首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Chen C  Gao M  Liu J  Zhu H 《Plant physiology》2007,145(4):1619-1628
In natural ecosystems, many plants are able to establish mutually beneficial symbioses with microorganisms. Of critical importance to sustainable agriculture are the symbioses formed between more than 80% of terrestrial plants and arbuscular mycorrhizal (AM) fungi and between legumes and nitrogen-fixing rhizobial bacteria. Interestingly, the two symbioses share overlapping signaling pathways in legumes, suggesting that the evolutionarily recent root nodule symbiosis may have acquired functions from the ancient AM symbiosis. The Medicago truncatula DMI3 (DOESN'T MAKE INFECTIONS3) gene (MtDMI3) and its orthologs in legumes are required for both bacterial and fungal symbioses. MtDMI3 encodes a Ca(2+)/calmodulin-dependent protein kinase (CCaMK) essential for the transduction of the Ca(2+) signal induced by the perception of Nod factors. Putative orthologs of MtDMI3 are also present in non-legumes, but their function in AM symbiosis has not been demonstrated in any non-legume species. Here, we combine reverse genetic approaches and a cross-species complementation test to characterize the function of the rice (Oryza sativa) ortholog of MtDMI3, namely, OsDMI3, in AM symbiosis. We demonstrate that OsDMI3 is not only required for AM symbiosis in rice but also is able to complement a M. truncatula dmi3 mutant, indicating an equivalent role of MtDMI3 orthologs in non-legumes.  相似文献   

3.
Associations between insects and gut bacteria are ubiquitous. It is possible to make a distinction between permanent associations (called symbiosis), in which the same type of bacteria is present in more than one generation of the insect, and transient associations. Transient bacteria are ingested together with food but do not settle in the insect gut in such a way that they will be passed on to the next generation. In this study, we describe the permanent association between Western flower thrips (Frankliniella occidentalis), a polyphagous insect species that is a major pest worldwide, and one type of gut bacteria. On the basis of direct microscopic observations and counts of bacteria, it was found that thrips from the populations studied contained large numbers of bacteria in their hindgut. Bacteria were isolated from their host and grown on 10 different agar media. The number of bacteria isolated on agar media equaled the number of direct counts. All isolates had the same colony morphology. On the basis of their 16S rDNA sequence these bacteria were identified as Enterobacteriaceae, closely related to Escherichia coli. Isolates tested with API 20E biochemical tests were Erwinia species. This was the only type of bacteria found in all thrips individuals on any of the 10 different agar media. Universal primers, which would potentially pick up DNA from any bacterium present in the insect, were applied on crude DNA extracts from thrips with bacteria. We only found 16S rDNA sequences similar to those of the isolated thrips gut bacteria. The same type of bacteria was present in all life stages of the thrips and was found to persist in the thrips populations for at least 2 years (more than 50 generations).  相似文献   

4.
Phylogenetic studies are contributing greatly to our knowledge of relationships on both sides of the plant–bacteria nodulation symbiosis. Multiple origins of nodulation (perhaps even within the legume family) appear likely. However, all nodulating flowering plants are more closely related than previously suspected, suggesting that the predisposition to nodulate might have arisen only once. Phylogenies of 16S rRNA genes highlight the evolutionary diversity of symbiotic bacteria and appear to rule out any broad coevolution with their plant hosts, but high levels of gene transfer might obscure the relevant pattern. The origins of nodulation, and the extent to which developmental programs are conserved in nodules remain unclear, but an improved understanding of the relationships between nodulin genes is providing some clues.  相似文献   

5.
The investigation of fungal–bacterial interactions is an emerging field of research applying tools of modern microbial ecology. Studies have previously focused on the mycorrhizosphere, but in past decade, the role of bacteria in other fungal niches has been increasingly evaluated. This review presents recent progress in the understanding of fungal–bacterial interactions and contains a special focus on lichen symbioses. Lichens are traditionally considered as mutualisms between fungi and photoautotrophic species, but recent molecular approaches have revealed that lichens also harbour diverse microbial communities. Using modern DNA/RNA-based and microscopic techniques (e.g. FISH and confocal laser scanning microscopy) we are now able to analyse the abundance, composition, and structure of microbial communities in the lichen holobiont. Lichen-associated microbial communities consist of diverse taxonomic groups; the majority of bacteria belong to Alphaproteobacteria. Microbial communities can form biofilm-like structures on specific parts of the lichen thallus. Until now, the function and interaction within the microbial consortia is not fully understood. The functions displayed mainly by culturable strains suggest that bacteria have lytic activities, complement the nitrogen budget and produce bioactive substances, including hormones and antibiotics. Bacterial contribution to the lichen symbiosis is perhaps not restricted to one particular function in the lichen system, but supports a complex functional network which remains to be studied in greater detail.  相似文献   

6.
Acanthamoeba hosts diverse microbial organisms including viruses, bacteria, yeast and protists, some of which are potential human pathogens. The precise nature of this symbiosis is not clear, but it is suggested that such interactions enable pathogenic microbes to survive hostile conditions and lead to their transmission to susceptible hosts to establish infection. In particular, Acanthamoeba-bacteria interactions have gained significant attention by the scientific and the medical community and have led to speculations of employing anti-amoebic approaches in eradicating 'superbugs' from clinical settings. Here, we discuss the nature of these convoluted interactions and the benefit they represent for the symbionts.  相似文献   

7.
Pathogenicity and symbiosis are central to bacteria-host interactions. Although several human pathogens have been subjected to functional genomic analysis, we still understand little about bacteria-invertebrate interactions despite their ecological prevalence. Advances in our knowledge of this area are often hindered by the difficulty of isolating and working with invertebrate pathogenic bacteria and their hosts. Here we review studies on pathogenicity and symbiosis in an insect pathogenic bacterium Photorhabdus and its entomopathogenic nematode vector and model insect hosts. Whilst switching between these hosts, Photorhabdus changes from a state of symbiosis with its nematode vector to one of pathogenicity towards its new insect host and both the bacteria and the nematode then cooperatively exploit the dying insect. We examine candidate genes involved in symbiosis and pathogenicity, their secretion and expression patterns in culture and in the host, and begin to dissect the extent of their genetic coregulation. We describe the presence of several large genomic islands, putatively involved in pathogenicity or symbiosis, within the otherwise Yersinia-like backbone of the Photorhabdus genome. Finally, we examine the emerging comparative genomics of the Photorhabdus group and begin to describe the interrelationship between anti-invertebrate virulence factors and those used against vertebrates.  相似文献   

8.
The Brassicaceae contains the most diverse collection of agriculturally important crop species of all plant families. Yet, this is one of the few families that do not form functional symbiotic associations with mycorrhizal fungi in the soil for improved nutrient acquisition. The genes involved in this symbiosis were more recently recruited by legumes for symbiotic association with nitrogen-fixing rhizobia bacteria. This study applied second-generation sequencing (SGS) and analysis tools to discover that two such genes, NSP1 (Nodulation Signalling Pathway 1) and NSP2, remain conserved in diverse members of the Brassicaceae despite the absence of these symbioses. We demonstrate the utility of SGS data for the discovery of putative gene homologs and their analysis in complex polyploid crop genomes with little prior sequence information. Furthermore, we show how this data can be applied to enhance downstream reverse genetics analyses. We hypothesize that Brassica NSP genes may function in the root in other plant-microbe interaction pathways that were recruited for mycorrhizal and rhizobial symbioses during evolution.  相似文献   

9.
与植物共生难培养菌物的分类地位与生活史复杂多样,与植物共生程度各异。在其他一定种类生物(如植物、细菌等)存在的条件下,大多与植物共生难培养菌物能完成生活史,而且一些非专性非活体营养的共生菌物较专性活体营养的共生菌物更容易获得纯培养。在简要介绍与植物共生难培养菌物分类地位、生活史与共生类型的基础上,重点探讨了与植物共生难培养菌物的培养特性和培养方法,并讨论了该领域的研究动向与展望,旨在为当前和今后开展难培养菌物纯培养研究提供思路、依据和工作基础。  相似文献   

10.
High‐throughput sequencing technologies are now allowing us to study patterns of community assembly for diverse microbial assemblages across environmental gradients and during succession. Here we discuss potential explanations for similarities and differences in bacterial and fungal community assembly patterns along a soil chronosequence in the foreland of a receding glacier. Although the data are not entirely conclusive, they do indicate that successional trajectories for bacteria and fungi may be quite different. Recent empirical and theoretical studies indicate that smaller microbes (like most bacteria) are less likely to be dispersal limited than are larger microbes – which could result in a more deterministic community assembly pattern for bacteria during primary succession. Many bacteria are also better adapted (than are fungi) to life in barren, early‐successional sediments in that some can fix nitrogen and carbon from the atmosphere – traits not possessed by any fungi. Other differences between bacteria and fungi are discussed, but it is apparent from this and other recent studies of microbial succession that we are a long way from understanding the mechanistic underpinnings of microbial community assembly during ecosystem succession. We especially need a better understanding of global and regional patterns of microbial dispersal and what environmental factors control the development of microbial communities in complex natural systems.  相似文献   

11.
A hyperphosphorylated guanosine nucleotide, (p)ppGpp, was initially identified as the effector molecule responsible for the stringent response in Escherichia coli. However, a rapidly growing number of reports proves that (p)ppGpp-mediated regulation is conserved in many bacteria and even in plants. It is now clear that (p)ppGpp acts as a global regulator during physiological adaptation of the organism to a plethora of environmental conditions. Adaptation is not only essential for surviving periods of stress and nutrient exhaustion but also for the interaction of bacteria with their eukaryotic host, as observed during pathogenesis and symbiosis, and for bacterial multicellular behaviour. Recently, there have been several new discoveries about the effects of (p)ppGpp levels, balanced by RelA-SpoT homologue proteins, in diverse organisms.  相似文献   

12.
Ascidians contain abundant, diverse secondary metabolites, which are thought to serve a defensive role and which have been applied to drug discovery. It is known that bacteria in symbiosis with ascidians produce several of these metabolites, but very little is known about factors governing these ‘chemical symbioses''. To examine this phenomenon across a wide geographical and species scale, we performed bacterial and chemical analyses of 32 different ascidians, mostly from the didemnid family from Florida, Southern California and a broad expanse of the tropical Pacific Ocean. Bacterial diversity analysis showed that ascidian microbiomes are highly diverse, and this diversity does not correlate with geographical location or latitude. Within a subset of species, ascidian microbiomes are also stable over time (R=−0.037, P-value=0.499). Ascidian microbiomes and metabolomes contain species-specific and location-specific components. Location-specific bacteria are found in low abundance in the ascidians and mostly represent strains that are widespread. Location-specific metabolites consist largely of lipids, which may reflect differences in water temperature. By contrast, species-specific bacteria are mostly abundant sequenced components of the microbiomes and include secondary metabolite producers as major components. Species-specific chemicals are dominated by secondary metabolites. Together with previous analyses that focused on single ascidian species or symbiont type, these results reveal fundamental properties of secondary metabolic symbiosis. Different ascidian species have established associations with many different bacterial symbionts, including those known to produce toxic chemicals. This implies a strong selection for this property and the independent origin of secondary metabolite-based associations in different ascidian species. The analysis here streamlines the connection of secondary metabolite to producing bacterium, enabling further biological and biotechnological studies.  相似文献   

13.
刘泽  孙翔  刘晓玲  贾碧丝  刘小勇 《菌物学报》2019,38(10):1581-1599
自真菌内共生细菌在1970年被首次发现以来,各个时期的学者都采用当时流行的研究方法关注宿主真菌及其内共生细菌之间的关联现象。近年来科技手段日益多样,对二者相互作用的探索逐渐成为新的研究热点,随着研究的不断拓展和深入,越来越多的生物学现象和原理被揭示。本文在真菌内共生细菌的研究方法、定殖位置、形态、分类、宿主类群、共生关联的建立、生物学功能、宿主治愈、分离和重新植入等方面进行综述,并在此基础上进行展望,以期为真菌内共生细菌的广泛深入研究提供借鉴。  相似文献   

14.
The relationship between xylophagous termites and the protists resident in their hindguts is a textbook example of symbiosis. The essential steps of lignocellulose degradation handled by these protists allow the host termites to thrive on a wood diet. There has never been a comprehensive analysis of lignocellulose degradation by protists, however, as it has proven difficult to establish these symbionts in pure culture. The trends in lignocellulose degradation during the evolution of the host lineage are also largely unknown. To clarify these points without any cultivation technique, we performed meta-expressed sequence tag (EST) analysis of cDNA libraries originating from symbiotic protistan communities in four termite species and a wood-feeding cockroach. Our results reveal the establishment of a degradation system with multiple enzymes at the ancestral stage of termite-protistan symbiosis, especially GHF5 and 7. According to our phylogenetic analyses, the enzymes comprising the protistan lignocellulose degradation system are coded not only by genes innate to the protists, but also genes acquired by the protists via lateral transfer from bacteria. This gives us a fresh perspective from which to understand the evolutionary dynamics of symbiosis.  相似文献   

15.
The Polynucleobacter-Euplotes association is an obligatory symbiotic system between a monophyletic group of ciliate species belonging to the genus Euplotes and bacteria of the species Polynucleobacter necessarius (Betaproteobacteria). Both organisms are unable to survive independently. Several studies revealed the existence of free-living populations of Polynucleobacter bacteria which are phylogenetically closely related to the endosymbiotic ones, but never share associations with Euplotes in the natural environment. Hence, following the most parsimonious explanation on the origin of the association, this symbiosis should represent a synapomorphic character for the hosts' clade. Nevertheless, phylogenetic analyses performed on an increased number of strains here presented suggest that Euplotes species, during their evolution, recruited Polynucleobacter bacteria as symbionts more than once. Moreover, in three cases, we observed different bacteria as obligate symbionts. These symbionts are the first characterized representatives of a phylogenetic lineage branching in a basal position with respect to the genus Polynucleobacter. The hypothesis that the original obligate symbionts belonged to this newly discovered clade and that, only subsequently, in most cases they have been replaced by Polynucleobacter bacteria recruited from the environment is proposed and discussed. The evolutionary path of this association seems anyway to have been more complex than so far supposed.  相似文献   

16.
Biology of Frankia strains, actinomycete symbionts of actinorhizal plants.   总被引:10,自引:0,他引:10  
Frankia strains are N2-fixing actinomycetes whose isolation and cultivation were first reported in 1978. They induce N2-fixing root nodules on diverse nonleguminous (actinorhizal) plants that are important in ecological successions and in land reclamation and remediation. The genus Frankia encompasses a diverse group of soil actinomycetes that have in common the formation of multilocular sporangia, filamentous growth, and nitrogenase-containing vesicles enveloped in multilaminated lipid envelopes. The relatively constant morphology of vesicles in culture is modified by plant interactions in symbiosis to give a diverse array of vesicles shapes. Recent studies of the genetics and molecular genetics of these organisms have begun to provide new insights into higher-plant-bacterium interactions that lead to productive N2-fixing symbioses. Sufficient information about the relationship of Frankia strains to other bacteria, and to each other, is now available to warrant the creation of some species based on phenotypic and genetic criteria.  相似文献   

17.
Rhizobia are Gram-negative bacteria that live in soils and associate with leguminous plants to establish nitrogen-fixing symbioses. The ability of these bacteria to undergo horizontal gene transfer (HGT) is thought to be one of the main features to explain both the origin of their symbiotic life-style and the plasticity and dynamics of their genomes. In our laboratory we have previously characterized at the species level the non-pSym plasmid mobilome in Sinorhizobium meliloti, the symbiont of Medicago spp., and have found a high incidence of conjugal activity in many plasmids (Pistorio et al., 2008). In this work we characterized the Dtr (DNA-transfer-and-replication) region of one of those plasmids, pSmeLPU88b. This mobilization region was found to represent a previously unclassified Dtr type in rhizobia (hereafter type-IV), highly ubiquitous in S. meliloti and found in other genera of Gram-negative bacteria as well; including Agrobacterium, Ochrobactrum, and Chelativorans. The oriT of the type-IV Dtr described here could be located by function within a DNA fragment of 278 bp, between the divergent genes parA and mobC. The phylogenetic analysis of the cognate relaxase MobZ indicated that this protein groups close to the previously defined MOB(P3) and MOB(P4) type of enzymes, but is located in a separate and novel cluster that we have designated MOB(P0). Noteworthy, MOB(P0) and MOB(P4) relaxases were frequently associated with plasmids present in rhizospheric soil bacteria. A comparison of the nod-gene locations with the phylogenetic topology of the rhizobial relaxases revealed that the symbiotic genes are found on diverse plasmids bearing any of the four Dtr types, thus indicating that pSym plasmids are not specifically associated with any particular mobilization system. Finally, we demonstrated that the type-IV Dtr promoted the mobilization of plasmids from S. meliloti to Sinorhizobium medicae as well as from these rhizobia to other bacteria by means of their own helper functions. The results present an as-yet-unclassified and seemingly ubiquitous conjugal system that provides a mechanistic support for the HGT between sympatric rhizobia of Medicago roots, and between other soil and rhizospheric bacteria.  相似文献   

18.
Bacterial symbiosis has played a fundamental role in the evolution of eukaryotes. However, we still know little about how cooperative relationships with bacteria originate, and why they form in some host species but not others. Facultative symbionts that are beneficial, but not essential, provide unique insights into these processes. We use data from over a hundred aphid species to test if host life history is associated with the presence of facultative symbionts. We find that aphid species that have mutualistic associations with ants that protect them from natural enemies are less likely to carry symbionts that provide similar benefits. We also find one symbiont species occurs more frequently in unrelated aphid species that specialise on certain plant genera. In addition, aphid species that attack multiple plants often carry different symbiont complements. Our findings provide evidence of the ecological conditions that facilitate stable, mutually beneficial relationships between microbes and eukaryotic hosts.  相似文献   

19.
Aerobic anoxygenic phototrophic (AAP) bacteria are well known to be abundant in estuaries, coastal regions and in the open ocean, but little is known about their activity in any aquatic ecosystem. To explore the activity of AAP bacteria in the Delaware estuary and coastal waters, single-cell 3H-leucine incorporation by these bacteria was examined with a new approach that combines infrared epifluorescence microscopy and microautoradiography. The approach was used on samples from the Delaware coast from August through December and on transects through the Delaware estuary in August and November 2011. The percent of active AAP bacteria was up to twofold higher than the percentage of active cells in the rest of the bacterial community in the estuary. Likewise, the silver grain area around active AAP bacteria in microautoradiography preparations was larger than the area around cells in the rest of the bacterial community, indicating higher rates of leucine consumption by AAP bacteria. The cell size of AAP bacteria was 50% bigger than the size of other bacteria, about the same difference on average as measured for activity. The abundance of AAP bacteria was negatively correlated and their activity positively correlated with light availability in the water column, although light did not affect 3H-leucine incorporation in light–dark experiments. Our results suggest that AAP bacteria are bigger and more active than other bacteria, and likely contribute more to organic carbon fluxes than indicated by their abundance.  相似文献   

20.
? The ectomycorrhizal (ECM) symbiosis was historically considered restricted to the temperate zones, but recent studies have shown the importance of this symbiosis across the tropics. We examined ECM fungal diversity, host plant phylogeny and ECM host preferences in a rainforest dominated by the leguminous host plants Dicymbe corymbosa, Dicymbe altsonii and Aldina insignis. ? Ectomycorrhizal fungi were identified by internal transcribed spacer rDNA sequencing and host species were verified with chloroplast trnL sequencing. To test whether Dicymbe and Aldina represent independent gains of the ECM symbiosis, we constructed a Fabaceae phylogeny using MatK and trnL. We identified four independent ECM lineages within the Fabaceae. ? We detected a diverse community of 118 ECM species dominated by the /clavulina, /russula-lactarius, /boletus, and /tomentella-thelephora lineages. Ectomycorrhizal species in Agaricales, Atheliales and Polyporales may represent previously unrecognized tropical-endemic ECM lineages. Previous studies suggested that ECM fungi did not diversify in the tropics, but the /clavulina lineage appears to have a center of diversity in tropical South America. ? Dicymbe and Aldina represent independent gains of the ECM symbiosis in Fabaceae but their fungal symbionts showed no host preferences. Spatial factors are more important than hosts in structuring the ECM fungal community in this ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号