首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parasites and hosts live in communities consisting of many interacting species, but few studies have examined how communities affect parasite virulence and transmission. We studied a food web consisting of two species of milkweed, two milkweed herbivores (monarch butterfly and oleander aphid) and a monarch butterfly-specific parasite. We found that the presence of aphids increased the virulence and transmission potential of the monarch butterfly's parasite on one milkweed species. These increases were associated with aphid-induced decreases in the defensive chemicals of milkweed plants. Our experiment suggests that aphids can indirectly increase the virulence and transmission potential of monarch butterfly parasites, probably by altering the chemical composition of a shared food plant. These results indicate that species that are far removed from host-parasite interactions can alter such interactions through cascading indirect effects in the food web. As such, indirect effects within ecological communities may drive the dynamics and evolution of parasites.  相似文献   

2.
Recent research has generally shown that a small change in the number of species in a food web can have consequences both for community structure and ecosystem processes. However ‘change’ is not limited to just the number of species in a community, but might include an alteration to such properties as precipitation, nutrient cycling and temperature. How such changes might affect species interactions is important, not just through the presence or absence of interactions, but also because the patterning of interaction strengths among species is intimately associated with community stability. Interaction strengths encompass such properties as feeding rates and assimilation efficiencies, and encapsulate functionally important information with regard to ecosystem processes. Interaction strengths represent the pathways and transfer of energy through an ecosystem. We review the best empirical data available detailing the frequency distribution of interaction strengths in communities. We present the underlying (but consistent) pattern of species interactions and discuss the implications of this patterning. We then examine how such a basic pattern might be affected given various scenarios of ‘change’ and discuss the consequences for community stability and ecosystem functioning.  相似文献   

3.
Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators--larvae of the pitcher-plant mosquito--indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species.  相似文献   

4.
One of the most important issues in ecology is understanding the causal mechanisms that shape the structure of ecological communities through trophic interactions. The focus on direct, trophic interactions in much of the research to date means that the potential significance of non-trophic, indirect, and facilitative interactions has been largely ignored in traditional food webs. There is a growing appreciation of the community consequences of such non-trophic effects, and the need to start including them in food web research. This review highlights how non-trophic, indirect, and facilitative interactions play an important role in organizing the structure of plant-centered arthropod communities. I argue that herbivore-induced plant responses, insect ecosystem engineers, and mutualisms involving ant–honeydew-producing insects all generate interaction linkages among insect herbivores, thereby producing complex indirect interaction webs on terrestrial plants. These interactions are all very common and widespread on terrestrial plants, in fact they are almost ubiquitous, but these interactions have rarely been included in traditional food webs. Finally, I will emphasize that because the important community consequences of these non-trophic and indirect interactions have been largely unexplored, it is critical that indirect interaction webs should be the focus of future research.  相似文献   

5.
土壤线虫对气候变化的响应研究进展   总被引:2,自引:0,他引:2  
宋敏  刘银占  井水水 《生态学报》2015,35(20):6857-6867
全球变化对陆地生态系统功能具有重要而深远的影响。陆地生态系统地下部分具有重要的生态功能,其组成及结构对气候变化的响应将进一步减缓或加剧全球化进程。土壤线虫在各类生态系统中分布十分广泛,是地下食物网的重要组分,在维持土壤生物多样性及营养物质循环过程中发挥重要作用,其组成及结构对不同气候变化驱动因子的响应机制与模式不尽相同。增温及降水格局变化主要是通过改变线虫生境而直接影响其种群密度与结构,两者通常表现为正效应且作用效果随处理时间的延长而增强。CO2与大气氮沉降主要是通过影响地上植被,凋落物质量,土壤理化性质等间接过程影响土壤线虫。同时,不同的全球变化因子之间存在着复杂的交互作用,深入理解这些因子之间交互作用对线虫群落的影响模式与机制对于探讨未来气候变化情景下生态统生物多样性及养分循环过程具有重要的理论指导意义。  相似文献   

6.
Ecological communities are constantly being reshaped in the face of environmental change and anthropogenic pressures. Yet, how food webs change over time remains poorly understood. Food web science is characterized by a trade‐off between complexity (in terms of the number of species and feeding links) and dynamics. Topological analysis can use complex, highly resolved empirical food web models to explore the architecture of feeding interactions but is limited to a static view, whereas ecosystem models can be dynamic but use highly aggregated food webs. Here, we explore the temporal dynamics of a highly resolved empirical food web over a time period of 18 years, using the German Bight fish and benthic epifauna community as our case study. We relied on long‐term monitoring ecosystem surveys (from 1998 to 2015) to build a metaweb, i.e. the meta food web containing all species recorded over the time span of our study. We then combined time series of species abundances with topological network analysis to construct annual food web snapshots. We developed a new approach, ‘node‐weighted’ food web metrics by including species abundances to represent the temporal dynamics of food web structure, focusing on generality and vulnerability. Our results suggest that structural food web properties change through time; however, binary food web structural properties may not be as temporally variable as the underlying changes in species composition. Further, the node‐weighted metrics enabled us to detect that food web structure was influenced by changes in species composition during the first half of the time series and more strongly by changes in species dominance during the second half. Our results demonstrate how ecosystem surveys can be used to monitor temporal changes in food web structure, which are important ecosystem indicators for building marine management and conservation plans.  相似文献   

7.
8.
Food webs are networks of species that feed on each other. The role that within-population phenotypic and genetic variation plays in food web structure is largely unknown. Here, I show via simulation how variation in two key traits, growth rates and phenology, by influencing the variability of body sizes present through time, can potentially affect several structural parameters in the direction of enhancing food web persistence: increased connectance, decreased interaction strengths, increased variation among interaction strengths and increased degree of omnivory. I discuss other relevant traits whose variation could affect the structure of food webs, such as morphological and additional life-history traits, as well as animal personalities. Furthermore, trait variation could also contribute to the stability of food web modules through metacommunity dynamics. I propose future research to help establish a link between within-population variation and food web structure. If appropriately established, such a link could have important consequences for biological conservation, as it would imply that preserving (functional) genetic variation within populations could ensure the preservation of entire communities.  相似文献   

9.
Climate change is inducing deep modifications in local communities worldwide as a consequence of individualistic species range shifts. Understanding how complex interaction networks will be reorganized under climate change represents a major challenge in the fields of ecology and biogeography. However, forecasting the potential effects of climate change on local communities, and more particularly on food‐web structure, requires the consideration of highly structuring processes, such as trophic interactions. A major breakthrough is therefore expected by combining predictive models integrating habitat selection processes, the physiological limits of marine species and their trophic interactions. In this study, we forecasted the potential impacts of climate change on the local food‐web structure of the highly threatened Gulf of Gabes ecosystem located in the south of the Mediterranean Sea. We coupled the climatic envelope and habitat models to an allometric niche food web model, hence taking into account the different processes acting at regional (climate) and local scales (habitat selection and trophic interactions). Our projections under the A2 climate change scenario showed that future food webs would be composed of smaller species with fewer links, resulting in a decrease of connectance, generality, vulnerability and mean trophic level of communities and an increase of the average path length, which may have large consequences on ecosystem functioning. The unified framework presented here, by connecting food‐web ecology, biogeography and seascape ecology, allows the exploration of spatial aspects of interspecific interactions under climate change and improves our current understanding of climate change impacts on local marine food webs.  相似文献   

10.
Studies on the implications of food web interactions to community structure have often focused on density-mediated interactions between predators and their prey. This approach emphasizes the importance of predator regulation of prey density via consumption (i.e. lethal effects), which, in turn, leads to cascading effects on the prey's resources. A more recent and contrasting view emphasizes the importance of non-lethal predator effects on prey traits (e.g. behaviour, morphology), or trait-mediated interactions. On rocky intertidal shores in New England, green crab ( Carcinus maenas ) predation is thought to be important to patterns of algal abundance and diversity by regulating the density of herbivorous snails ( Littorina littorea ). We found, however, that risk cues from green crabs can dramatically suppress snail grazing, with large effects on fucoid algal communities. Our results suggest that predator-induced changes in prey behaviour may be an important and under-appreciated component of food web interactions and community dynamics on rocky intertidal shores.  相似文献   

11.
1.?To address effects of land use and human overexploitation on wildlife populations, it is essential to better understand how human activities have changed species composition, diversity and functioning. Theoretical studies modelled how network properties change under human-induced, non-random species loss. However, we lack data on realistic species-loss sequences in threatened, real-world food webs to parameterize these models. 2.?Here, we present a first size-structured topological food web of one of the most pristine terrestrial ecosystems in the world, the Serengeti ecosystem (Tanzania). The food web consists of 95 grouped nodes and includes both invertebrates and vertebrates ranging from body masses between 10(-7) and 10(4) kg. 3.?We study the topological changes in this food web that result from the simulated IUCN-based species-loss sequence representing current species vulnerability to human disturbances in and around this savanna ecosystem. We then compare this realistic extinction scenario with other extinction sequences based on body size and connectance and perform an analysis of robustness of this savanna food web. 4.?We demonstrate that real-world species loss in this case starts with the biggest (mega) herbivores and top predators, causing higher predator-prey mass ratios. However, unlike theoretically modelled linear species deletion sequences, this causes poor-connected species to be lost first, while more highly connected species become lost as human impact progresses. This food web shows high robustness to decreasing body size and increasing connectance deletion sequences compared with a high sensitivity to the decreasing connectance deletion scenario. 5.?Furthermore, based on the current knowledge of the Serengeti ecosystem, we discuss how the focus on food web topology alone, disregarding nontrophic interactions, may lead to an underestimation of human impacts on wildlife communities, with the number of trophic links affected by a factor of two. 6.?This study underlines the importance of integrative efforts between the development of food web theory and basic field work approaches in the quantification of the structure of interaction networks to sustain natural ecosystems in a changing world.  相似文献   

12.
The relationship between biodiversity and ecosystem functioning, and the mechanisms underpinning the food web stability, have been intensively investigated in ecological research. The ubiquities of generalists in natural food webs and its important role in dictating these ecosystem properties have been generally recognized. However, how competition between multiple top predators shape these ecosystem properties and determine the success of invasive predators remain largely unexplored. Here, we use a well-developed food web model to investigate the effects of prey preference of top predators on ecosystem functioning and food web stability in both local and invasive conditions. We design several modeling scenarios to mimic combinations of different types of top predators (specialist/generalist) and their origins (local/invasive). Our model theoretically shows that lower exploitation competition for prey between top predators (with distinct prey preferences featured by higher attack rates) would be beneficial for the ecosystem functioning and food web stability. We also demonstrate that the success of top predator invasion depends on the prey preference of both local and invasive top predators. Sensitivity analysis on the model further supports our findings. Our results highlight the importance of prey preference of multiple top predators in manipulating the properties of multi-trophic ecosystems. Our findings may have important implications because the current ongoing global changes profoundly change the phenology of many biological systems and create trophic mismatch, which may manipulate prey preference of top predators and in turn deteriorate ecosystem functioning and food web stability.  相似文献   

13.
Predicting climate change impacts on animal communities requires knowledge of how physiological effects are mediated by ecological interactions. Food‐dependent growth and within‐species size variation depend on temperature and affect community dynamics through feedbacks between individual performance and population size structure. Still, we know little about how warming affects these feedbacks. Using a dynamic stage‐structured biomass model with food‐, size‐ and temperature‐dependent life history processes, we analyse how temperature affects coexistence, stability and size structure in a tri‐trophic food chain, and find that warming effects on community stability depend on ecological interactions. Predator biomass densities generally decline with warming – gradually or through collapses – depending on which consumer life stage predators feed on. Collapses occur when warming induces alternative stable states via Allee effects. This suggests that predator persistence in warmer climates may be lower than previously acknowledged and that effects of warming on food web stability largely depend on species interactions.  相似文献   

14.
Decades of research have revealed the crucial roles of cross-system energy flows (spatial subsidies) in mediating trophic interactions in recipient systems. Food web theory predicts that the responses of subsidized consumers are a key to understanding the net impacts of spatial subsidies on in situ prey/resources of recipient systems. However, less is known about the factors triggering the cascading biotic interactions across coupled ecosystems. Here, we quantify how riverine productivity (donor system) mediates terrestrial food web interactions through spatial subsidies to simplified gravel bar communities. Our comparative study in Japan indicated that higher algal biomass in aquatic systems led to increased supplies of emerging aquatic insects, which were associated with greater densities of terrestrial consumers (Carabid beetles) and enhanced consumption rates of supplemental in situ prey on gravel bars. Our results highlight the potential of donor productivity to drive cascading biotic interactions across coupled ecosystems. Because cross-system energy flows should originate, at least in part, from primary producers of donor systems, our fundamental finding may form the basis of future studies exploring the driving factors of cross-system trophic interactions.  相似文献   

15.
Most evidence of climate change impacts on food webs comes from modern studies and little is known about how ancient food webs have responded to climate changes in the past. Here, we integrate fossil evidence from 71 fossil sites, body-size relationships and actualism to reconstruct food webs for six large mammal communities that inhabited the Iberian Peninsula at different times during the Quaternary. We quantify the long-term dynamics of these food webs and study how their structure changed across the Quaternary, a period for which fossil data and climate changes are well known. Extinction, immigration and turnover rates were correlated with climate changes in the last 850 kyr. Yet, we find differences in the dynamics and structural properties of Pleistocene versus Holocene mammal communities that are not associated with glacial-interglacial cycles. Although all Quaternary mammal food webs were highly nested and robust to secondary extinctions, general food web properties changed in the Holocene. These results highlight the ability of communities to re-organize with the arrival of phylogenetically similar species without major structural changes, and the impact of climate change and super-generalist species (humans) on Iberian Holocene mammal communities.  相似文献   

16.
Food webs can respond in surprising and complex ways to temporary alterations in their species composition. When such a perturbation is reversed, food webs have been shown to either return to the pre‐perturbation community state or remain in the food web configuration that established during the perturbation. Here we report findings from a replicated whole‐lake experiment investigating food web responses to a perturbation and its consecutive reversal. We could identify three distinct community states in the food web that corresponded to the periods before, during and after the perturbation. Most importantly, we demonstrate the establishment of a distinct post‐perturbation food web configuration that differed from both the pre‐ and during‐perturbation communities in phytoplankton biomass and micro‐ and mesozooplankton species composition. We suggest that the pre‐ and post‐perturbation food web configurations may represent two alternative stable community states. We provide explanations for how each of the contrasting communities may be maintained through altered species interactions. These findings add to the discussion of how natural food webs react to environmental change and imply that the range of potential ecosystem dynamics in response to perturbations can be wider and more complex than is often recognized.  相似文献   

17.
植物光合作用固定下来的能量沿食物链首先流向相邻营养级的植食性动物。植物-植食性动物相互关系是自然界中最普遍、最重要的一种种间关系, 是食物网理论的基础与核心。该文从植食性动物对植物个体、种群和群落特征的影响, 以及植物在个体、种群和群落3个水平上对植食性动物的防御机制与策略两方面, 综述了当前植物-植食性动物相互关系的研究进展。植食性动物的采食, 可以显著改变植物个体或种群的生长、繁殖和存活率, 植物种群的变化则进一步反馈于植物群落组成和多样性特征。相应地, 植物在个体、种群和群落水平形成了一系列的防御机制, 其中在个体和种群水平以化学与物理防御为主, 而群落水平则是通过影响动物的行为或天敌而实现的。该文对相关领域的重要假说和理论进行了介绍、比较。最后, 该文提出了植物-植食性动物相互关系研究的未来发展趋势。随着全球变化和人类活动对自然系统干扰的加剧, 在不同的时空尺度上探索这些干扰如何影响动植物关系, 以及这些影响如何反馈于生态系统的结构、功能和稳定性, 不但有重要的理论意义, 也将为未来制定合理的生态系统管理政策提供实际支撑。  相似文献   

18.
Few studies have examined how foraging niche shift of a predator over time cascade down to local prey communities. Here we examine patterns of temporal foraging niche shifts of a generalist predator (yellow catfish, Pelteobagrus fulvidraco) and the abundance of prey communities in a subtropical lake. We predicted that the nature of these interactions would have implications for patterns in diet shifts and growth of the predator. Our results show significant decreases in planktivory and benthivory from late spring to summer and autumn, whereas piscivory increased significantly from mid-summer until late autumn and also increased steadily with predator body length. The temporal dynamics in predator/prey ratios indicate that the predation pressure on zooplankton and zoobenthos decreased when the predation pressure on the prey fish and shrimps was high. Yellow catfish adjusted their foraging strategies to temporal changes in food availability, which is in agreement with optimal foraging theory. Meanwhile the decrease in planktivory and benthivory of yellow catfish enabled primary consumers, such as zooplankton and benthic invertebrates, to develop under low grazing pressure via trophic cascading effects in the local food web. Thus, yellow catfish shifts its foraging niche to intermediate consumers in the food web to benefit the energetic demand on growth and reproduction during summer, which in turn indirectly facilitate the primary consumers. In complex food webs, trophic interactions are usually expected to reduce the strength and penetrance of trophic cascades. However, our study demonstrates strong associations between foraging niche of piscivorous fish and abundance of prey. This relationship appeared to be an important factor in producing top-down effects on both benthic and planktonic food webs.  相似文献   

19.
Food web topologies depict the community structure as distributions of feeding interactions across populations. Although the soil ecosystem provides important functions for aboveground ecosystems, data on complex soil food webs is notoriously scarce, most likely due to the difficulty of sampling and characterizing the system. To fill this gap we assembled the complex food webs of 48 forest soil communities. The food webs comprise 89 to 168 taxa and 729 to 3344 feeding interactions. The feeding links were established by combining several molecular methods (stable isotope, fatty acid and molecular gut content analyses) with feeding trials and literature data. First, we addressed whether soil food webs (n = 48) differ significantly from those of other ecosystem types (aquatic and terrestrial aboveground, n = 77) by comparing 22 food web parameters. We found that our soil food webs are characterized by many omnivorous and cannibalistic species, more trophic chains and intraguild‐predation motifs than other food webs and high average and maximum trophic levels. Despite this, we also found that soil food webs have a similar connectance as other ecosystems, but interestingly a higher link density and clustering coefficient. These differences in network structure to other ecosystem types may be a result of ecosystem specific constraints on hunting and feeding characteristics of the species that emerge as network parameters at the food‐web level. In a second analysis of land‐use effects, we found significant but only small differences of soil food web structure between different beech and coniferous forest types, which may be explained by generally strong selection effects of the soil that are independent of human land use. Overall, our study has unravelled some systematic structures of soil food‐webs, which extends our mechanistic understanding how environmental characteristics of the soil ecosystem determine patterns at the community level.  相似文献   

20.
The diversity and structure of ecosystems has been found to depend both on trophic interactions in food webs and on other species interactions such as habitat modification and mutualism that form non-trophic interaction networks. However, quantification of the dependencies between these two main interaction networks has remained elusive. In this study, we assessed how habitat-modifying organisms affect basic food web properties by conducting in-depth empirical investigations of two ecosystems: North American temperate fringing marshes and West African tropical seagrass meadows. Results reveal that habitat-modifying species, through non-trophic facilitation rather than their trophic role, enhance species richness across multiple trophic levels, increase the number of interactions per species (link density), but decrease the realized fraction of all possible links within the food web (connectance). Compared to the trophic role of the most highly connected species, we found this non-trophic effects to be more important for species richness and of more or similar importance for link density and connectance. Our findings demonstrate that food webs can be fundamentally shaped by interactions outside the trophic network, yet intrinsic to the species participating in it. Better integration of non-trophic interactions in food web analyses may therefore strongly contribute to their explanatory and predictive capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号