首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
Portia fimbriata is a web-invading araneophagic jumping spider (Salticidae). The use of signal-generating behaviours is characteristic of how P. fimbriata captures its prey, with three basic categories of signal-generating behaviours being prevalent when the prey spider is in an orb web. The predatory behaviour of P. fimbriata has been referred to as aggressive mimicry, but no previous studies have provided details concerning the characteristics of P. fimbriata 's signals. We attempt to determine the model signals for P. fimbriata 's 'aggressive mimicry' signals. Using laser Doppler vibrometer and the orb webs of Zygiella x-notata and Zosis geniculatus , P. fimbriata 's signals are compared with signals from other sources. Each of P. fimbriata 's three categories of behaviour makes a signal that resembles one of three signals from other sources: prey of the web spider (insects) ensnared in the capture zone of the web, prey making faint contact with the periphery of the web and large-scale disturbance of the web (jarring the spider's cage). Experimental evidence from testing P. fimbriata with two sizes of lure made from Zosis (dead, mounted in a lifelike posture in standard-size orb web) clarifies P. fimbriata 's signal-use strategy: (1) when the resident spider is small, begin by simulating signals from an insect ensnared in the capture zone (attempt to lure in the resident spider); (2) when the resident spider is large, start by simulating signals from an insect brushing against the periphery of the web (keep the resident spider out in the web, but avoid provoking from it a full-scale predatory attack); (3) when walking in the resident spider's web, regardless of the resident spider's size, step toward the spider while making a signal that simulates a large-scale disturbance of the web (mask footsteps with a self-made vibratory smokescreen).  相似文献   

2.
Spinning an elastic ribbon of spider silk   总被引:3,自引:0,他引:3  
The Sicarid spider Loxosceles laeta spins broad but very thin ribbons of elastic silk that it uses to form a retreat and to capture prey. A structural investigation into this spider's silk and spinning apparatus shows that these ribbons are spun from a gland homologous to the major ampullate gland of orb web spiders. The Loxosceles gland is constructed from the same basic parts (separate transverse zones in the gland, a duct and spigot) as other spider silk glands but construction details are highly specialized. These differences are thought to relate to different ways of spinning silk in the two groups of spiders. Loxosceles uses conventional die extrusion, feeding a liquid dope (spinning solution) to the slit-like die to form a flat ribbon, while orb web spiders use an extrusion process in which the silk dope is processed in an elongated duct to produce a cylindrical thread. This is achieved by the combination of an initial internal draw down, well inside the duct, and a final draw down, after the silk has left the spigot. The spinning mechanism in Loxosceles may be more ancestral.  相似文献   

3.
An uloborid spider (Oclonoba sybotides constructs two types of web which are distinguished by linear or spiral stabilimenta. Food-deprived spiders tend to construct webs with spiral stabilimenta and food-satiated spiders tend to construct webs with linear stabilimenta. I experimentally examined the influence of web type on the speed of a spider's response to small and large flies. The results indicated that web type rather than the spiders' energetic condition influences the response speed to small or large Drosophila flies. I also examined whether thread tension affects the response speed of spiders by increasing the tension of the radial threads. The results showed that spiders on an expanded web responded to small prey as quickly as spiders on webs with spiral stabilimenta. The tension of the radial threads may be regulated by the degree of distortion of the radial threads at the hub. O. sybotides seems to construct orb webs which induce different responses for smaller, less-profitable prey according to its energetic state. The spider appears to increase the tension of the radial threads so that it can sense smaller prey better when hungry.  相似文献   

4.
Summary Web-building spiders (Araneae; Theridiidae, Linyphiidae, Araneidae) are catagorized as searchers because they devote a large amount of energy to the construction of the web which constitutes the search phase in the foraging sequence. In this study search energy is equated with the density of threads in a web and the effectiveness of a variety of webs in three broad catagories (tangle webs, sheet webs & orb webs) is tested in the light of current foraging theory. Within each web type there is a distinct thread density at which the number of approaching Drosophila (Diptera; Drosophilidae) that are captured is maximized (Figs. 1, 2, 3). That maximum results from a combination of factors that are a function of the density of threads in the web. The visibility of the web to an approaching Drosophila increases which acts to decrease the number of flies that enter the web (Tables 2, 3, 4). The ability of the web to detain a Drosophila that contacts it (capture efficiency) increases to an asymptote as a function of thread density (Fig. 4). These data support an assumption of many optimal foraging models that with increasing investment in search the predator receives a diminishing return.More Drosophila intercept orb webs than intercept sheet or tangle webs. In addition orb webs detain a greater proportion of the flies that contact them (Fig. 4). Sheet webs are intermediate between orb and tangle webs in their relative abilities to contact and detain Drosophila.  相似文献   

5.
A typical feature of most vertical orb webs is that the upper web region is smaller and contains less silk than the lower web region, creating an asymmetrical web. The degree of web asymmetry changes during the spider's development: small juveniles construct more symmetrical webs, but older and larger individuals decrease the upper web region. This implies that weight may control the extent of web asymmetry. Using two species, Argiope keyserlingi and Larinioides sclopetarius, we tested the effect of weight increase on web asymmetry by naturally increasing weight through feeding and by artificially adding lead weights to the abdomen of the spiders. Weight increase (natural or artificial) resulted in more asymmetric webs through a reduction of the upper web region. Added weight may interfere with spiral placement in the upper region, because the spider has to lift its abdomen above the carapace during the process. In the lower region, however, the position of the spider is mostly head up during spiral placement. Therefore, amongst other factors, weight and gravitational forces may be physical constraints during web construction. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

6.
Evolutionary convergence of phenotypic traits provides evidence for their functional success. The origin of the orb web was a critical event in the diversification of spiders that facilitated a spectacular radiation of approximately 12 000 species and promoted the evolution of novel web types. How the orb web evolved from ancestral web types, and how many times orb‐like architectures evolved in spiders, has been debated for a long time. The little known spider genus Fecenia (Psechridae) constructs a web that resembles the archetypical orb web, but morphological data suggest that Psechridae (Psechrus + Fecenia) does not belong in Orbiculariae, the ‘true orb weavers’, but to the ‘retrolateral tibial apophysis (RTA) clade’ consisting mostly of wandering spiders, but also including spiders building less regular webs. Yet, the data are sparse and no molecular phylogenetic study has estimated Fecenia's exact position in the tree of life. Adding new data to sequences pulled from GenBank, we reconstruct a phylogeny of Entelegynae and phylogenetically test the monophyly and placement of Psechridae, and in doing so, the alternative hypotheses of monophyletic origin of the orb web and the pseudo‐orb versus their independent origins, a potentially spectacular case of behavioural convergence. We also discuss the implications of our results for Entelegynae systematics. Our results firmly place a monophyletic Psechridae within the RTA clade, phylogenetically distant from true orb weavers. The architectural similarities of the orb and the pseudo‐orb are therefore clearly convergent, as also suggested by detailed comparisons of these two web types, as well as the spiders' web‐building behaviours and ontogenetic development. The convergence of Fecenia webs with true orbs provides a remarkable opportunity to investigate how these complex sets of traits may have interacted during the evolution of the orb.  相似文献   

7.
The sterile male technique is a common method to assign paternity, widely adopted due to its relative simplicity and low cost. Male sterility is induced by exposure to sub lethal doses of chemosterilants or irradiation, the dosage of which has to be calibrated for every species to provide successful male sterilisation, without affecting male physiology and behaviour. While the physiological effects of sterilisation are usually assessed for each study, the behavioural ones are rarely analysed in detail. Using the orb web spider Argiope keyserlingi as a model we first tested (1) the validity of the thread assay, which simulates male courtship behaviour in a standardised context, as a proxy representing courtship on a female web. We then investigated (2) the effectiveness of male sterilisation via irradiation and (3) its consequences on male courtship behaviour. Our results validate the thread assay and the sterile male technique as legitimate tools for the study of male courtship behaviour and fertilisation success. We show that these techniques are time and cost effective and reduce undesirable variation, thereby creating opportunities to study and understand the mechanisms underlying sexual selection.  相似文献   

8.
We found that the koinobiont ectoparasitoid wasp Zatypota picticollis is exclusively associated with three orb weaving spiders Cyclosa conica, Mangora acalypha and Zilla diodia from the family Araneidae. Under the influence of the parasitoid's final instar larva the spiders built a specific web architecture, which differed considerably from the capturing orb web. Manipulated webs of C. conica and M. acalypha lacked the spiral, stabilimentum and central hub, and the radials were reduced in number. The manipulated web of Z. diodia consisted of one strong horizontally oriented thread.  相似文献   

9.
棒络新妇和悦目金蛛拖丝超微结构与力学行为   总被引:2,自引:0,他引:2  
采用SEM对棒络新妇Nephila clavata腹部向上和向下在水平纱窗上爬行时纺出的拖丝、悦目金蛛Argiope amoena捕食拖丝与垂直向下缓慢纺出的拖丝及其圆网的铆钉丝进行了超微结构观察,采用电子单纤强力仪对棒络新妇拖丝与悦目金蛛圆网铆钉丝进行了力学拉伸试验.结果 表明棒络新妇和悦目金蛛拖丝均呈现出一至多根细丝纤维的多样化超微结构特征,其中悦目金蛛圆网铆钉丝还呈现出"S"形似弹簧的结构.两种蜘蛛丝的力学行为和性能与各自的功能要求相一致.蜘蛛能调节拖丝的超微结构、纤维组成和直径大小以适应其在不同环境条件下对力学性能和功能的瞬时需要.研究结果有助于拓宽和加深人们对蜘蛛丝超微结构、力学性能与生物学功能之间关系的认识和理解.  相似文献   

10.
Intensification of land‐use in agricultural landscapes is responsible for a decline of biodiversity which provide important ecosystem services like pest‐control. Changes in landscape composition may also induce behavioural changes of predators in response to variation in the biotic or abiotic environment. By controlling for environmentally confounding factors, we here demonstrate that the orb web spider Araneus diadematus alters its web building behaviour in response to changes in the composition of agricultural landscapes. Thereby, the species increases its foraging efficiency (i.e. investments in silk and web asymmetry) with an increase of agricultural land‐use at intermediate spatial scales. This intensification is also related to a decrease in the abundance of larger prey. A negative effect of landscape properties at similar spatial scales on spider fitness was recorded when controlling for relative investments in capture thread length. This study consequently documents the web building flexibility in response to changes in landscape composition, possibly due to changes in prey availability.  相似文献   

11.
Using a virtual spider robot, we studied hypotheses about the weaving behaviour of orb spiders. Our model spiders built virtual webs that mimicked perfectly the visual architecture of real webs of the garden cross spider Araneus diadematus. The matching of capture spiral and auxiliary spiral pitch was an apparently emergent property in both types of web. This validated our interpretation of the garden spider''s web-building decision rules, which use strictly local interactions with previously placed threads to generate global architecture.  相似文献   

12.
Individuals of the orb-weaving spider Nephila clavipesbuild complex webs with a region used for prey capture, the orb, and tangle webs opposite either face, the barrier webs. Barrier webs have been hypothesized to serve a variety of functions, including predator defense, and the primary function of the barrier web should be reflected in the relative size of the barrier to the orb under varying conditions of foraging success and predation risk. To investigate the effects of predation pressure and foraging success on barrier web structure, I conducted a comparative study in three disjunct populations that differed in predation risk and foraging success. Although both the orb web and the barrier webs are silk, there was no indication of a foraging-defense trade-off. Barrier web structure did not change during seasonal shifts in orb web size related to changes in preycapture rate, and barrier web silk density and orb radius were positively correlated. The hypothesis that the construction of barrier webs is in part a response to predation pressure was supported. Barrier webs do deflect attacks by some predators, and barrier webs built by small spiders, suffering frequent predation attempts, had a higher silk density than barrier webs built by larger individuals. Additionally, barrier web complexity decreased at a later age in areas with higher predation risk.  相似文献   

13.
The garden cross orb-spider, Araneus diadematus, shows behavioural responses to leg loss and regeneration that are reflected in the geometry of the web's capture spiral. We created a virtual spider robot that mimicked the web construction behaviour of thus handicapped real spiders. We used this approach to test the correctness and consistency of hypotheses about orb web construction. The behaviour of our virtual robot was implemented in a rule-based system supervising behaviour patterns that communicated with the robot's sensors and motors. By building the typical web of a nonhandicapped spider our first model failed and led to new observations on real spiders. We realized that in addition to leg position, leg posture could also be of importance. The implementation of this new hypothesis greatly improved the results of our simulation of a handicapped spider. Now simulated webs, like the real webs of handicapped spiders, had significantly more gaps in successive spiral turns compared with webs of nonhandicapped spiders. Moreover, webs built by the improved virtual spiders intercepted prey as well as the digitized real webs. However, the main factors that affected web interception frequency were prey size, size of capture area and individual variance; having a regenerated leg, surprisingly, was relatively unimportant for this trait. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

14.
We examined the webs of Linyphia triangularis (Clerck) and Microlinyphia pusilla (Sundevall) using light and scanning electronic microscopic techniques and compared them with the better known orb‐webs. The linyphiid sheet‐web consists of an unordered meshwork of fibres of different thicknesses. The sheet is connected to the scaffolding by means of attachment discs. Thin threads with globules, which appear similar to the viscid silk droplets of orb‐webs, are present in most webs examined. Webs of M. pusilla had a higher density of these globules than did webs of L. triangularis. Webs of both species possess five types of thread connections and contain no aqueous glue for prey capture. Instead, unlike orb‐webs, the sticky substances produced by the linyphiid aggregate glands cement the different layers and threads of the sheet by drying up after being produced. Due to their function, sheet webs may not require viscid silk, thereby leading to a more economic web. The assumption made in most previous studies, that the globules in linyphiid webs have the same properties and function as viscid silk in orb‐webs, is unfounded.  相似文献   

15.
When green lacewings (Neuroptera: Chrysopidae) fly into spider orb webs, they often simply reverse their flight direction and pull away (Table I). If a lacewing is trapped, it uses a specialized escape behavior. It first cuts away the sticky strands entangling head, feet, and antennae. If an antenna cannot be freed by tugging, it uses an antenna climb (Fig. 5A). After its body is free, the lacewing remains suspended by its hair-covered wings, which are held in a characteristic cruciform position (Fig. 5B). Orb web sticky strands adhere poorly to the hairy wings (Fig. 7), so the chrysopid may just wait until the strands slide off and it falls free. If placed in an orb web when the spider is at the web hub and ready to attack, a lacewing usually does not have time to escape (Fig. 1). When the spider is at the hub but eating, the chances of escape improve, and when the spider is away from the hub attacking other prey, nearly all lacewings in our experiment were able to escape. This finding emphasizes the importance of the spider's activity in its capture success.Paper No. 88 of the series Defense Mechanisms of Arthropods.  相似文献   

16.
Abstract— Observations of web spinning behavior in Costa Rican Dinopis sp. reveal the same behaviors synapomorphic for orb weavers: specifically frame, radius, non-sticky spiral construction, and sticky spiral construction, as well as more detailed motor patterns. Dinopids are therefore highly derived orb weavers, although the behavioral data do not conclusively indicate whether they are more closely related to the uloborid or araneoid orb weavers. A cladogram of dinopids, uloborids, and araneoids is presented.  相似文献   

17.
Are three‐dimensional spider webs defensive adaptations?   总被引:4,自引:0,他引:4  
Spider webs result from complex behaviours that have evolved under many selective pressures. Webs have been primarily considered to be foraging adaptations, neglecting the potential role of predation risk in the evolution of web architecture. The ecological success of spiders has been attributed to key innovations in how spiders use silk to capture prey, especially the invention of chemically adhesive aerial two‐dimensional orb webs. However, araneoid sheet web weavers transformed the orb architecture into three‐dimensional webs and are the dominant group of aerial web‐building spiders world‐wide, both in numbers and described species diversity. We argue that mud‐dauber wasps are major predators of orbicularian spiders, and exert a directional selective pressure to construct three‐dimensional webs such that three‐dimensional webs are partly defensive innovations. Furthermore, patterns of diversification suggest that escape from wasp predators may have facilitated diversification of three‐dimensional web‐building spiders.  相似文献   

18.
Linyphiidae is the second largest family of spiders. Using Linyphia hortensis and L. triangularis, we describe linyphiid sheet-web construction behaviour. Orb-web construction behaviour is reviewed and compared with that of nonorb-weaving orbicularians. Phylogenetic comparisons and the biogenetic law are applied to deduce behavioural homology. Linyphia webs were constructed gradually and in segments over a period of many days and had a long lifespan. Two construction behaviours, supporting structure and sticky thread (ST) (within the sheet) were observed. ST construction behaviour in linyphiids is considered homologous to sticky spiral construction in orb-weavers. Overall web construction conformed to the pattern of alternate construction of sticky and nonsticky parts as observed in theridiids. Linyphiids had no problem in switching between structure construction and ST construction even during a single behavioural bout. Both web construction behaviours in linyphiids were nonstereotypic, which is unusual in orbicularians. This might be due to the loss of control mechanisms at genetic level, probably by macro mutation. Lack of stereotypic behaviour might have played a substantial role in the origin of the diverse web forms seen in nonorb-weaving orbicularians. This hypothesis is consistent with patterns observed in the orbicularian phylogeny.  相似文献   

19.
The aerial orb web woven by spiders of the family Araneidae typifies these organisms to laypersons and scientists alike. Here we describe the oldest fossil species of this family, which is preserved in amber from Alava, Spain and represents the first record of Araneidae from the Lower Cretaceous. The fossils provide direct evidence that all three major orb web weaving families: Araneidae, Tetragnathidae and Uloboridae had evolved by this time, confirming the antiquity of the use of this remarkable structure as a prey capture strategy by spiders. Given the complex and stereotyped movements that all orb weavers use to construct their webs, there is little question regarding their common origin, which must have occurred in the Jurassic or earlier. Thus, various forms of this formidable prey capture mechanism were already in place by the time of the explosive Cretaceous co-radiation of angiosperms and their flying insect pollinators. This permitted a similar co-radiation of spider predators with their flying insect prey, presumably without the need for a 'catch-up lag phase' for the spiders.  相似文献   

20.
Abstract Environmental conditions such as light level, background contrast and temperature might influence a spider's prey capture success and risk of predation. Thus it may often be advantageous for spiders to adjust web‐building behaviour in response to variation in these environmental conditions. This hypothesis was examined in a study of the construction of webs and web decorations (conspicuous strands of silk at the hub of the web) of the orb‐web spider Argiope keyserlingi. Web decorations are thought to have one or more separate functions. They may attract prey, deter predators or advertise the web to oncoming birds, thus preventing web damage. In this series of experiments, relationships between weather parameters and the construction of webs and web decorations were considered. In complementary laboratory experiments, A. keyserlingi spiders were exposed to two different light levels (700 and 90 lx), background contrasts (black and white) and temperature conditions (20 and 26°C). Of the available weather parameters, only temperature was significantly related to web decorating behaviour but not to web size. In the laboratory, temperature also influenced web‐decorating behaviour, and spiders in dim light (700 lx) constructed larger webs and longer decorations. Background contrast did not significantly alter web size or web decorations. These data suggest that when prey availability is reduced at low temperatures, spiders may use web decorations to attract prey to the web. Similarly, in dim light, spiders may build more and larger decorations to increase the visual signal to approaching prey or to advertise the web to oncoming birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号