首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-step reconstitution system for the generation of ER cargo exit sites from starting ER-derived low density microsomes (LDMs; 1.17 g/cc) is described. The first step is mediated by the hydrolysis of Mg(2+)ATP and Mg(2+)GTP, leading to the formation of a transitional ER (tER) with the soluble cargo albumin, transferrin, and the ER-to-Golgi recycling membrane proteins alpha(2)p24 and p58 (ERGIC-53, ER-Golgi intermediate compartment protein) enriched therein. Upon further incubation (step two) with cytosol and mixed nucleotides, interconnecting smooth ER tubules within tER transforms into vesicular tubular clusters (VTCs). The cytosolic domain of alpha(2)p24 and cytosolic COPI coatomer affect VTC formation. This is deduced from the effect of antibodies to the COOH-terminal tail of alpha(2)p24, but not of antibodies to the COOH-terminal tail of calnexin on this reconstitution, as well as the demonstrated recruitment of COPI coatomer to VTCs, its augmentation by GTPgammaS, inhibition by Brefeldin A (BFA), or depletion of beta-COP from cytosol. Therefore, the p24 family member, alpha(2)p24, and its cytosolic coat ligand, COPI coatomer, play a role in the de novo formation of VTCs and the generation of ER cargo exit sites.  相似文献   

2.
SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) proteins involved in membrane fusion usually contain a conserved alpha-helix (SNARE motif) that is flanked by a C-terminal transmembrane domain. They can be classified into Q-SNARE and R-SNARE based on the structural property of their motifs. Assembly of four SNARE motifs (Qa, b, c and R) is supposed to trigger membrane fusion. We have previously shown that ER (endoplasmic reticulum)-localized syntaxin 18 (Qa) forms a complex with BNIP1 (Qb), p31/Use1 (Qc), Sec22b (R) and several peripheral membrane proteins. In the present study, we examined the interaction of syntaxin 18 with other SNAREs using pulldown assays and CD spectroscopy. We found that the association of syntaxin 18 with Sec22b induces an increase in alpha-helicity of their SNARE motifs, which results in the formation of high-affinity binding sites for BNIP1 and p31. This R-SNARE-dependent Q-SNARE assembly is quite different from the assembly mechanisms of SNAREs localized in organelles other than the ER. The implication of the mechanism of ER SNARE assembly is discussed in the context of the physiological roles of the syntaxin 18 complex.  相似文献   

3.
The endoplasmic reticulum (ER) consists of subcompartments that have distinct protein constituents, morphological appearances, and functions. To understand the mechanisms that regulate the intricate and dynamic organization of the endoplasmic reticulum, it is important to identify and characterize the molecular machinery involved in the assembly and maintenance of the different subcompartments. Here we report that syntaxin 17 is abundantly expressed in steroidogenic cell types and specifically localizes to smooth membranes of the ER. By immunoprecipitation analyses, syntaxin 17 exists in complexes with a syntaxin regulatory protein, rsly1, and/or two intermediate compartment SNARE proteins, rsec22b and rbet1. Furthermore, we found that syntaxin 17 is anchored to the smooth endoplasmic reticulum through an unusual mechanism, requiring two adjacent hydrophobic domains near its carboxyl terminus. Converging lines of evidence indicate that syntaxin 17 functions in a vesicle-trafficking step to the smooth-surfaced tubular ER membranes that are abundant in steroidogenic cells.  相似文献   

4.
ZW10, a dynamitin-interacting protein associated with kinetochores, is known to participate directly in turning off of the spindle checkpoint. In the present study, we show that ZW10 is located in the endoplasmic reticulum as well as in the cytosol during interphase, and forms a subcomplex with RINT-1 (Rad50-interacting protein) and p31 in a large complex comprising syntaxin 18, an endoplasmic reticulum-localized t-SNARE implicated in membrane trafficking. Like conventional syntaxin-binding proteins, ZW10, RINT-1 and p31 dissociated from syntaxin 18 upon Mg(2+)-ATP treatment in the presence of NSF and alpha-SNAP, whereas the subcomplex was not disassembled. Overexpression, microinjection and knockdown experiments revealed that ZW10 is involved in membrane trafficking between the endoplasmic reticulum and Golgi. The present results disclose an unexpected role for a spindle checkpoint protein, ZW10, during interphase.  相似文献   

5.
Budding yeast Sec16 is a large peripheral endoplasmic reticulum (ER) membrane protein that functions in generating COPII transport vesicles and in clustering COPII components at transitional ER (tER) sites. Sec16 interacts with multiple COPII components. Although the COPII assembly pathway is evolutionarily conserved, Sec16 homologues have not been described in higher eukaryotes. Here, we show that mammalian cells contain two distinct Sec16 homologues: a large protein that we term Sec16L and a smaller protein that we term Sec16S. These proteins localize to tER sites, and an N-terminal region of each protein is necessary and sufficient for tER localization. The Sec16L and Sec16S genes are both expressed in every tissue examined, and both proteins are required in HeLa cells for ER export and for normal tER organization. Sec16L resembles yeast Sec16 in having a C-terminal conserved domain that interacts with the COPII coat protein Sec23, but Sec16S lacks such a C-terminal conserved domain. Immunoprecipitation data indicate that Sec16L and Sec16S are each present at multiple copies in a heteromeric complex. We infer that mammalian cells have preserved and extended the function of Sec16.  相似文献   

6.
The distribution and morphology of the endoplasmic reticulum (ER) in mammalian cells depend on both dynamic and static interactions of ER membrane proteins with microtubules (MTs). Cytoskeleton-linking membrane protein (CLIMP)-63 is exclusively localized in sheet-like ER membranes, typical structures of the rough ER, and plays a pivotal role in the static interaction with MTs. Our previous study showed that the 42-kDa ER-residing form of syntaxin 5 (Syn5L) regulates ER structure through the interactions with both CLIMP-63 and MTs. Here, we extend our previous study and show that the valosin-containing protein/p97-interacting membrane protein (VIMP)/SelS is also a member of the family of proteins that shape the ER by interacting with MTs. Depletion of VIMP causes the spreading of the ER to the cell periphery and affects an MT-dependent process on the ER. Although VIMP can interact with CLIMP-63 and Syn5L, it does not interact with MT-binding ER proteins (such as Reep1) that shape the tubular smooth ER, suggesting that different sets of MT-binding ER proteins are used to organize different ER subdomains.  相似文献   

7.
The endoplasmic reticulum (ER) is a highly dynamic organelle. It is composed of four subcompartments including nuclear envelope (NE), rough ER (rER), smooth ER (sER) and transitional ER (tER). The subcompartments are interconnected, can fragment and dissociate and are able to reassemble again. They coordinate with cell function by way of protein regulators in the surrounding cytosol. The activity of the many associated molecular machines of the ER as well as the fluid nature of the limiting membrane of the ER contribute extensively to the dynamics of the ER. This review examines the properties of the ER that permit its isolation and purification and the physiological conditions that permit reconstitution both in vitro and in vivo in normal and in disease conditions.  相似文献   

8.
The Golgi apparatus forms the heart of the secretory pathway in eukaryotic cells where proteins are modified, processed and sorted. The transport of proteins from the endoplasmic reticulum (ER) to the cis- side of the Golgi complex takes place at specialized ER sub-domains known as transitional ER (tER). We used the Plasmodium falciparum orthologue of Sec13p to analyse tER organization. We show that the distribution of Pf Sec13p is restricted to defined areas of the ER membrane. These foci are juxtaposed to the Golgi apparatus and might represent tER sites. To further analyse cis - to trans -Golgi architecture, we generated a double transfectant parasite line that expresses the Golgi marker Golgi reassembly stacking protein (GRASP) as a green fluorescent protein fusion and the trans- Golgi marker Rab6 as a DsRed fusion protein. Our data demonstrate that Golgi multiplication is closely linked to tER multiplication, and that parasite maturation is accompanied by the spatial separation of the cis- and trans- face of this organelle.  相似文献   

9.
Syntaxin plays a key role in intracellular membrane fusion in eukaryotic cells. The function of syntaxin relies on its proper trafficking to and targeting at the target membrane. The mechanisms underlying the trafficking and targeting of syntaxin to its physiological sites remain poorly understood. Here we have analyzed the trafficking of syntaxin 1A in INS-1 and CHO cells. We have identified the transmembrane domain together with several flanking positive-charged amino acids as the minimal domain required for the membrane delivery. Interestingly, we found that SNARE motif-exposed syntaxin 1A mutants were retained in endoplasmic reticulum (ER) and failed to transport to the cell surface in the absence of SNAP-25, suggesting that the exposure of the SNARE motif causes ER retention and complexation with SNAP-25 helps the ER escape. Finally, our data propose two key roles for the H(abc) domain: to protect nonspecific interaction by masking the SNARE motif and to participate in the clustering of syntaxin 1A to the fusion sites in the plasma membrane.  相似文献   

10.
F Lévy  R Gabathuler  R Larsson  S Kvist 《Cell》1991,67(2):265-274
We have translated the HLA-B27 heavy chain in vitro and studied its assembly with beta 2-microglobulin and peptide in microsomes from human cells. The assembly process requires ATP. However, the translocation of peptide across the endoplasmic reticulum (ER) membrane does not require ATP, and binding of biotinylated peptide to BiP, an ER luminal protein, occurs after ATP depletion. Proteinase K treatment of the microsomes does not block peptide translocation. Thus, ATP is required in the lumen of the ER for efficient assembly to occur. Microsomes prepared from Raji and T1 cells show similar levels of assembly, whereas assembly in T2 microsomes is 10-fold lower. This difference remains after peptide stimulation of assembly. The inefficient assembly in T2 microsomes is not due to impaired peptide translocation across the ER membrane, as no difference was found compared with microsomes from T1 cells. Instead, the defect seems to reside in the lumen of the ER.  相似文献   

11.
SNAP receptor (SNARE) complexes bridge opposing membranes to promote membrane fusion within the secretory and endosomal pathways. Because only the exocytic SNARE complexes have been characterized in detail, the structural features shared by SNARE complexes from different fusion steps are not known. We now describe the subunit structure, assembly, and regulation of a quaternary SNARE complex, which appears to mediate an early step in endoplasmic reticulum (ER) to Golgi transport. Purified recombinant syntaxin 5, membrin, and rbet1, three Q-SNAREs, assemble cooperatively to create a high affinity binding site for sec22b, an R-SNARE. The syntaxin 5 amino-terminal domain potently inhibits SNARE complex assembly. The ER/Golgi quaternary complex is remarkably similar to the synaptic complex, suggesting that a common pattern is followed at all transport steps, where three Q-helices assemble to form a high affinity binding site for a fourth R-helix on an opposing membrane. Interestingly, although sec22b binds to the combination of syntaxin 5, membrin, and rbet1, it can only bind if it is present while the others assemble; sec22b cannot bind to a pre-assembled ternary complex of syntaxin 5, membrin, and rbet1. Finally, we demonstrate that the quaternary complex containing sec22b is not an in vitro entity only, but is a bona fide species in living cells.  相似文献   

12.
A member of the family of ATPases associated with diverse cellular activities, called p97 in mammals and Cdc48 in yeast, associates with the cofactor Ufd1-Npl4 to move polyubiquitinated polypeptides from the endoplasmic reticulum (ER) membrane into the cytosol for their subsequent degradation by the proteasome. Here, we have studied the mechanism by which the p97-Ufd1-Npl4 complex functions in this retrotranslocation pathway. Substrate binding occurs when the first ATPase domain of p97 (D1 domain) is in its nucleotide-bound state, an interaction that also requires an association of p97 with the membrane through its NH2-terminal domain. The two ATPase domains (D1 and D2) of p97 appear to alternate in ATP hydrolysis, which is essential for the movement of polypeptides from the ER membrane into the cytosol. The ATPase itself can interact with nonmodified polypeptide substrates as they emerge from the ER membrane. Polyubiquitin chains linked by lysine 48 are recognized in a synergistic manner by both p97 and an evolutionarily conserved ubiquitin-binding site at the NH2 terminus of Ufd1. We propose a dual recognition model in which the ATPase complex binds both a nonmodified segment of the substrate and the attached polyubiquitin chain; polyubiquitin binding may activate the ATPase p97 to pull the polypeptide substrate out of the membrane.  相似文献   

13.
Wild-type and chimeric constructs comprising rabbit sarcoplasmic reticulum (SR) Ca(2+)-ATPase and the N-terminal cytoplasmic portion of yeast plasma membrane H(+)-ATPase were expressed in yeast under control of a heat-shock regulated promoter. The wild-type ATPase was found predominantly in endoplasmic reticulum (ER) membranes. Addition of the first 88 residues of H(+)-ATPase to the Ca(2+)-ATPase N-terminal end promoted a marked shift in the localization of chimeric H(+)/Ca(2+)-ATPase which accumulated in a light membrane fraction associated with yeast smooth ER. Furthermore, there was a three-fold increase in the overall level of expression of chimeric H(+)/Ca(2+)-ATPase. Similar results were obtained for a chimeric Ca(2+)-ATPase containing a hexahistidine sequence added to its N-terminal end. Both H(+)/Ca(2+)-ATPase and 6xHis-Ca(2+)-ATPase were functional as demonstrated by their ability to form a phosphorylated intermediate and undergo fast turnover. Conversely, a replacement chimera in which the N-terminal end of SR Ca(2+)-ATPase was replaced by the corresponding segment of H(+)-ATPase was not stably expressed in yeast membranes. These results indicate that the N-terminal segment of Ca(2+)-ATPase plays an important role in enzyme assembly and contains structural determinants necessary for ER retention of the ATPase.  相似文献   

14.
During membrane traffic, transport carriers are first tethered to the target membrane prior to undergoing fusion. Mechanisms exist to connect tethering with fusion, but in most cases, the details remain poorly understood. GM130 is a member of the golgin family of coiled-coil proteins tat is involved in membrane tethering at the endoplasmic reticulum (ER) to Golgi intermediate compartment and cis-Golgi. Here, we demonstrate that GM130 interacts with syntaxin 5, a t-SNARE also localized to the early secretory pathway. Binding to syntaxin 5 is specific, direct, and mediated by the membrane-proximal region of GM130. Interestingly, interaction with syntaxin 5 is inhibited by the binding of the vesicle docking protein p115 to a distal binding site in GM130. The interaction between GM130 and the small GTPase Rab1 is also inhibited by p115 binding. Our findings suggest a mechanism for coupling membrane tethering and fusion at the ER to Golgi intermediate compartment and cis-Golgi, with GM130 playing a central role in linking these processes. Consistent with this hypothesis, we find that depletion of GM130 by RNA interference slows the rate of ER to Golgi trafficking in vivo. The interactions of GM130 with syntaxin 5 and Rab1 are also regulated by mitotic phosphorylation, which is likely to contribute to the inhibition of ER to Golgi trafficking that occurs when mammalian cells enter mitosis.  相似文献   

15.
Properly folded proteins destined for secretion exit through a specific subdomain of the endoplasmic reticulum (ER) known as transitional ER (tER) sites or ER exit sites (ERES). While such proteins in filamentous fungi localize at the hyphal tips overlapping the Spitzenk?rper, the distribution of misfolded proteins remains unknown. In the present study, we analyzed the distribution of mutant protein as well as ER and tER sites visualized by expression of AoClxA and AoSec13 fused with fluorescent protein, respectively, in the filamentous fungus Aspergillus oryzae. Discrete tER subdomains were visualized as the punctate dots of AoSec13 overlapping or associated with AoClxA distribution. Both ER and tER sites were concentrated near hyphal tips and formed apical gradients. Interestingly, while the expression of wild-type α-amylase fusion protein (AmyB-mDsRed) showed its localization coinciding with the Spitzenk?rper, a disulfide bond-deletion in AmyB causing its misfolding resulted in its accumulation in the subapical and basal ER, creating a reciprocal gradient to the tER sites. Furthermore, the reciprocal gradient enabled a clear distinction between the tER sites and the mutant AmyB accumulation sites near the apex. Based on these findings, we conclude that A. oryzae accumulates aberrant proteins toward basal hyphae while maintaining polarized tER sites for secretion of properly folded proteins at the hyphal tip.  相似文献   

16.
The submicrosomal site for the conversion of prothrombin precursor to prothrombin in rat lever has been investigated by subcellular fractionation techniques.Prothrombin precursor activity could be detected in the luminal as well as the membrane fraction of the rough microsomes. The corresponding fractions from smooth microsomes did not exhibit any activity. After warfarin treatment of the rats, the concentration of prothrombin precursor in rough microsomes increased rapidly from approx. 2 to 6–8 h, when a plateau was reached. In smooth microsomes, prothrombin precursor activity appeared 1 h after injection of warfarin, and increased to a plateau reached after about 4 h. The total activity of prothrombin precursor at the plateau obtained after warfarin treatment was 4–5 times higher in the rough luminal fraction than in the corresponding smooth fraction.The vitamin K-dependent carboxylase activity was localized to the rough microsomes. The enzyme system was associated with the membrane, mainly at the luminal side, whereas the substrate appeared to be localized in both the luminal and membrane fraction.The results indicate that the conversion of prothrombin precursor to biologically active prothrombin occurs at a late stage in the rough endoplasmic reticulum or at a transition between rough and smooth endoplasmic reticulum.  相似文献   

17.
The ultimate goal of cytokinesis is to establish a membrane barrier between daughter cells. The fission yeast Schizosaccharomyces pombe utilizes an actomyosin-based division ring that is thought to provide physical force for the plasma membrane invagination. Ring constriction occurs concomitantly with the assembly of a division septum that is eventually cleaved. Membrane trafficking events such as targeting of secretory vesicles to the division site require a functional actomyosin ring suggesting that it serves as a spatial landmark. However, the extent of polarization of the secretion apparatus to the division site is presently unknown. We performed a survey of dynamics of several fluorophore-tagged proteins that served as markers for various compartments of the secretory pathway. These included markers for the endoplasmic reticulum, the COPII sites, and the early and late Golgi. The secretion machinery exhibited a marked polarization to the division site. Specifically, we observed an enrichment of the transitional endoplasmic reticulum (tER) accompanied by Golgi cisternae biogenesis. These processes required actomyosin ring assembly and the function of the EFC-domain protein Cdc15p. Cdc15p overexpression was sufficient to induce tER polarization in interphase. Thus, fission yeast polarizes its entire secretory machinery to the cell division site by utilizing molecular cues provided by the actomyosin ring.  相似文献   

18.
In all cells examined, specific endoplasmic reticulum (ER) membrane arrays are induced in response to increased levels of the ER membrane protein 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase. In yeast, expression of Hmg1p, one of two yeast HMG-CoA reductase isozymes, induces assembly of nuclear-associated ER stacks called karmellae. Understanding the features of HMG-CoA reductase that signal karmellae biogenesis would provide useful insights into the regulation of membrane biogenesis. The HMG-CoA reductase protein consists of two domains, a multitopic membrane domain and a cytosolic catalytic domain. Previous studies had indicated that the HMG-CoA reductase membrane domain was exclusively responsible for generation of ER membrane proliferations. Surprisingly, we discovered that this conclusion was incorrect: sequences at the carboxyl terminus of HMG-CoA reductase can profoundly affect karmellae biogenesis. Specifically, truncations of Hmg1p that removed or shortened the carboxyl terminus were unable to induce karmellae assembly. This result indicated that the membrane domain of Hmg1p was not sufficient to signal for karmellae assembly. Using beta-galactosidase fusions, we demonstrated that the carboxyl terminus was unlikely to simply serve as an oligomerization domain. Our working hypothesis is that a truncated or misfolded cytosolic domain prevents proper signaling for karmellae by interfering with the required tertiary structure of the membrane domain.  相似文献   

19.
We identified a human cDNA sequence encoding a polypeptide of 760 amino acids that shares 53% homology and 25.6% identity with the yeast DnaJ-like endoplasmic reticulum (ER) translocon component Sec63p. Three epitope-specific antisera revealed a protein of an apparent molecular mass of 83 kDa, both in human cell extracts and in dog pancreatic microsomes. Biochemical analyses show that it is an integral membrane protein of the rough ER, which has the DnaJ domain located in the ER lumen. The novel Sec63 protein could thus represent a key component of the mammalian ER protein translocation machinery.  相似文献   

20.
In mammalian cells, the Golgi apparatus and endoplasmic reticulum have typical structures during interphase: stacked cisternae located adjacent to the nucleus and a network of interconnected tubules throughout the cytoplasm, respectively. At mitosis their architectures disappear and are reassembled in daughter cells. p97, an AAA-ATPase, mediates membrane fusion and is required for reassembly of these organelles. In the p97-mediated membrane fusion, p47 was identified as an essential cofactor, through which p97 binds to a SNARE, syntaxin5. A second essential cofactor, VCIP135, was identified as a p97/p47/syntaxin5-interacting protein. Several lines of recent evidence suggest that ubiquitination may be implicated in the p97/p47 pathway; p47 binds to monoubiquitinated proteins and VCIP135 shows a deubiquitinating activity in vitro. For the cell-cycle regulation of the p97/p47 pathway, it has been reported that the localization and phosphorylation-dephosphorylation of p47 are crucial. In this review, we describe the components involved in the p97-mediated membrane fusion and discuss the regulation of the fusion pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号