorporation, DNA content, and cell number established that the effect of DFMO on differentiation was not a simple consequence of its antiproliferative actions. Cellular levels of putrescine and spermidine (but not spermine) decreased substantially following addition of DFMO to the cultures. The inhibitory effects of DFMO were abolished upon addition of exogenous polyamines to the medium. However, addition of polyamines in the absence of MSA or DFMO did not mimic the stimulation of differentiation by MSA. We conclude that polyamines play an essential role in the stimulation of L6 myoblast differentiation by somatomedins, but they are not sufficient to effect this stimulation.  相似文献   

18.
Ornithine decarboxylase (ODC) activity of rat tissues was measured by the standard 14CO2 trapping method after frozen storage (-60 or -70 degrees C) of the tissues or their 105,000g supernatants. True ODC activity was determined by two methods: (a) addition of the inhibitors alpha-difluoromethylornithine (DFMO), a specific irreversible inhibitor of ODC, or aminooxyacetate (AOA), an inhibitor that blocks the decarboxylation of ornithine by mitochondrial enzymes; and (b) chromatographic analysis of the reaction products. In the frozen supernatants of liver and spleen, ODC activity changed only slightly after 1 day but increased 29 and 14%, respectively, by 30 days; activity in kidney supernatant decreased 17% after 1 day and remained near that level at 30 days. Kidney and spleen ODC activity was inhibited 90-100% by DFMO, but apparent liver ODC activity was inhibited only 60-75%. In the supernatant prepared from tissue stored frozen for 1 day, apparent ODC activity in liver increased 500% over that activity in the freshly prepared supernatant; at 23 days, apparent activity increased 755% for liver and 121% for kidney. After 23 days, DFMO did not inhibit apparent ODC activity in supernatants from frozen liver and inhibited ODC in frozen kidney by only 49%. With AOA, the ODC activities of the fresh and frozen supernatants were similar, indicating that the large increase in apparent ODC activity in frozen tissue was due to artifacts from the metabolism of ornithine via the mitochondrial pathway. HPLC analysis of the reaction products resulting from the incubation of uniformly labeled [14C]ornithine with the fresh and frozen preparations indicated no increase in putrescine with the frozen preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A transitory increase in ornithine decarboxylase (ODC) activity is shown not to be a prerequisite for the differentiation induced by hexamethylene bisacetamide (HMBA) in murine erythroleukemic (MEL) cells. On the contrary, conditions are described, where inhibition of the ODC activity with alpha-difluoromethyl ornithine (DFMO) stimulated the induced differentiation. Polyamine analysis demonstrated that a reduction in intracellular putrescine and spermidine occurred in MEL cells before commitment to erythrodifferentiation. The presence of DFMO increased the rapidity and the amplitude of these changes. No effect of dexamethasone on these changes in ODC activity or intracellular polyamines was observed.  相似文献   

20.
Targeted overexpression of an ornithine decarboxylase (ODC) transgene to mouse skin (the K6/ODC mouse) significantly enhances susceptibility to carcinogenesis. While in most strain backgrounds the predominant tumor type resulting from initiation-promotion protocols is benign squamous papilloma, K6/ODC mice on a FVB/N background develop malignant squamous cell carcinomas (SCCs) rapidly and in high multiplicity after carcinogen treatment. We have investigated the utility of polyamine-based therapy against SCCs in this model using the ODC inhibitor 2-difluoromethylornithine delivered orally. At a 2% concentration in drinking water, DFMO caused rapid tumor regression, but in most cases, tumors eventually regrew rapidly even in the presence of DFMO. The tumors that regrew were spindle cell carcinomas, an aggressive undifferentiated variant of SCC. At 1% DFMO in the drinking water, tumors also responded rapidly, but tumor regrowth did not occur. The majority of DFMO-treated SCCs were classified as complete responses, and in some cases, apparent tumor cures were achieved. The enzymatic activity of ODC, the target of DFMO, was substantially reduced after treatment with 1% DFMO and the high SCC polyamine levels, especially putrescine, were also significantly lowered. Based on the results of BrdUrd labeling and TUNEL assays, the effect of DFMO on SCC growth was accompanied by a significant reduction in tumor proliferation with no increase in the apoptotic index. These results demonstrate that SCCs, at least in the mouse, are particularly sensitive to polyamine-based therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号