首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The modification of RNA nucleotide bases, a fundamental process in all cells, alters the chemical and physical properties of RNA molecules and broadly impacts the physiological properties of cells. tRNA molecules are by far the most diverse-modified RNA species within cells, containing as a group >80% of the known 96 chemically unique nucleic acid modifications. The greatest varieties of modifications are located on residue 37 and play a role in ensuring fidelity and efficiency of protein synthesis. The enzyme dimethylallyl (Delta(2)-isopentenyl) diphosphate:tRNA transferase catalyzes the addition of a dimethylallyl group to the exocyclic amine nitrogen (N6) of A(37) in several tRNA species. Using a 17 residue oligoribonucleotide corresponding to the anticodon arm of Escherichia coli tRNA(Phe), we have investigated the structural and dynamic changes introduced by the dimethylallyl group. The unmodified RNA molecule adopts stem-loop conformation composed of seven base-pairs and a compact three nucleotide loop. This conformation is distinctly different from the U-turn motif that characterizes the anticodon arm in the X-ray crystal structure of the fully modified yeast tRNA(Phe). The adoption of the tri-nucleotide loop by the purine-rich unmodified tRNA(Phe) anticodon arm suggests that other anticodon sequences, especially those containing pyrimidine bases, also may favor a tri-loop conformation. Introduction of the dimethylallyl modification increases the mobility of nucleotides of the loop region but does not dramatically alter the RNA conformation. The dimethylallyl modification may enhance ribosome binding through multiple mechanisms including destabilization of the closed anticodon loop and stabilization of the codon-anticodon helix.  相似文献   

2.
The structure and function of in vitro transcribed tRNA(Asp) variants with inserted conformational features characteristic of yeast tRNA(Phe), such as the length of the variable region or the arrangement of the conserved residues in the D-loop, have been investigated. Although they exhibit significant conformational alterations as revealed by Pb2+ treatment, these variants are still efficiently aspartylated by yeast aspartyl-tRNA synthetase. Thus, this synthetase can accommodate a variety of tRNA conformers. In a second series of variants, the identity determinants of yeast tRNA(Phe) were transplanted into the previous structural variants of tRNA(Asp). The phenylalanine acceptance of these variants improves with increasing the number of structural characteristics of tRNA(Phe), suggesting that phenylalanyl-tRNA synthetase is sensitive to the conformational frame embedding the cognate identity nucleotides. These results contrast with the efficient transplantation of tRNA(Asp) identity elements into yeast tRNA(Phe). This indicates that synthetases respond differently to the detailed conformation of their tRNA substrates. Efficient aminoacylation is not only dependent on the presence of the set of identity nucleotides, but also on a precise conformation of the tRNA.  相似文献   

3.
The anticodon of yeast tRNA(Asp), GUC, presents the peculiarity to be self-complementary, with a slight mismatch at the uridine position. In the orthorhombic crystal lattice, tRNA(Asp) molecules are associated by anticodon-anticodon interactions through a two-fold symmetry axis. The anticodon triplets of symmetrically related molecules are base paired and stacked in a normal helical conformation. A stacking interaction between the anticodon loops of two two-fold related tRNA molecules also exists in the orthorhombic form of yeast tRNA(Phe). In that case however the GAA anticodon cannot be base paired. Two characteristic differences can be correlated with the anticodon-anticodon association: the distribution of temperature factors as determined from the X-ray crystallographic refinements and the interaction between T and D loops. In tRNA(Asp) T and D loops present higher temperature factors than the anticodon loop, in marked contrast to the situation in tRNA(Phe). This variation is a consequence of the anticodon-anticodon base pairing which rigidifies the anticodon loop and stem. A transfer of flexibility to the corner of the tRNA molecule disrupts the G19-C56 tertiary interactions. Chemical mapping of the N3 position of cytosine 56 and analysis of self-splitting patterns of tRNA(Asp) substantiate such a correlation.  相似文献   

4.
A K Knap  D Wesolowski  S Altman 《Biochimie》1990,72(11):779-790
Certain nucleotides in M1 RNA, the catalytic RNA subunit of RNase P from E coli, are protected from chemical modification when M1 RNA forms complexes with tRNA precursor molecules (ES complexes). Many of these nucleotides are important in the formation of the Michaelis complex. In the presence of tRNA precursor molecules, the pattern of protection from chemical modification of a region in M1 RNA that resembles the E site in 23S rRNA is similar to the pattern of protection of the E site in the presence of deacylated tRNA. In the complex with the RNA enzyme, more nucleotides in the substrate become accessible to modification, an indication that the substrate is in an unfolded conformation under these conditions.  相似文献   

5.
6.
A comparative study of the solution structures of yeast tRNA(Asp) and tRNA(Phe) was undertaken with chemical reagents as structural probes. The reactivity of N-7 positions in guanine and adenine residues was assayed with dimethylsulphate and diethyl-pyrocarbonate, respectively, and that of the N-3 position in cytosine residues with dimethylsulphate. Experiments involved statistical modifications of end-labelled tRNAs, followed by splitting at modified positions. The resulting end-labelled oligonucleotides were resolved on polyacrylamide sequencing gels and analysed by autoradiography. Three different experimental conditions were used to follow the progressive denaturation of the two tRNAs. Experiments were done in parallel on tRNA(Asp) and tRNA(Phe) to enable comparison between the two solution structures and to correlate the results with the crystalline conformations of both molecules. Structural differences were detected for G4, G45, G71 and A21: G4 and A21 are reactive in tRNA(Asp) and protected in tRNA(Phe), while G45 and G71 are protected in tRNA(Asp) and reactive in tRNA(Phe). For the N-7 atom of A21, the different reactivity is correlated with the variable variable loop structures in the two tRNAs; in the case of G45 the results are explained by a different stacking of A9 between G45 and residue 46. For G4 and G71, the differential reactivities are linked to a different stacking in both tRNAs. This observation is of general significance for helical stems. If the previous results could be fully explained by the crystal structures, unexpected similarities in solution were found for N-3 alkylation of C56 in the T-loop, which according to crystallography should be reactive in tRNA(Asp). The apparent discrepancy is due to conformational differences between crystalline and solution tRNA(Asp) at the level of the D and T-loop contacts, linked to long-distance effects induced by the quasi-self-complementary anticodon GUC, which favour duplex formation within the crystal, contrarily to solution conditions where the tRNA is essentially in its free state.  相似文献   

7.
A plethora of modified nucleotides extends the chemical and conformational space for natural occurring RNAs. tRNAs constitute the class of RNAs with the highest modification rate. The extensive modification modulates their overall stability, the fidelity and efficiency of translation. However, the impact of nucleotide modifications on the local structural dynamics is not well characterized. Here we show that the incorporation of the modified nucleotides in tRNAfMet from Escherichia coli leads to an increase in the local conformational dynamics, ultimately resulting in the stabilization of the overall tertiary structure. Through analysis of the local dynamics by NMR spectroscopic methods we find that, although the overall thermal stability of the tRNA is higher for the modified molecule, the conformational fluctuations on the local level are increased in comparison to an unmodified tRNA. In consequence, the melting of individual base pairs in the unmodified tRNA is determined by high entropic penalties compared to the modified. Further, we find that the modifications lead to a stabilization of long-range interactions harmonizing the stability of the tRNA’s secondary and tertiary structure. Our results demonstrate that the increase in chemical space through introduction of modifications enables the population of otherwise inaccessible conformational substates.  相似文献   

8.
9.
The bacterial tRNA(Lys)-specific PrrC-anticodon nuclease efficiently cleaved an anticodon stem-loop (ASL) oligoribonucleotide containing the natural modified bases, suggesting this region harbors the specificity determinants. Assays of ASL analogs indicated that the 6-threonylcarbamoyl adenosine modification (t(6)A37) enhances the reactivity. The side chain of the modified wobble base 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U34) has a weaker positive effect depending on the context of other modifications. The s(2)U34 modification apparently has none and the pseudouridine (psi39) was inhibitory in most modification contexts. GC-rich but not IC-rich stems abolished the activity. Correlating the reported structural effects of the base modifications with their effects on anticodon nuclease activity suggests preference for substrates where the anticodon nucleotides assume a stacked A-RNA conformation and base pairing interactions in the stem are destabilized. Moreover, the proposal that PrrC residue Asp(287) contacts mnm(5)s(2)U34 was reinforced by the observations that the mammalian tRNA(Lys-3) wobble base 5-methoxycarbonyl methyl-2-thiouridine (mcm(5)s(2)U) is inhibitory and that the D287H mutant favors tRNA(Lys-3) over Escherichia coli tRNA(Lys). The detection of this mutation and ability of PrrC to cleave the isolated ASL suggest that anticodon nuclease may be used to cleave tRNA(Lys-3) primer molecules annealed to the genomic RNA template of the human immunodeficiency virus.  相似文献   

10.
11.
Modified nucleotides are ubiquitous and important to tRNA structure and function. To understand their effect on tRNA conformation, we performed a series of molecular dynamics simulations on yeast tRNAPhe and tRNAinit, Escherichia coli tRNAinit and HIV tRNALys. Simulations were performed with the wild type modified nucleotides, using the recently developed CHARMM compatible force field parameter set for modified nucleotides (J. Comput. Chem. 2016, 37, 896), or with the corresponding unmodified nucleotides, and in the presence or absence of Mg2+. Results showed a stabilizing effect associated with the presence of the modifications and Mg2+ for some important positions, such as modified guanosine in position 37 and dihydrouridines in 16/17 including both structural properties and base interactions. Some other modifications were also found to make subtle contributions to the structural properties of local domains. While we were not able to investigate the effect of adenosine 37 in tRNAinit and limitations were observed in the conformation of E. coli tRNAinit, the presence of the modified nucleotides and of Mg2+ better maintained the structural features and base interactions of the tRNA systems than in their absence indicating the utility of incorporating the modified nucleotides in simulations of tRNA and other RNAs.  相似文献   

12.
Two single-stranded DNA heptadecamers corresponding to the yeast tRNA(Phe) anticodon stem-loop were synthesized, and the solution structures of the oligonucleotides, d(CCAGACTGAAGATCTGG) and d(CCAGACTGAAGAU-m5C-UGG), were investigated using spectroscopic methods. The second, or modified, base sequence differs from that of DNA by RNA-like modifications at three positions; dT residues were replaced at positions 13 and 15 with dU, and the dC at position 14 with d(m5C), corresponding to positions where these nucleosides occur in tRNA(Phe). Both oligonucleotides form intramolecular structures at pH 7 in the absence of Mg2+ and undergo monophasic thermal denaturation transitions (Tm = 47 degrees C). However, in the presence of 10 mM Mg2+, the modified DNa adopted a structure that exhibited a biphasic "melting" transition (Tm values of 23 and 52 degrees C) whereas the unmodified DNA structure exhibited a monophasic denaturation (Tm = 52 degrees C). The low-temperature, Mg(2+)-dependent structural transition of the modified DNA was also detected using circular dichroism (CD) spectroscopy. No such transition was exhibited by the unmodified DNA. This transition, unique to the modified DNA, was dependent on divalent cations and occurred most efficiently with Mg2+; however, Ca2+ also stabilized the alternative conformation at low temperature. NMR studies showed that the predominant structure of the modified DNA in sodium phosphate (pH 7) buffer in the absence of Mg2+ was a hairpin containing a 7-nucleotide loop and a stem composed of 3 stable base pairs. In the Mg(2+)-stabilized conformation, the loop became a two-base turn due to the formation of two additional base pairs across the loop.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We have used two-dimensional (1)H NMR spectroscopy at 750 MHz to determine a high-resolution solution structure of an oligonucleotide containing restricted nucleotides with a 2'-O, 4'-C-methylene bridge (LNA) hybridized to the complementary DNA strand. The LNA:DNA duplex examined contained four thymidine LNA modifications (T(L), d(C1T(L)2G3C4T(L)5T(L)6C7T(L)8G9C10):d( G11C12A13G14A15A16G17C 18A19G20). A total relaxation matrix approach was used to obtain interproton distance bounds from NOESY cross-peak intensities. These distance bounds were used as restraints in molecular dynamics (rMD) calculations. Forty final structures were generated for the duplex from A-form and B-form DNA starting structures. The root-mean-square deviation (RMSD) of the coordinates for the 40 structures of the complex was 0.6 A. The sugar puckerings are averaged values of a dynamic interchange between N- and S-type conformation except in case of the locked nucleotides that were found to be fixed in the C3'-endo conformation. Among the other nucleotides in the modified strand, the furanose ring of C7 and G9 is predominantly in the N-type conformation whereas that of G3 is in a mixed conformation. The furanose rings of the nucleotides in the unmodified complementary strand are almost exclusively in the S-type conformation. Due to these different conformations of the sugars in the two strands, there is a structural strain between the A-type modified strand and the B-type unmodified complementary strand. This strain is relaxed by decreasing the value of rise and compensating with tip, buckle, and propeller twist. The values of twist vary along the strand but for a majority of the base pairs a value even lower than that of A-DNA is observed. The average twist over the sequence is 32+/-1 degrees. On the basis of the structure, we conclude that the high stability of LNA:DNA duplexes is caused by a local change of the phosphate backbone geometry that favors a higher degree of stacking.  相似文献   

14.
In vitro selection of RNAs that undergo autolytic cleavage with Pb2+.   总被引:5,自引:0,他引:5  
T Pan  O C Uhlenbeck 《Biochemistry》1992,31(16):3887-3895
An in vitro selection method has been developed to obtain RNA molecules that specifically undergo autolytic cleavage reactions by Pb2+ ion. The method utilizes a circular RNA intermediate which is regenerated following the cleavage reaction to allow amplification and multiple cycles of selection. Pb2+ is known to catalyze a specific cleavage reaction between U17 and G18 of yeast tRNA(Phe). Starting from pools of RNA molecules which have a random distribution of sequences at nine or ten selected positions in the sequence of yeast tRNA(Phe), we have isolated many RNA molecules that undergo rapid and specific self-cleavage with Pb2+ at a variety of different sites. Terminal truncation experiments suggest that most of these self-cleaving RNA molecules do not fold like tRNA. However, two of the variants are cleaved rapidly with Pb2+ at U17 even though they lack the highly conserved nucleotides G18 and G19. Both specific mutations and terminal truncation experiments suggest that the D and T loops of these two variants interact in a manner similar to that of tRNA(Phe) despite the absence of the G18U55 and G19C56 tertiary interactions. A model for an alternate tertiary interaction involving a U17U55 pair is presented. This model may be relevant to the structure of about 100 mitochondrial tRNAs that also lack G18 and G19. The selection method presented here can be directly applied to isolate catalytic RNAs that undergo cleavage in the presence of other metal ions, modified nucleotides, or sequence-specific nucleases.  相似文献   

15.
Nucleoside base modifications can alter the structures, dynamics, and metal ion binding properties of transfer RNA molecules and are important for accurate aminoacylation and for maintaining translational fidelity and efficiency. The unmodified anticodon stem-loop from Escherichia coli tRNA(Phe) forms a trinucleotide loop in solution, but Mg(2+) and dimethylallyl modification of A(37) N6 disrupt the loop conformation and increase the mobility of the loop and loop-proximal nucleotides. We have used NMR spectroscopy to investigate the binding and structural effects of multivalent cations on the unmodified and dimethylallyl-modified anticodon stem-loops from E. coli tRNA(Phe). The divalent cation binding sites were probed using Mn(2+) and Co(NH(3))(6)(3+). These ions bind along the major groove of the stem and associate with the anticodon loop on the major groove side in a nonspecific manner. Co(NH(3))(6)(3+) stabilizes the U-turn conformation of the loop in the dimethylallyl-modified molecule, and the chemical shift changes that accompany Co(NH(3))(6)(3+) binding are similar to those observed with the addition of Mg(2+). The base-phosphate and base-2'-OH hydrogen bonds that characterize the UNR U-turn motif lead to spectral signatures in the form of unusual (15)N and (1)H chemical shifts and reduced solvent exchange of the U(33) 2'-OH and N3H protons. The unmodified molecule also displays spectral features of the U-turn fold in the presence of Co(NH(3))(6)(3+), but the loop has additional conformations and is dynamic. The results indicate that charge neutralization by a polyvalent cation is sufficient to promote formation of the U-turn fold. However, base modification is necessary to destabilize competing alternative conformers even for a purine-rich loop sequence that is predicted to have strongly favorable base stacking energy.  相似文献   

16.
Aminoacyl-tRNA synthetases (aaRSs) are enzymes that are highly specific for their tRNA substrates. Here, we describe the expansion of a class IIb aaRS-tRNA specificity by a genetic selection that involves the use of a modified tRNA displaying an amber anticodon and the argE(amber) and lacZ(amber) reporters. The study was performed on Escherichia coli aspartyl-tRNA synthetase (AspRS) and amber tRNA(Asp). Nine AspRS mutants able to charge the amber tRNA(Asp) and to suppress the reporter genes were selected from a randomly mutated library. All the mutants exhibited a new amber tRNA(Asp) specificity in addition to the initial native tRNA(Asp). Six mutations were found in the anticodon-binding site located in the N-terminal OB-fold. The strongest suppressor was a mutation of residue Glu-93 that contacts specifically the anticodon nucleotide 34 in the crystal structure. The other mutations in the OB-fold were found at close distance from the anticodon in the so-called loop L45 and strand S1. They concern residues that do not contact tRNA(Asp) in the native complex. In addition, this study shows that suppressors can carry mutations located far from the anticodon-binding site. One such mutation was found in the synthetase hinge-module where it increases the tRNA(Asp)-charging rate, and two other mutations were found in the prokaryotic-specific insertion domain and the catalytic core. These mutants seem to act by indirect effects on the tRNA acceptor stem binding and on the conformation of the active site of the enzyme. Altogether, these data suggest the existence of various ways for modifying the mechanism of tRNA discrimination.  相似文献   

17.
18.
Francin M  Mirande M 《Biochemistry》2006,45(33):10153-10160
Mammalian lysyl-tRNA synthetase (LysRS) has an N-terminal polypeptide chain extension appended to a prokaryotic-like synthetase domain. This extension, termed a tRNA-interacting factor (tIF), possesses a RNA-binding motif [KxxxK(K/R)xxK] that binds nonspecifically the acceptor TPsiC stem-loop domain of tRNA and provides a potent tRNA binding capacity to this enzyme. Consequently, native LysRS aminoacylates a RNA minihelix mimicking the amino acid acceptor stem-loop domain of tRNA(3)(Lys). Here, examination of minihelix recognition showed that mammalian LysRS aminoacylates RNA minihelices without specificity of sequence, revealing that none of the nucleotides from the acceptor TPsiC stem-loop domain are essential determinants of tRNA(Lys) acceptor identity. To test whether the tIF domain reduces the specificity of the synthetase with regard to complete tRNA molecules, aminoacylation of wild-type and mutant noncognate tRNAs by wild-type or N-terminally truncated LysRS was examined. The presence of the UUU anticodon of tRNA(Lys) appeared to be necessary and sufficient to transform yeast tRNA(Asp) or tRNA(i)(Met) into potent lysine acceptor tRNAs. Thus, nonspecific RNA-protein interactions between the acceptor stem of tRNA and the tIF domain do not relax the tRNA specificity of mammalian LysRS. The possibility that interaction of the full-length cognate tRNA with the synthetase is required to induce the catalytic center of the enzyme into a productive conformation is discussed.  相似文献   

19.
20.
Importance of conserved residues for the conformation of the T-loop in tRNAs   总被引:11,自引:0,他引:11  
The conformation of the T-loop of yeast tRNA(Asp) was studied by structural mapping techniques using chemical and enzymatic probes and by three-dimensional graphics modeling with the known crystallographic structures of tRNAs as references. The structural importance of C61 (conserved in the T-stem of all tRNAs) for the loop conformation was directly checked by ethylnitrosourea phosphate alkylation, either on the 3'-half tRNAAsp molecule or on a variant in which C61 was replaced by U61. The reactivity of P60 against ethylnitrosourea alkylation in the variant emphasizes the role of the hydrogen bond between this phosphate and position N4 of C61 for stabilizing the conformation of the T-loop. Experiments on several tRNA variants, containing C61 but altered in the sequence or in the length of the T-loop, indicate that other structural features help to stabilize the hydrogen bond network around P60. Evidence is presented that the reverse Hoogsteen base pair T54-A58 contributes to this stabilization by maintaining the hydrogen bonding between the 2'OH of ribose 58 and P60. Using graphics modeling and based on the chemical data. T-loops of several variants were constructed. It appears that both the constant length of the T-loop and the presence of psi 55 are crucial for the correct interaction between the T- and D-loops. The conclusion of this study is that the T-loop in tRNA possesses an intrinsic conformation (mainly governed by the constant residues) existing primarily without the structural context of the entire tRNA molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号