首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is now widely accepted that sites in a protein do not undergo independent evolutionary processes. The underlying assumption is that proteins are composed of conserved and variable linear domains, and thus rates at neighboring sites are correlated. In this paper, we comprehensively examine the performance of an autocorrelation model of evolutionary rates in protein sequences. We further develop a model in which the level of correlation between rates at adjacent sites is not equal at all sites of the protein. High correlation is expected, for example, in linear functional domains. On the other hand, when we consider nonlinear functional regions (e.g., active sites), low correlation is expected because the interaction between distant sites imposes independence of rates in the linear sequence. Our model is based on a hidden Markov model, which accounts for autocorrelation at certain regions of the protein and rate independence at others. We study the differences between the novel model and models which assume either independence or a fixed level of dependence throughout the protein. Using a diverse set of protein data sets we show that the novel model better fits most data sets. We further analyze the potassium-channel protein family and illustrate the relationship between the dependence of rates at adjacent sites and the tertiary structure of the protein.  相似文献   

2.
Bastolla U  Porto M  Roman HE  Vendruscolo M 《Gene》2005,347(2):219-230
We review and further develop an analytical model that describes how thermodynamic constraints on the stability of the native state influence protein evolution in a site-specific manner. To this end, we represent both protein sequences and protein structures as vectors: structures are represented by the principal eigenvector (PE) of the protein contact matrix, a quantity that resembles closely the effective connectivity of each site; sequences are represented through the "interactivity" of each amino acid type, using novel parameters that are correlated with hydropathy scales. These interactivity parameters are more strongly correlated than the other hydropathy scales that we examine with: (1) the change upon mutations of the unfolding free energy of proteins with two-states thermodynamics; (2) genomic properties as the genome-size and the genome-wide GC content; (3) the main eigenvectors of the substitution matrices. The evolutionary average of the interactivity vector correlates very strongly with the PE of a protein structure. Using this result, we derive an analytic expression for site-specific distributions of amino acids across protein families in the form of Boltzmann distributions whose "inverse temperature" is a function of the PE component. We show that our predictions are in agreement with site-specific amino acid distributions obtained from the Protein Data Bank, and we determine the mutational model that best fits the observed site-specific amino acid distributions. Interestingly, the optimal model almost minimizes the rate at which deleterious mutations are eliminated by natural selection.  相似文献   

3.
The relative solvent accessibility (RSA) of an amino acid residue in a protein structure is a real number that represents the solvent exposed surface area of this residue in relative terms. The problem of predicting the RSA from the primary amino acid sequence can therefore be cast as a regression problem. Nevertheless, RSA prediction has so far typically been cast as a classification problem. Consequently, various machine learning techniques have been used within the classification framework to predict whether a given amino acid exceeds some (arbitrary) RSA threshold and would thus be predicted to be "exposed," as opposed to "buried." We have recently developed novel methods for RSA prediction using nonlinear regression techniques which provide accurate estimates of the real-valued RSA and outperform classification-based approaches with respect to commonly used two-class projections. However, while their performance seems to provide a significant improvement over previously published approaches, these Neural Network (NN) based methods are computationally expensive to train and involve several thousand parameters. In this work, we develop alternative regression models for RSA prediction which are computationally much less expensive, involve orders-of-magnitude fewer parameters, and are still competitive in terms of prediction quality. In particular, we investigate several regression models for RSA prediction using linear L1-support vector regression (SVR) approaches as well as standard linear least squares (LS) regression. Using rigorously derived validation sets of protein structures and extensive cross-validation analysis, we compare the performance of the SVR with that of LS regression and NN-based methods. In particular, we show that the flexibility of the SVR (as encoded by metaparameters such as the error insensitivity and the error penalization terms) can be very beneficial to optimize the prediction accuracy for buried residues. We conclude that the simple and computationally much more efficient linear SVR performs comparably to nonlinear models and thus can be used in order to facilitate further attempts to design more accurate RSA prediction methods, with applications to fold recognition and de novo protein structure prediction methods.  相似文献   

4.
Adamczak R  Porollo A  Meller J 《Proteins》2005,59(3):467-475
Owing to the use of evolutionary information and advanced machine learning protocols, secondary structures of amino acid residues in proteins can be predicted from the primary sequence with more than 75% per-residue accuracy for the 3-state (i.e., helix, beta-strand, and coil) classification problem. In this work we investigate whether further progress may be achieved by incorporating the relative solvent accessibility (RSA) of an amino acid residue as a fingerprint of the overall topology of the protein. Toward that goal, we developed a novel method for secondary structure prediction that uses predicted RSA in addition to attributes derived from evolutionary profiles. Our general approach follows the 2-stage protocol of Rost and Sander, with a number of Elman-type recurrent neural networks (NNs) combined into a consensus predictor. The RSA is predicted using our recently developed regression-based method that provides real-valued RSA, with the overall correlation coefficients between the actual and predicted RSA of about 0.66 in rigorous tests on independent control sets. Using the predicted RSA, we were able to improve the performance of our secondary structure prediction by up to 1.4% and achieved the overall per-residue accuracy between 77.0% and 78.4% for the 3-state classification problem on different control sets comprising, together, 603 proteins without homology to proteins included in the training. The effects of including solvent accessibility depend on the quality of RSA prediction. In the limit of perfect prediction (i.e., when using the actual RSA values derived from known protein structures), the accuracy of secondary structure prediction increases by up to 4%. We also observed that projecting real-valued RSA into 2 discrete classes with the commonly used threshold of 25% RSA decreases the classification accuracy for secondary structure prediction. While the level of improvement of secondary structure prediction may be different for prediction protocols that implicitly account for RSA in other ways, we conclude that an increase in the 3-state classification accuracy may be achieved when combining RSA with a state-of-the-art protocol utilizing evolutionary profiles. The new method is available through a Web server at http://sable.cchmc.org.  相似文献   

5.
ABSTRACT: BACKGROUND: Protein structure mediates site-specific patterns of sequence divergence. In particular, residues in the core of a protein (solvent-inaccessible residues) tend to be more evolutionarily conserved than residues on the surface (solvent-accessible residues). RESULTS: Here, we present a model of sequence evolution that explicitly accounts for the relative solvent accessibility of each residue in a protein. Our model is a variant of the Goldman-Yang 1994 (GY94) model in which all model parameters can be functions of the relative solvent accessibility (RSA) of a residue. We apply this model to a data set comprised of nearly 600 yeast genes, and find that an evolutionary-rate ratio omega that varies linearly with RSA provides a better model fit than an RSA-independent omega or an omega that is estimated separately in individual RSA bins. We further show that the branch length t and the transition--transverion ratio kappa also vary with RSA. The RSA-dependent GY94 model performs better than an RSA-dependent Muse-Gaut 1994 (MG94) model in which the synonymous and non-synonymous rates individually are linear functions of RSA. Finally, protein core size affects the slope of the linear relationship between omega and RSA, and gene expression level affects both the intercept and the slope. CONCLUSIONS: Structure-aware models of sequence evolution provide a significantly better fit than traditional models that neglect structure. The linear relationship between omega and RSA implies that genes are better characterized by their omega slope and intercept than by just their mean omega.  相似文献   

6.
The evolutionary selection forces acting on a protein are commonly inferred using evolutionary codon models by contrasting the rate of synonymous to nonsynonymous substitutions. Most widely used models are based on theoretical assumptions and ignore the empirical observation that distinct amino acids differ in their replacement rates. In this paper, we develop a general method that allows assimilation of empirical amino acid replacement probabilities into a codon-substitution matrix. In this way, the resulting codon model takes into account not only the transition-transversion bias and the nonsynonymous/synonymous ratio, but also the different amino acid replacement probabilities as specified in empirical amino acid matrices. Different empirical amino acid replacement matrices, such as secondary structure-specific matrices or organelle-specific matrices (e.g., mitochondria and chloroplasts), can be incorporated into the model, making it context dependent. Using a diverse set of coding DNA sequences, we show that the novel model better fits biological data as compared with either mechanistic or empirical codon models. Using the suggested model, we further analyze human immunodeficiency virus type 1 protease sequences obtained from drug-treated patients and reveal positive selection in sites that are known to confer drug resistance to the virus.  相似文献   

7.
Markovian models of protein evolution that relax the assumption of independent change among codons are considered. With this comparatively realistic framework, an evolutionary rate at a site can depend both on the state of the site and on the states of surrounding sites. By allowing a relatively general dependence structure among sites, models of evolution can reflect attributes of tertiary structure. To quantify the impact of protein structure on protein evolution, we analyze protein-coding DNA sequence pairs with an evolutionary model that incorporates effects of solvent accessibility and pairwise interactions among amino acid residues. By explicitly considering the relationship between nonsynonymous substitution rates and protein structure, this approach can lead to refined detection and characterization of positive selection. Analyses of simulated sequence pairs indicate that parameters in this evolutionary model can be well estimated. Analyses of lysozyme c and annexin V sequence pairs yield the biologically reasonable result that amino acid replacement rates are higher when the replacements lead to energetically favorable proteins than when they destabilize the proteins. Although the focus here is evolutionary dependence among codons that is associated with protein structure, the statistical approach is quite general and could be applied to diverse cases of evolutionary dependence where surrogates for sequence fitness can be measured or modeled.  相似文献   

8.
Proteins evolve under a myriad of biophysical selection pressures that collectively control the patterns of amino acid substitutions. These evolutionary pressures are sufficiently consistent over time and across protein families to produce substitution patterns, summarized in global amino acid substitution matrices such as BLOSUM, JTT, WAG, and LG, which can be used to successfully detect homologs, infer phylogenies, and reconstruct ancestral sequences. Although the factors that govern the variation of amino acid substitution rates have received much attention, the influence of thermodynamic stability constraints remains unresolved. Here we develop a simple model to calculate amino acid substitution matrices from evolutionary dynamics controlled by a fitness function that reports on the thermodynamic effects of amino acid mutations in protein structures. This hybrid biophysical and evolutionary model accounts for nucleotide transition/transversion rate bias, multi‐nucleotide codon changes, the number of codons per amino acid, and thermodynamic protein stability. We find that our theoretical model accurately recapitulates the complex yet universal pattern observed in common global amino acid substitution matrices used in phylogenetics. These results suggest that selection for thermodynamically stable proteins, coupled with nucleotide mutation bias filtered by the structure of the genetic code, is the primary driver behind the global amino acid substitution patterns observed in proteins throughout the tree of life.  相似文献   

9.
Amino acid substitution tables are essential for the proper alignment of protein sequences, and alignment scores based on them can be transformed into distance measures by various means. In the simplest case, the negative log of the score is used. This Poisson relationship assumes that all sites are equally likely to change, however. A more accurate relationship would correct for different rates of change at each residue position. Recently, Grishin (J. Mol. Evol. 41:675–679, 1995) published a set of simple equations that correct for various circumstances, including different rates of change at different sites. We have used these equations in conjunction with similarity scores that take into account constraints on amino acid interchange. Simulation studies show a linear relationship between these calculated distances and the numbers of allowed mutations based on the observed variation of rate at all sites in various proteins. Received: 25 January 1996 / Accepted: 1 October 1996  相似文献   

10.
The relative solvent accessibility (RSA) of a residue in a protein measures the extent of burial or exposure of that residue in the 3D structure. RSA is frequently used to describe a protein''s biophysical or evolutionary properties. To calculate RSA, a residue''s solvent accessibility (ASA) needs to be normalized by a suitable reference value for the given amino acid; several normalization scales have previously been proposed. However, these scales do not provide tight upper bounds on ASA values frequently observed in empirical crystal structures. Instead, they underestimate the largest allowed ASA values, by up to 20%. As a result, many empirical crystal structures contain residues that seem to have RSA values in excess of one. Here, we derive a new normalization scale that does provide a tight upper bound on observed ASA values. We pursue two complementary strategies, one based on extensive analysis of empirical structures and one based on systematic enumeration of biophysically allowed tripeptides. Both approaches yield congruent results that consistently exceed published values. We conclude that previously published ASA normalization values were too small, primarily because the conformations that maximize ASA had not been correctly identified. As an application of our results, we show that empirically derived hydrophobicity scales are sensitive to accurate RSA calculation, and we derive new hydrophobicity scales that show increased correlation with experimentally measured scales.  相似文献   

11.
Most protein substitution models use a single amino acid replacement matrix summarizing the biochemical properties of amino acids. However, site evolution is highly heterogeneous and depends on many factors that influence the substitution patterns. In this paper, we investigate the use of different substitution matrices for different site evolutionary rates. Indeed, the variability of evolutionary rates corresponds to one of the most apparent heterogeneity factors among sites, and there is no reason to assume that the substitution patterns remain identical regardless of the evolutionary rate. We first introduce LG4M, which is composed of four matrices, each corresponding to one discrete gamma rate category (of four). These matrices differ in their amino acid equilibrium distributions and in their exchangeabilities, contrary to the standard gamma model where only the global rate differs from one category to another. Next, we present LG4X, which also uses four different matrices, but leaves aside the gamma distribution and follows a distribution-free scheme for the site rates. All these matrices are estimated from a very large alignment database, and our two models are tested using a large sample of independent alignments. Detailed analysis of resulting matrices and models shows the complexity of amino acid substitutions and the advantage of flexible models such as LG4M and LG4X. Both significantly outperform single-matrix models, providing gains of dozens to hundreds of log-likelihood units for most data sets. LG4X obtains substantial gains compared with LG4M, thanks to its distribution-free scheme for site rates. Since LG4M and LG4X display such advantages but require the same memory space and have comparable running times to standard models, we believe that LG4M and LG4X are relevant alternatives to single replacement matrices. Our models, data, and software are available from http://www.atgc-montpellier.fr/models/lg4x.  相似文献   

12.
Codon models of evolution have facilitated the interpretation of selective forces operating on genomes. These models, however, assume a single rate of non-synonymous substitution irrespective of the nature of amino acids being exchanged. Recent developments have shown that models which allow for amino acid pairs to have independent rates of substitution offer improved fit over single rate models. However, these approaches have been limited by the necessity for large alignments in their estimation. An alternative approach is to assume that substitution rates between amino acid pairs can be subdivided into rate classes, dependent on the information content of the alignment. However, given the combinatorially large number of such models, an efficient model search strategy is needed. Here we develop a Genetic Algorithm (GA) method for the estimation of such models. A GA is used to assign amino acid substitution pairs to a series of rate classes, where is estimated from the alignment. Other parameters of the phylogenetic Markov model, including substitution rates, character frequencies and branch lengths are estimated using standard maximum likelihood optimization procedures. We apply the GA to empirical alignments and show improved model fit over existing models of codon evolution. Our results suggest that current models are poor approximations of protein evolution and thus gene and organism specific multi-rate models that incorporate amino acid substitution biases are preferred. We further anticipate that the clustering of amino acid substitution rates into classes will be biologically informative, such that genes with similar functions exhibit similar clustering, and hence this clustering will be useful for the evolutionary fingerprinting of genes.  相似文献   

13.
Widely used models of protein evolution ignore protein structure. Therefore, these models do not predict spatial clustering of amino acid replacements with respect to tertiary structure. One formal and biologically implausible possibility is that there is no tendency for amino acid replacements to be spatially clustered during evolution. An alternative to this is that amino acid replacements are spatially clustered and this spatial clustering can be fully explained by a tendency for similar rates of amino acid replacement at sites that are nearby in protein tertiary structure. A third possibility is that the amount of clustering exceeds that which can be explained solely on the basis of independently evolving protein sites with spatially clustered replacement rates. We introduce two simple and not very parametric hypothesis tests that help distinguish these three possibilities. We then apply these tests to 273 homologous protein families. The null hypothesis of no spatial clustering is rejected for 102 of 273 families. The explanation of spatially clustered rates but independent change among sites is rejected for 43 families. These findings need to be reconciled with the common practice of basing evolutionary inferences on models that assume independent change among sites. [Reviewing Editior: Dr. David Pollock]  相似文献   

14.
We explore factors affecting patterns of polymorphism and divergence (as captured by the neutrality index) at mammalian mitochondrial loci. To do this, we develop a population genetic model that incorporates a fraction of neutral amino acid sites, mutational bias, and a probability distribution of selection coefficients against new nonsynonymous mutations. We confirm, by reanalyzing publicly available datasets, that the mitochondrial cyt-b gene shows a broad range of neutrality indices across mammalian taxa, and explore the biological factors that can explain this observation. We find that observed patterns of differences in the neutrality index, polymorphism, and divergence are not caused by differences in mutational bias. They can, however, be explained by a combination of a small fraction of neutral amino acid sites, weak selection acting on most amino acid mutations, and differences in effective population size among taxa.  相似文献   

15.
Prediction-based fingerprints of protein-protein interactions   总被引:2,自引:0,他引:2  
Porollo A  Meller J 《Proteins》2007,66(3):630-645
The recognition of protein interaction sites is an important intermediate step toward identification of functionally relevant residues and understanding protein function, facilitating experimental efforts in that regard. Toward that goal, the authors propose a novel representation for the recognition of protein-protein interaction sites that integrates enhanced relative solvent accessibility (RSA) predictions with high resolution structural data. An observation that RSA predictions are biased toward the level of surface exposure consistent with protein complexes led the authors to investigate the difference between the predicted and actual (i.e., observed in an unbound structure) RSA of an amino acid residue as a fingerprint of interaction sites. The authors demonstrate that RSA prediction-based fingerprints of protein interactions significantly improve the discrimination between interacting and noninteracting sites, compared with evolutionary conservation, physicochemical characteristics, structure-derived and other features considered before. On the basis of these observations, the authors developed a new method for the prediction of protein-protein interaction sites, using machine learning approaches to combine the most informative features into the final predictor. For training and validation, the authors used several large sets of protein complexes and derived from them nonredundant representative chains, with interaction sites mapped from multiple complexes. Alternative machine learning techniques are used, including Support Vector Machines and Neural Networks, so as to evaluate the relative effects of the choice of a representation and a specific learning algorithm. The effects of induced fit and uncertainty of the negative (noninteracting) class assignment are also evaluated. Several representative methods from the literature are reimplemented to enable direct comparison of the results. Using rigorous validation protocols, the authors estimated that the new method yields the overall classification accuracy of about 74% and Matthews correlation coefficients of 0.42, as opposed to up to 70% classification accuracy and up to 0.3 Matthews correlation coefficient for methods that do not utilize RSA prediction-based fingerprints. The new method is available at http://sppider.cchmc.org.  相似文献   

16.
Miyazawa S 《PloS one》2011,6(12):e28892
BACKGROUND: A mechanistic codon substitution model, in which each codon substitution rate is proportional to the product of a codon mutation rate and the average fixation probability depending on the type of amino acid replacement, has advantages over nucleotide, amino acid, and empirical codon substitution models in evolutionary analysis of protein-coding sequences. It can approximate a wide range of codon substitution processes. If no selection pressure on amino acids is taken into account, it will become equivalent to a nucleotide substitution model. If mutation rates are assumed not to depend on the codon type, then it will become essentially equivalent to an amino acid substitution model. Mutation at the nucleotide level and selection at the amino acid level can be separately evaluated. RESULTS: The present scheme for single nucleotide mutations is equivalent to the general time-reversible model, but multiple nucleotide changes in infinitesimal time are allowed. Selective constraints on the respective types of amino acid replacements are tailored to each gene in a linear function of a given estimate of selective constraints. Their good estimates are those calculated by maximizing the respective likelihoods of empirical amino acid or codon substitution frequency matrices. Akaike and Bayesian information criteria indicate that the present model performs far better than the other substitution models for all five phylogenetic trees of highly-divergent to highly-homologous sequences of chloroplast, mitochondrial, and nuclear genes. It is also shown that multiple nucleotide changes in infinitesimal time are significant in long branches, although they may be caused by compensatory substitutions or other mechanisms. The variation of selective constraint over sites fits the datasets significantly better than variable mutation rates, except for 10 slow-evolving nuclear genes of 10 mammals. An critical finding for phylogenetic analysis is that assuming variable mutation rates over sites lead to the overestimation of branch lengths.  相似文献   

17.
We have carried out an evolutionary study of the two proteins encoded by the RNA 3 from members of the plant virus family Bromoviridae. Using maximum likelihood methods, we have inferred the patterns of amino acid substitution that better explain the diversification of this viral family. The results indicate that the molecular evolution of this family was rather complex, with each protein evolving at different rates and according to different patterns of amino acid substitution. These differences include different amino acid equilibrium frequencies, heterogeneity in substitution rates among sites, and covariation among sites. Despite these differences, the model of protein evolution that better fits both proteins is one specifically proposed for the evolution of globular proteins. We also found evidence for coevolution between domains of these two proteins. Finally, our analyses suggest that the molecular clock hypothesis does not hold, since different lineages evolved at different rates. The implications of these results for the taxonomy of this important family of plant viruses are discussed. [Reviewing Editor: Dr. Martin Kreitman and Dr. James Bull]  相似文献   

18.
Spatial distribution and clustering of repetitive elements are extensively studied during the last years, as well as their colocalization with other genomic components. Here we investigate the large-scale features of Alu and LINE1 spatial arrangement in the human genome by studying the size distribution of interrepeat distances. In most cases, we have found power-law size distributions extending in several orders of magnitude. We have also studied the correlations of the extent of the power law (linear region in double-logarithmic scale) and of the corresponding exponent (slope) with other genomic properties. A model has been formulated to explain the formation of the observed power laws. According to the model, 2 kinds of events occur repetitively in evolutionary time: random insertion of several types of intruding sequences and occasional loss of repeats belonging to the initial population due to "elimination" events. This simple mechanism is shown to reproduce the observed power-law size distributions and is compatible with our present knowledge on the dynamics of repeat proliferation in the genome.  相似文献   

19.
Equilibrium unfolding by guanidinium hydrochloride (GuHCl) and urea as well as evolutionary trends of two homologous albumins, pig serum albumin (PSA) and rabbit serum albumin (RSA), has been studied with circular dichroism, tryptophanyl fluorescence and bioinformatics. GuHCl cannot distinguish the contribution of electrostatic interactions to the proteins which were otherwise effectively monitored by urea. Higher differences in free energy changes due to urea than GuHCl show electrostatic interactions among charged amino acids are possibly responsible for higher structural stability of RSA in comparison to PSA. From the sequence of HSA and RSA, deletion of arginine at position 117 and the presence of one extra tryptophan at position 135 may possess some clue for lesser stability of PSA. Here, for comparison, chemical unfolding data of HSA and BSA had been taken into consideration. We found that thermodynamically RSA and PSA are closer to HSA and BSA, respectively, in accordance with their sequence homologies. Taxonomically, rabbit belongs to lagomorph which is closer to hominids than ungulates. Hence, on the basis of these thermodynamic data of protein denaturation of different species we can use this new approach to analyze the phylogenetic relationship among the major clades of eutherian mammals to obtain their evolutionary trends.  相似文献   

20.
The mitochondrial DNA hypervariable segment I (HVS-I) is widely used in studies of human evolutionary genetics, and therefore accurate estimates of mutation rates among nucleotide sites in this region are essential. We have developed a novel maximum-likelihood methodology for estimating site-specific mutation rates from partial phylogenetic information, such as haplogroup association. The resulting estimation problem is a generalized linear model, with a nonstandard link function. We develop inference and bias correction tools for our estimates and a hypothesis-testing approach for site independence. We demonstrate our methodology using 16,609 HVS-I samples from the Genographic Project. Our results suggest that mutation rates among nucleotide sites in HVS-I are highly variable. The 16,400–16,500 region exhibits significantly lower rates compared to other regions, suggesting potential functional constraints. Several loci identified in the literature as possible termination-associated sequences (TAS) do not yield statistically slower rates than the rest of HVS-I, casting doubt on their functional importance. Our tests do not reject the null hypothesis of independent mutation rates among nucleotide sites, supporting the use of site-independence assumption for analyzing HVS-I. Potential extensions of our methodology include its application to estimation of mutation rates in other genetic regions, like Y chromosome short tandem repeats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号