首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An international effort is underway to generate a comprehensive haplotype map (HapMap) of the human genome represented by an estimated 300000 to 1 million ‘tag’ single nucleotide polymorphisms (SNPs). Our analysis indicates that the current human SNP map is not sufficiently dense to support the HapMap project. For example, 24.6% of the genome currently lacks SNPs at the minimal density and spacing that would be required to construct even a conservative tag SNP map containing 300 000 SNPs. In an effort to improve the human SNP map, we identified 140 696 additional SNP candidates using a new bioinformatics pipeline. Over 51 000 of these SNPs mapped to the largest gaps in the human SNP map, leading to significant improvements in these regions. Our SNPs will be immediately useful for the HapMap project, and will allow for the inclusion of many additional genomic intervals in the final HapMap. Nevertheless, our results also indicate that additional SNP discovery projects will be required both to define the haplotype architecture of the human genome and to construct comprehensive tag SNP maps that will be useful for genetic linkage studies in humans.  相似文献   

2.
Linkage disequilibrium (LD) is an essential metric for selecting single-nucleotide polymorphisms (SNPs) to use in genetic studies and identifying causal variants from significant tag SNPs. The explosion in the number of polymorphisms that can now be genotyped by commercial arrays makes the interpretation of triangular correlation plots, commonly used for visualizing LD, extremely difficult in particular when large genomics regions need to be considered or when SNPs in perfect LD are not adjacent but scattered across a genomic region. We developed ArchiLD, a user-friendly graphical application for the hierarchical visualization of LD in human populations. The software provides a powerful framework for analyzing LD patterns with a particular focus on blocks of SNPs in perfect linkage as defined by r2. Thanks to its integration with the UCSC Genome Browser, LD plots can be easily overlapped with additional data on regulation, conservation and expression. ArchiLD is an intuitive solution for the visualization of LD across large or highly polymorphic genomic regions. Its ease of use and its integration with the UCSC Genome Browser annotation potential facilitates the interpretation of association results and enables a more informed selection of tag SNPs for genetic studies.  相似文献   

3.
MOTIVATIONS: The tag SNP approach is a valuable tool in whole genome association studies, and a variety of algorithms have been proposed to identify the optimal tag SNP set. Currently, most tag SNP selection is based on two-marker (pairwise) linkage disequilibrium (LD). Recent literature has shown that multiple-marker LD also contains useful information that can further increase the genetic coverage of the tag SNP set. Thus, tag SNP selection methods that incorporate multiple-marker LD are expected to have advantages in terms of genetic coverage and statistical power. RESULTS: We propose a novel algorithm to select tag SNPs in an iterative procedure. In each iteration loop, the SNP that captures the most neighboring SNPs (through pair-wise and multiple-marker LD) is selected as a tag SNP. We optimize the algorithm and computer program to make our approach feasible on today's typical workstations. Benchmarked using HapMap release 21, our algorithm outperforms standard pair-wise LD approach in several aspects. (i) It improves genetic coverage (e.g. by 7.2% for 200 K tag SNPs in HapMap CEU) compared to its conventional pair-wise counterpart, when conditioning on a fixed tag SNP number. (ii) It saves genotyping costs substantially when conditioning on fixed genetic coverage (e.g. 34.1% saving in HapMap CEU at 90% coverage). (iii) Tag SNPs identified using multiple-marker LD have good portability across closely related ethnic groups and (iv) show higher statistical power in association tests than those selected using conventional methods. AVAILABILITY: A computer software suite, multiTag, has been developed based on this novel algorithm. The program is freely available by written request to the author at ke_hao@merck.com  相似文献   

4.
5.
Recent studies have revealed that linkage disequilibrium (LD) patterns vary across the human genome with some regions of high LD interspersed with regions of low LD. Such LD patterns make it possible to select a set of single nucleotide polymorphism (SNPs; tag SNPs) for genome-wide association studies. We have developed a suite of computer programs to analyze the block-like LD patterns and to select the corresponding tag SNPs. Compared to other programs for haplotype block partitioning and tag SNP selection, our program has several notable features. First, the dynamic programming algorithms implemented are guaranteed to find the block partition with minimum number of tag SNPs for the given criteria of blocks and tag SNPs. Second, both haplotype data and genotype data from unrelated individuals and/or from general pedigrees can be analyzed. Third, several existing measures/criteria for haplotype block partitioning and tag SNP selection have been implemented in the program. Finally, the programs provide flexibility to include specific SNPs (e.g. non-synonymous SNPs) as tag SNPs. AVAILABILITY: The HapBlock program and its supplemental documents can be downloaded from the website http://www.cmb.usc.edu/~msms/HapBlock.  相似文献   

6.
Lim J  Kim YJ  Yoon Y  Kim SO  Kang H  Park J  Han AR  Han B  Oh B  Kimm K  Yoon B  Song K 《Genomics》2006,87(3):392-398
The extent and pattern of linkage disequilibrium (LD) in the human genome provide important information for disease gene mapping. Previous studies have shown that LDs vary depending on chromosomal regions and populations. As the Asian samples of the International HapMap Project consisted of Japanese and Chinese populations, it was of interest whether we could use the HapMap data as a reference to carry out association studies of common complex diseases in a closely related population, such as Koreans. We have compared the LD and recombination patterns defined by single-nucleotide polymorphisms (SNPs) in ENCODE region ENm010, chromosome 7p15.2, in Korean, Japanese, and Chinese samples and further tested the robustness of tagSNPs among the Asian samples. We genotyped 792 SNPs in 500 kb (chromosome 7: 26699793-27199792, NCBI build 34) from 90 unrelated Koreans by fluorescence polarization detection and compared the data with Asian data from the HapMap project. Despite some differences in the position of high LD region boundaries, the overall patterns of LD were remarkably similar across the three samples, reflecting strong genetic affinities among them. Furthermore, the haplotype tag SNP transferability across the three samples was greater than 90%. Our results support the initial suggestion that the populations genotyped in the HapMap project might serve as reference populations for the selection of tagSNPs in association studies.  相似文献   

7.
Power to detect risk alleles using genome-wide tag SNP panels   总被引:1,自引:0,他引:1       下载免费PDF全文
Advances in high-throughput genotyping and the International HapMap Project have enabled association studies at the whole-genome level. We have constructed whole-genome genotyping panels of over 550,000 (HumanHap550) and 650,000 (HumanHap650Y) SNP loci by choosing tag SNPs from all populations genotyped by the International HapMap Project. These panels also contain additional SNP content in regions that have historically been overrepresented in diseases, such as nonsynonymous sites, the MHC region, copy number variant regions and mitochondrial DNA. We estimate that the tag SNP loci in these panels cover the majority of all common variation in the genome as measured by coverage of both all common HapMap SNPs and an independent set of SNPs derived from complete resequencing of genes obtained from SeattleSNPs. We also estimate that, given a sample size of 1,000 cases and 1,000 controls, these panels have the power to detect single disease loci of moderate risk (λ ~ 1.8–2.0). Relative risks as low as λ ~ 1.1–1.3 can be detected using 10,000 cases and 10,000 controls depending on the sample population and disease model. If multiple loci are involved, the power increases significantly to detect at least one locus such that relative risks 20%–35% lower can be detected with 80% power if between two and four independent loci are involved. Although our SNP selection was based on HapMap data, which is a subset of all common SNPs, these panels effectively capture the majority of all common variation and provide high power to detect risk alleles that are not represented in the HapMap data.  相似文献   

8.
Detection of the rare polymorphisms and causative mutations of genetic diseases in a targeted genomic area has become a major goal in order to understand genomic and phenotypic variability. We have interrogated repeat-masked regions of 8.9 Mb on human chromosomes 21 (7.8 Mb) and 7 (1.1 Mb) from an individual from the International HapMap Project (NA12872). We have optimized a method of genomic selection for high throughput sequencing. Microarray-based selection and sequencing resulted in 260-fold enrichment, with 41% of reads mapping to the target region. 83% of SNPs in the targeted region had at least 4-fold sequence coverage and 54% at least 15-fold. When assaying HapMap SNPs in NA12872, our sequence genotypes are 91.3% concordant in regions with coverage≥4-fold, and 97.9% concordant in regions with coverage≥15-fold. About 81% of the SNPs recovered with both thresholds are listed in dbSNP. We observed that regions with low sequence coverage occur in close proximity to low-complexity DNA. Validation experiments using Sanger sequencing were performed for 46 SNPs with 15-20 fold coverage, with a confirmation rate of 96%, suggesting that DNA selection provides an accurate and cost-effective method for identifying rare genomic variants.  相似文献   

9.
Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic variations amongst species. With the genome‐wide SNP discovery, many genome‐wide association studies are likely to identify multiple genetic variants that are associated with complex diseases. However, genotyping all existing SNPs for a large number of samples is still challenging even though SNP arrays have been developed to facilitate the task. Therefore, it is essential to select only informative SNPs representing the original SNP distributions in the genome (tag SNP selection) for genome‐wide association studies. These SNPs are usually chosen from haplotypes and called haplotype tag SNPs (htSNPs). Accordingly, the scale and cost of genotyping are expected to be largely reduced. We introduce binary particle swarm optimization (BPSO) with local search capability to improve the prediction accuracy of STAMPA. The proposed method does not rely on block partitioning of the genomic region, and consistently identified tag SNPs with higher prediction accuracy than either STAMPA or SVM/STSA. We compared the prediction accuracy and time complexity of BPSO to STAMPA and an SVM‐based (SVM/STSA) method using publicly available data sets. For STAMPA and SVM/STSA, BPSO effective improved prediction accuracy for smaller and larger scale data sets. These results demonstrate that the BPSO method selects tag SNP with higher accuracy no matter the scale of data sets is used. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

10.
Genetic association studies increasingly rely on the use of linkage disequilibrium (LD) tag SNPs to reduce genotyping costs. We developed a software package TAGster to select, evaluate and visualize LD tag SNPs both for single and multiple populations. We implement several strategies to improve the efficiency of current LD tag SNP selection algorithms: (1) we modify the tag SNP selection procedure of Carlson et al. to improve selection efficiency and further generalize it to multiple populations. (2) We propose a redundant SNP elimination step to speed up the exhaustive tag SNP search algorithm proposed by Qin et al. (3) We present an additional multiple population tag SNP selection algorithm based on the framework of Howie et al., but using our modified exhaustive search procedure. We evaluate these methods using resequenced candidate gene data from the Environmental Genome Project and show improvements in both computational and tagging efficiency. AVAILABILITY: The software Package TAGster is freely available at http://www.niehs.nih.gov/research/resources/software/tagster/  相似文献   

11.
Genome-wide association (GWA) studies are currently one of the most powerful tools in identifying disease-associated genes or variants. In typical GWA studies, single-nucleotide polymorphisms (SNPs) are often used as genetic makers. Therefore, it is critical to estimate the percentage of genetic variations which can be covered by SNPs through linkage disequilibrium (LD). In this study, we use the concept of haplotype blocks to evaluate the coverage of five SNP sets including the HapMap and four commercial arrays, for every exon in the human genome. We show that although some Chips can reach similar coverage as the HapMap, only about 50% of exons are completely covered by haplotype blocks of HapMap SNPs. We suggest further high-resolution genotyping methods are required, to provide adequate genome-wide power for identifying variants.  相似文献   

12.
The search for the association between complex diseases and single nucleotide polymorphisms (SNPs) or haplotypes has recently received great attention. For these studies, it is essential to use a small subset of informative SNPs accurately representing the rest of the SNPs. Informative SNP selection can achieve (1) considerable budget savings by genotyping only a limited number of SNPs and computationally inferring all other SNPs or (2) necessary reduction of the huge SNP sets (obtained, e.g. from Affymetrix) for further fine haplotype analysis. A novel informative SNP selection method for unphased genotype data based on multiple linear regression (MLR) is implemented in the software package MLR-tagging. This software can be used for informative SNP (tag) selection and genotype prediction. The stepwise tag selection algorithm (STSA) selects positions of the given number of informative SNPs based on a genotype sample population. The MLR SNP prediction algorithm predicts a complete genotype based on the values of its informative SNPs, their positions among all SNPs, and a sample of complete genotypes. An extensive experimental study on various datasets including 10 regions from HapMap shows that the MLR prediction combined with stepwise tag selection uses fewer tags than the state-of-the-art method of Halperin et al. (2005). AVAILABILITY: MLR-Tagging software package is publicly available at http://alla.cs.gsu.edu/~software/tagging/tagging.html  相似文献   

13.
The Haplotype Map (HapMap) project recently generated genotype data for more than 1 million single-nucleotide polymorphisms (SNPs) in four population samples. The main application of the data is in the selection of tag single-nucleotide polymorphisms (tSNPs) to use in association studies. The usefulness of this selection process needs to be verified in populations outside those used for the HapMap project. In addition, it is not known how well the data represent the general population, as only 90–120 chromosomes were used for each population and since the genotyped SNPs were selected so as to have high frequencies. In this study, we analyzed more than 1,000 individuals from Estonia. The population of this northern European country has been influenced by many different waves of migrations from Europe and Russia. We genotyped 1,536 randomly selected SNPs from two 500-kbp ENCODE regions on Chromosome 2. We observed that the tSNPs selected from the CEPH (Centre d'Etude du Polymorphisme Humain) from Utah (CEU) HapMap samples (derived from US residents with northern and western European ancestry) captured most of the variation in the Estonia sample. (Between 90% and 95% of the SNPs with a minor allele frequency of more than 5% have an r2 of at least 0.8 with one of the CEU tSNPs.) Using the reverse approach, tags selected from the Estonia sample could almost equally well describe the CEU sample. Finally, we observed that the sample size, the allelic frequency, and the SNP density in the dataset used to select the tags each have important effects on the tagging performance. Overall, our study supports the use of HapMap data in other Caucasian populations, but the SNP density and the bias towards high-frequency SNPs have to be taken into account when designing association studies.  相似文献   

14.
We propose a simple model of evolution at a pair of SNP loci, under mutation, genetic drift and recombination. The developed model allows to consider evolution of SNPs under different demographic scenarios. We applied it to SNP data containing polymorphisms spanning 19 gene regions. We initially matched the linkage disequilibrium (LD) data only, and then we reconciled both LD and heterozygosity data. The imbalance between LD and heterozygosity data, observed for some of the analyzed genomic regions, may be a signature of selection acting in these regions. However, assuming neutrality, we obtain estimates of the age of population expansion of modern humans, which are consistent with the consensus estimates. In addition, we are able to estimate the ages of the polymorphisms observed in different genomic regions and we find that they vary widely with respect to their age. Polymorphisms at loci implicated in human disease, seem to be younger than average. Our results supplement the conclusions originally obtained by Reich and co-workers for the same set of data.  相似文献   

15.

Background  

Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessary to genotype all SNPs for association study. Many algorithms have been developed to find a small subset of SNPs called tag SNPs that are sufficient to infer all the other SNPs. Algorithms based on the r 2 LD statistic have gained popularity because r 2 is directly related to statistical power to detect disease associations. Most of existing r 2 based algorithms use pairwise LD. Recent studies show that multi-marker LD can help further reduce the number of tag SNPs. However, existing tag SNP selection algorithms based on multi-marker LD are both time-consuming and memory-consuming. They cannot work on chromosomes containing more than 100 k SNPs using length-3 tagging rules.  相似文献   

16.
Studies of copy-number variation and linkage disequilibrium (LD) have typically excluded complex regions of the genome that are rich in duplications and prone to rearrangement. In an attempt to assess the heritability and LD of copy-number polymorphisms (CNPs) in duplication-rich regions of the genome, we profiled copy-number variation in 130 putative "rearrangement hotspot regions" among 269 individuals of European, Yoruba, Chinese, and Japanese ancestry analyzed by the International HapMap Consortium. Eighty-four hotspot regions, corresponding to 257 bacterial artificial chromosome (BAC) probes, showed evidence of copy-number differences. Despite a predisposing genetic architecture, no polymorphism was ever observed in the remaining 46 "rearrangement hotspots," and we suggest these represent excellent candidate sites for pathogenic rearrangements. We used a combination of BAC-based and high-density customized oligonucleotide arrays to resolve the molecular basis of structural rearrangements. For common variants (frequency >10%), we observed a distinct bias against copy-number losses, suggesting that deletions are subject to purifying selection. Heritability estimates did not differ significantly from 1.0 among the majority (30 of 34) of loci analyzed, consistent with normal Mendelian inheritance. Some of the CNPs in duplication-rich regions showed strong LD with nearby single-nucleotide polymorphisms (SNPs) and were observed to segregate on ancestral SNP haplotypes. However, LD with the best available SNP markers was weaker than has been reported for deletion polymorphisms in less complex regions of the genome. These observations may be accounted for by a low density of SNP data in duplicated regions, challenges in mapping and typing the CNPs, and the possibility that CNPs in these regions have rearranged on multiple haplotype backgrounds. Our results underscore the need for complete maps of genetic variation in duplication-rich regions of the genome.  相似文献   

17.
Single nucleotide polymorphisms (SNPs) have been proposed to be grouped into haplotype blocks harboring a limited number of haplotypes. Within each block, the portion of haplotypes is expected to be tagged by a selected subset of SNPs; however, none of the proposed selection algorithms have been definitive. To address this issue, we developed a tag SNP selection algorithm based on grouping of SNPs by the linkage disequilibrium (LD) coefficient r(2) and examined five genes in three ethnic populations--the Japanese, African Americans, and Caucasians. Additionally, we investigated ethnic diversity by characterizing 979 SNPs distributed throughout the genome. Our algorithm could spare 60% of SNPs required for genotyping and limit the imprecision in allele-frequency estimation of nontag SNPs to 2% on average. We discovered the presence of a mosaic pattern of LD plots within a conventionally inferred haplotype block. This emerged because multiple groups of SNPs with strong intragroup LD were mingled in their physical positions. The pattern of LD plots showed some similarity, but the details of tag SNPs were not entirely concordant among three populations. Consequently, our algorithm utilizing LD grouping allows selection of a more faithful set of tag SNPs than do previous algorithms utilizing haplotype blocks.  相似文献   

18.
Linkage disequilibrium (LD) has received much attention recently because of its value in localizing disease-causing genes. Due to the extensive LD between neighboring loci in the human genome, it is believed that a subset of the single nucleotide polymorphisms in a region (tagSNPs) can be selected to capture most of the remaining SNP variants. In this study, we examined LD patterns and HapMap tagSNP transferability in more than 300 individuals. A South Indian sample and an African Mbuti Pygmy population sample were included to evaluate the performance of HapMap tagSNPs in geographically distinct and genetically isolated populations. Our results show that HapMap tagSNPs selected with r(2) >= 0.8 can capture more than 85% of the SNPs in populations that are from the same continental group. Combined tagSNPs from HapMap CEU and CHB+JPT serve as the best reference for the Indian sample. The HapMap YRI are a sufficient reference for tagSNP selection in the Pygmy sample. In addition to our findings, we reviewed over 25 recent studies of tagSNP transferability and propose a general guideline for selecting tagSNPs from HapMap populations.  相似文献   

19.
Genetic epidemiological studies of complex diseases often rely on data from the International HapMap Consortium for identification of single nucleotide polymorphisms (SNPs), particularly those that tag haplotypes. However, little is known about the relevance of the African populations used to collect HapMap data for study populations conducted elsewhere in Africa. Toll-like receptor (TLR) genes play a key role in susceptibility to various infectious diseases, including tuberculosis. We conducted full-exon sequencing in samples obtained from Uganda (n = 48) and South Africa (n = 48), in four genes in the TLR pathway: TLR2, TLR4, TLR6, and TIRAP. We identified one novel TIRAP SNP (with minor allele frequency [MAF] 3.2%) and a novel TLR6 SNP (MAF 8%) in the Ugandan population, and a TLR6 SNP that is unique to the South African population (MAF 14%). These SNPs were also not present in the 1000 Genomes data. Genotype and haplotype frequencies and linkage disequilibrium patterns in Uganda and South Africa were similar to African populations in the HapMap datasets. Multidimensional scaling analysis of polymorphisms in all four genes suggested broad overlap of all of the examined African populations. Based on these data, we propose that there is enough similarity among African populations represented in the HapMap database to justify initial SNP selection for genetic epidemiological studies in Uganda and South Africa. We also discovered three novel polymorphisms that appear to be population-specific and would only be detected by sequencing efforts.  相似文献   

20.

Background  

Single Nucleotide Polymorphisms (SNPs) are the most common type of polymorphisms found in the human genome. Effective genetic association studies require the identification of sets of tag SNPs that capture as much haplotype information as possible. Tag SNP selection is analogous to the problem of data compression in information theory. According to Shannon's framework, the optimal tag set maximizes the entropy of the tag SNPs subject to constraints on the number of SNPs. This approach requires an appropriate probabilistic model. Compared to simple measures of Linkage Disequilibrium (LD), a good model of haplotype sequences can more accurately account for LD structure. It also provides a machinery for the prediction of tagged SNPs and thereby to assess the performances of tag sets through their ability to predict larger SNP sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号