首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Synbranchus marmoratus, is a protogynic diandric species in which two types of males, primary and secondary, are found. In both types, the germinal compartment in the testes is of the unrestricted lobular type, but in secondary (sex reversed females) males the lobules develop within the former ovarian lamellae. In the present study, the germinal compartment was examined in both types of males using light microscopy as well as scanning and transmission electron microscopy. Germinal compartment is limited by a basement membrane and contains Sertoli and germ cells. During maturation, processes of Sertoli cells form the borders of spermatocysts containing isogenic germ cells. Characteristically, type A and type B spermatogonia have a single nucleolus and grouped mitochondria associated with dense bodies or nuage. Type B spermatogonia, spermatocytes and spermatids are joined by cytoplasmatic bridges and are confined within spermatocysts. Secondary spermatocytes are difficult to find, indicating that this stage is of short duration. Biflagellated spermatozoa have a rounded head, no acrosome, and possess a midpiece consisting of two basal bodies, each of which produces a flagellum with a typical 9+2 microtubular composition. No associations occur between sperm and Sertoli cells. There were no differences between spermatogenesis in primary and secondary males in this protogynic, diandric fish.  相似文献   

3.
Endometrium is a dynamic tissue that responds on a cyclic basis to circulating levels of the ovarian-derived steroid hormones, estradiol and progesterone. Functional genomics has enabled a global approach to understanding gene regulation in whole endometrial tissue in the setting of a changing hormonal milieu. The proliferative phase of the cycle, under the influence of estradiol, has a preponderance of genes involved in DNA synthesis and cell cycle regulation. Interestingly, genes encoding ion channels and cell adhesion, as well as angiogenic factors, are also highly regulated in this phase of the cycle. After the LH surge, different gene expression profiles are uniquely observed in the early secretory, mid-secretory (window of implantation), and late secretory phases. The early secretory phase is notable for up-regulation of multiple genes and gene families involved in cellular metabolism, steroid hormone metabolism, as well as some secreted glycoproteins. The mid-secretory phase is characterized by multiple biological processes, including up-regulation of genes encoding secreted glycoproteins, immune response genes with a focus on innate immunity, and genes involved in detoxification mechanisms. In the late secretory phase, as the tissue prepares for desquamation, there is a marked up-regulation of an inflammatory response, along with matrix degrading enzymes, and genes involved in hemostasis, among others. This monograph reviews hormonal regulation of gene expression in this tissue and the molecular events occurring therein throughout the cycle derived from functional genomics analysis. It also highlights challenges encountered in using human endometrial tissue in translational research in this context.  相似文献   

4.
5.
The uterine endometrium of menstruating primates (rhesus monkey, human) consists of a germinal basalis that regenerates a transient functionalis during each menstrual cycle. The endometrium is further subdivided into 4 zones that differ histologically and in epithelial mitotic rate along the longitudinal axes of the uterine glands and microvasculature (Bartelmez et al: Contrib. Embryol. Carnegie Inst., 34:99-146, 1951; Bartelmez: Am. J. Obstet. Gynecol., 74:931-955, 1957; Padykula et al.: Biol. Reprod., 32:1103-1118, 1118, 1984; Biol. Reprod., in press, 1988). The zones are defined as follows: functionalis I, luminal epithelium; functionalis II (upper straight gland segments); basalis III (middle gland segments), and basalis IV (bottoms of the glands). The surrounding stroma and microvasculature also differ zonally. Ultrastructural epithelial differences are evident among the 4 zones during 3 distinct functional states during natural menstrual cycles and after ovariectomy: 1) basal level after ovariectomy and 2) estrogen dominance and 3) progesterone dominance. Zonal structural differences persist at a minimal level of differentiation after ovariectomy and thus zonation is an inherent property. During estrogen dominance, distinctive ultrastructural differences are evident among the 4 zones, such as epithelial cell heterogeneity in functionalis I and homogeneity in functionalis II. Also a distinctive glandular cell type occurs in basalis III and IV that is recognized by a highly irregular cisternal rough endoplasmic reticulum that permeates the cytoplasm. During progesterone dominance, ultrastructural differences exist among the 4 zones except for similarity between the epithelial cells of functionalis II and basalis III. Postovulatory epithelial cells of functionalis I and II and basalis III become postmitotic via progesterone inhibition but intracellular differentiation continues progressively. Postovulatory epithelial mitotic activity in basalis IV escapes progesterone inhibition as the [3H]thymidine labeling index continues to increase from 1 to 12% during the menstrual cycle (Padykula et al.: Reprod., 30(Suppl.1):92 (Abstr. 123), 1984). This post-ovulatory proliferation coupled with progressive differentiation in basalis IV may represent a stem-progenitor set of cells for postmenstrual endometrial regeneration or alternatively for creation of the maternal placenta.  相似文献   

6.
Flip through The Pictorial Guide to the Living Primates1 and you will notice a striking yet generally underappreciated aspect of primate biology: primates are extremely colorful. Primate skin and pelage coloration were highlighted examples in Darwin's2 original discussions of sexual selection but, surprisingly, the topic has received little research attention since. Here we summarize the patterns of color variation observed across the primate order and examine the selective forces that might drive and maintain this aspect of primate phenotypic diversity. We discuss how primate color patterns might be adaptive for physiological function, crypsis, and communication. We also briefly summarize what is known about the genetic basis of primate pigmentation and argue that understanding the proximate mechanisms of primate coloration will be essential, not only for understanding the evolutionary forces shaping phenotypic variation, but also for clarifying primate taxonomies and conservation priorities.  相似文献   

7.
In vitro studies have shown that keratinocyte growth factor (KGF, also known as FGF-7) is secreted by fibroblasts and is mitogenic specifically for epithelial cells. Therefore, KGF may be an important paracrine mediator of epithelial cell proliferation in vivo. Because stromal cells are thought to influence glandular proliferation in the primate endometrium, we investigated the hormonal regulation and cellular localization of KGF mRNA expression in the rhesus monkey uterus. Tissues were obtained both from naturally cycling monkeys in the follicular and luteal phases of the cycle, and from spayed monkeys that were either untreated or treated with estradiol (E2) alone, E2 followed by progesterone (P), E2 plus P, or E2 plus P plus an antiprogestin (RU 486). Northern blot analysis of total RNA with 32P- labeled probes revealed that the level of KGF mRNA in the endometrium was 70-100-fold greater in the luteal phase or after P treatment than in untreated, E2-treated, or follicular phase animals. Northern analysis also showed that KGF mRNA was present in the myometrium but was unaffected by hormonal state. RU 486 treatment prevented the P- induced elevation of endometrial KGF mRNA. P-dependent elevation of endometrial KGF expression was confirmed by measurement of KGF protein in tissue extracts using a two-site enzyme-linked immunosorbent assay. In situ hybridization with nonradioactive digoxigenin-labeled cDNA probes revealed that the KGF mRNA signal, which was present only in stromal and smooth muscle cells, was substantially increased by P primarily in the stromal cells located in the basalis region. Smooth muscle cells in the myometrium and the walls of the spiral arteries also expressed KGF mRNA, but the degree of this expression did not differ with hormonal state. P treatment led to increased proliferation in the glandular epithelium of the basalis region and to extensive growth of the spiral arteries. We conclude that the P-dependent increase in endometrial KGF resulted from a dual action of P: (a) a P- dependent induction of KGF expression in stromal cells, especially those in the basalis (zones III and IV), and (b) a P-dependent increase in the number of KGF-positive vascular smooth muscle cells caused by the proliferation of the spiral arteries. KGF is one of the first examples in primates of a P-induced, stromally derived growth factor that might function as a progestomedin.  相似文献   

8.
The hydrolysis of 1,4,5,6-tetrahydro-6-oxonicotinate to 2-formylglutarate is a central step in the catabolism of nicotinate in several Clostridia and Proteobacteria. This reaction is catalyzed by the novel enzyme enamidase, a new member of the amidohydrolase superfamily as indicated by its unique reaction, sequence relationship, and the stoichiometric binding of iron and zinc. A hallmark of enamidase is its capability to catalyze a two-step reaction: the initial decyclization of 1,4,5,6-tetrahydro-6-oxonicotinate leading to 2-(enamine)glutarate followed by an additional hydrolysis step yielding (S)-2-formylglutarate. Here, we present the crystal structure of enamidase from Eubacterium barkeri at 1.9 Å resolution, providing a structural basis for catalysis and suggesting a mechanism for its exceptional activity and enantioselectivity. The enzyme forms a 222-symmetric tetramer built up by a dimer of dimers. Each enamidase monomer consists of a composite β-sandwich domain and an (α/β)8-TIM-barrel domain harboring the active site. With its catalytic binuclear metal center comprising both zinc and iron ions, enamidase represents a special case of subtype II amidohydrolases.  相似文献   

9.
Summary In this paper we present evidence for the presence of actin-related junctions between neighboring Sertoli cells and between Sertoli cells and spermatids in the testis of the guppy (Poecilia reticulata). In the guppy, spermatogenesis occurs in spermatocysts that are lined by a simple squamous to cuboidal epithelium formed of Sertoli cells. At a certain stage of differentiation, elongate spermatids occur in Sertoli cell recesses in the apical surface of Sertoli cells. When evaluated by electron microscopy, junctions occur between Sertoli cells and spermatids situated in the recesses. In these regions, obvious linkages occur between the plasma membrane of Sertoli cell recesses and the adjacent spermatids. Moreover, large concentrations of microfilaments occur in the Sertoli cell cytoplasm immediately underlying the crypts. Also, junctional complexes are apparent between neighboring Sertoli cells near the apical surface of the epithelium. These complexes consist of microfilament-related components (probably contributing to both tight and adhesion junctions), which occur closest to the lumen, and intermediate-filament related desmosomes, which occur more basally. In fixed frozen sections of guppy testis, probes for filamentous actin (rhodamine phalloidin) and myosin II (polyclonal antisera raised against human platelet myosin II) react with function regions between neighboring Sertoli cells and between Sertoli cells and spermatids. We conclude that actin-related junctions occur at both these sites and that the actin networks have contractile properties because they contain myosin II.  相似文献   

10.
11.
The phagosome: compartment with a license to kill   总被引:1,自引:0,他引:1  
Phagosomes are fascinating subcellular structures. After all, there are only a few compartments that are born before our very eyes and whose development we can follow in a light microscope until their contents disintegrate and are completely absorbed. Yet, some phagosomes are taken advantage of by pathogenic microorganisms, which change their fate. Research into phagosome biogenesis has flourished in recent years - the purpose of this review is to give a glimpse of where this research stands, with emphasis on the cell biology of macrophage phagosomes, on new model organisms for the study of phagosome biogenesis and on intracellular pathogens and their interference with normal phagosome function.  相似文献   

12.
13.
Csala M  Bánhegyi G  Benedetti A 《FEBS letters》2006,580(9):2160-2165
Several biochemical reactions and processes of cell biology are compartmentalized in the endoplasmic reticulum (ER). The view that the ER membrane is basically a scaffold for ER proteins, which is permeable to small molecules, is inconsistent with recent findings. The luminal micro-environment is characteristically different from the cytosol; its protein and glutathione thiols are remarkably more oxidized, and it contains a separate pyridine nucleotide pool. The substrate specificity and activity of certain luminal enzymes are dependent on selective transport of possible substrates and co-factors from the cytosol. Abundant biochemical, pharmacological, clinical and genetic data indicate that the barrier function of the lipid bilayer and specific transport activities in the membrane make the ER a separate metabolic compartment.  相似文献   

14.
15.
16.
The endoplasmic reticulum as a protein-folding compartment   总被引:22,自引:0,他引:22  
The lumen of the endoplasmic reticulum (ER) provides a dynamic and efficient environment for the folding of proteins destined for secretion and for a variety of cellular compartments and membranes. Usually, the folding process begins on the nascent chains and is completed minutes or hours later during assembly of oligomers. It is assisted by molecular chaperones and folding enzymes, some of which are unique to the ER. Quality control and selective degradation systems ensure only conformationally mature proteins are transported from the ER.  相似文献   

17.
Adrenomedullin (ADM) is a multifunctional hormone that regulates processes as diverse as blood pressure and cell growth. Although expressed in the ovary, the role of ADM in this organ is not clear. In the present study, we found the expression of ADM receptor and receptor activity-modifying proteins in mouse cumulus cells but not in the oocytes. We report that germinal vesicle breakdown (GVBD), which is required for oocyte maturation, is not inhibited by ADM alone. However, ADM in the presence of the nitric oxide donor sodium nitroprusside (SNP) significantly inhibited GVBD. Furthermore, the ADM- and SNP-dependent inhibition of GVBD was abrogated by Akt blockade. Additionally, Akt expression and phosphorylation was exhibited by ADM, suggesting that Akt signaling upstream in cumulus cells is responsible. Additionally, immunohistochemical analysis revealed that ADM was localized in the granulosa cells of developed follicles, implying the possibility that ADM physiologically affects oocyte maturation in vivo. Our results provide the evidence that ADM can act as a GVBD regulator.  相似文献   

18.
19.
The germ cell lineage is specified by the germ plasm, which in Xenopus laevis contains putative determinants called germinal granules. The pathway through which these structures form and how their components are assembled remain unclear. Using a combination of electron microscopy and in situ hybridization with the germinal granule-associated Xcat2 mRNA we demonstrated that the granules were derived from a branching network of granulofibrillar material within the mitochondrial cloud. Targeting of Xcat2 mRNA to the germinal granules depended on a 164-nt 3'UTR germinal granule localization element (GGLE; nt 631-795) that was distinct from the previously defined mitochondrial cloud localization element (MCLE; nt 403-630; Y. Zhou and M. L. King, 1996, Development 122, 2947-2953). This demonstrated that the Xcat 3'UTR contains a compound localization element consisting of a general element (MCLE) targeting the RNA to the mitochondrial cloud and a second element (GGLE) responsible for targeting to the germinal granules within the cloud. The GGLE when fused to Xlsirt RNA was sufficient to target this nongranule mitochondrial cloud-associated RNA to the germinal granules. This is the first example of a localization element involved in targeting an mRNA to a specific subcellular target such as the germinal granules and suggests that cis-acting elements on RNAs play an important role in the assembly of germinal granules and, therefore, the establishment of the germ cell lineage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号