首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferredoxins, iron-sulfur (Fe-S) cluster proteins, play a key role in oxidoreduction reactions. To date, evolutionary analysis of these proteins across the domains of life have been confined to observing the abundance of Fe-S cluster types (2Fe-2S, 3Fe-4S, 4Fe-4S, 7Fe-8S (3Fe-4s and 4Fe-4S) and 2[4Fe-4S]) and the diversity of ferredoxins within these cluster types was not studied. To address this research gap, here we propose a subtype classification and nomenclature for ferredoxins based on the characteristic spacing between the cysteine amino acids of the Fe-S binding motif as a subtype signature to assess the diversity of ferredoxins across the living organisms. To test this hypothesis, comparative analysis of ferredoxins between bacterial groups, Alphaproteobacteria and Firmicutes and ferredoxins collected from species of different domains of life that are reported in the literature has been carried out. Ferredoxins were found to be highly diverse within their types. Large numbers of alphaproteobacterial species ferredoxin subtypes were found in Firmicutes species and the same ferredoxin subtypes across the species of Bacteria, Archaea, and Eukarya, suggesting shared common ancestral origin of ferredoxins between Archaea and Bacteria and lateral gene transfer of ferredoxins from prokaryotes (Archaea/Bacteria) to eukaryotes. This study opened new vistas for further analysis of diversity of ferredoxins in living organisms.  相似文献   

2.
Ferredoxins are proteins that participate in photosynthesis and in other processes that require reducing equivalents, such as the reduction of nitrogen or fatty acid desaturation. Two classes of ferredoxins have been described in plants: light-regulated photosynthetic ferredoxins and heterotrophic ferredoxins whose activity is not influenced by light. Genes encoding the two forms of ferredoxin have been cloned and characterized in developing sunflower cotyledons. Here, these genes were overexpressed in Escherichia coli and they were purified by ion exchange and size exclusion chromatography to study their capacity to supply electrons to two different sunflower desaturases: soluble stearoyl-ACP desaturase from sunflower cotyledons, and membrane bound desaturase FAD7 expressed in yeast. In both cases photosynthetic ferredoxin was the form that promoted the strongest desaturase activity.  相似文献   

3.
Ferredoxins are proteins which contain iron and inorganic sulfide and are capable of electron transport. They are found in a wide range of organisms, from anaerobic bacteria, to plants and mammals. Although NMR spectroscopy has been used to study ferredoxins since the 1970s, little important structural or biochemical information has resulted from these investigations. The major difficulty has been the effect of the paramagnetic iron-sulfur clusters on the peptide resonances, hindering nuclear Overhauser effect (NOE) studies and causing broad line widths. These effects are most pronounced on resonances arising from the nuclei closest to the iron-sulfur center. Unfortunately, these are likely to be the most interesting nuclei, as they report the events and geometry in the vicinity of the active sites. In this paper, the first direct assignment of beta-cysteinyl 13C resonances for any iron-sulfur protein is reported for the spectrum of Pseudomonas putida ferredoxin. These resonances are of special significance, as they arise from the atoms on the protein closest to the iron centers, with the exception of the directly bound cysteinyl sulfur atoms. In addition, cysteinyl and ring system 1H NMR resonance assignments are made for the spectra of P. putida ferredoxin and Azotobacter vinelandii ferredoxin I.  相似文献   

4.
Ferredoxins are Fe–S proteins with low molecular weight (6–12000) which act as electron carriers at very low redox potentials eg. –300 to –500 mV, in diverse biochemical processes such as bacterial and plant photosynthesis, N2 fixation, carbon metabolism, oxidative phosphorylation and steroid hydroxylation. They are found in a wide range of organisms from the primitive obligate anaerobic bacteria, through photosynthetic bacteria, blue-green and green algae, to all higher plants and animals. Three types of ferredoxins are known –8 Fe+8 S, 4 Fe+4 S and 2 Fe+2 S. All three have been found in bacteria while the 2 Fe and some 8 Fe ferredoxins have been found in plants and animals possibly representing an evolutionary sequence. The 8 Fe ferredoxin may all be composed of two 4 Fe units. We have proposed that because of the simplicity of the 8 Fe ferredoxins (only 9 common simple amino acids in clostridia, 6 of which have been detected in the Murchison meteorite) they may have been amongst the earliest proteins formed during the origin of life. A simple peptide of about 27 amino acids could incorporate inorganic Fe+S (or possibly an existing Fe–S complex) into it nonenzymatically under anaerobic conditions to form a protein carrying one or two electrons at the potential of the H2 electrode. More than ten Fe–S model compounds have been proposed as analogues of the 4 Fe or 2 Fe containing active centres; inorganic, organometallic and peptide complexes have been synthesized. A few have many of the properties of ferredoxins but none as yet fulfills a sufficient number of criteria to substitute for ferredoxins chemically and biologically — a goal which will provide many clues to primitive peptide systems undergoing biological electron transfer reactions.  相似文献   

5.
Amino acid sequences of two ferredoxins from pokeweed, Phytolacca americana   总被引:2,自引:0,他引:2  
The amino acid sequences of two ferredoxins isolated from pokeweed, Phytolacca americana, were determined. Tryptic peptides of maleyl-carboxymethyl-ferredoxin I and carboxymethyl-ferredoxin II were prepared and analyzed. The large peptides were further digested with staphylococcal protease and chymotrypsin. Ferredoxins I and II were composed of 96 and 98 amino acid residues, respectively. Though ferredoxin I lacks tryptophan and methionine, ferredoxin II contains both of them. In a comparison of the amino acid sequences with those of other higher plant ferredoxins, ferredoxin I is one residue shorter than others at the carboxyl-terminus and ferredoxin II one longer than others at the amino-terminus. Ferredoxins I and II differ in 23 sites from each other and in 27 to 37 sites from other higher plant ferredoxins. This suggests that duplication of the ferredoxin gene occurred after the divergence of pokeweed from other higher plants. A phylogenetic tree including all other ferredoxins was constructed.  相似文献   

6.

Background  

Ferredoxins are small iron-sulfur proteins belonging to all domains of life. A sub-group binds two [4Fe-4S] clusters with unequal and extremely low values of the reduction potentials. These unusual properties are associated with two specific fragments of sequence. The functional importance of the very low potential ferredoxins is unknown.  相似文献   

7.
Ferredoxins are present in a wide range of organisms, from the primitive anaerobic bacteria to higher plants and animals, where they function in diverse electron transfer processes. They are relatively small proteins with molecular weights of 6000 to 12000, contain 2–8 Fe atoms and an equivalent amount of inorganic sulphur per molecule, and they transfer electrons at low redox potentials.Anaerobic bacteria, like the clostridia, contain 8 Fe ferredoxins with a peptide chain of 55 amino acid residues which could be arranged in two similar halves suggesting the evolution of the molecule, from a prototype of 26 amino acid residues, by gene duplication. Since these ferredoxins contain a high predominance of certain amino acids detected in meteorites and lunar samples and synthesized under simulated prebiotic environment and since iron and sulphus could be incorporated easily into the apoprotein in anaerobic conditions, the ferredoxin molecule could have been formed in the early periods of the origin of life. From the available chemical compositions and amino acid sequences of various ferredoxins the following evolutionary scheme can be postulated: anaerobic bacteriagreen photosynthetic bacteriared photosynthetic bacteriasulphate reducing bacteriablue-green algaegreen algae and higher plants.Special Symposium on Photochemistry and the Origins of Life, Sixth International Congress on Photobiology, Bochum, Germany.  相似文献   

8.
 Ferredoxins that contain 2[4Fe-4S]2+/+ clusters can be divided into two classes. The "clostridial-type" ferredoxins have two CysXXCysXXCysXXXCysPro motifs. The "photosynthetic bacterial and nif-related" ferredoxins have one motif of that type and one more unusual CysXXCysX7–9CysXXXCysPro motif. In Azotobacter vinelandii three gene sequences have been reported that contain the latter motif, but until now none of the gene products has been purified. Here we report the purification of a small anionic [Fe-S] protein with yields of ∼3 mg per 500 g cell paste. NH2-terminal sequence analysis shows that this protein is the product of a previously sequenced A. vinelandii gene that is found upstream of fixA and is cotranscribed with fixABCX. That gene was originally named fixP, but since that gene designation is now commonly used for a very different cb-type cytochrome oxidase we have renamed the gene fixFd and its product Fix Fd. Its sequence places Fix Fd in the class of "photosynthetic bacterial and nif-related" 2[4Fe-4S]2+/1+ ferredoxins that includes Chromatium vinosum ferredoxin. Studies of the purified protein by Fe analysis, absorption, CD and EPR spectroscopies and electrochemistry confirm this characterization; the reduction potentials of the two clusters are –440 mV vs SHE. The fact that A. vinelandii synthesizes three different proteins with the same sequence motif, each of which is likely to have a different function, shows that although sequence motifs may be used reliably to classify ferredoxins by cluster type they cannot yet be used reliably for classifying ferredoxins by function. Received: 31 January 1997 / Accepted: 9 June 1997  相似文献   

9.
1. The number of electrons carried by ferredoxins from spinach, the blue-green alga Anacystis nidulans, the anaerobic bacterium Clostridium welchii and the photosynthetic bacterium Chromatium was determined. 2. Ferredoxins were reduced by illuminated chloroplasts, and the stoicheiometry of the reoxidation in the dark of the ferredoxins by NADP and benzyl viologen was measured. 3. Spinach and A. nidulans ferredoxins were found to be one-electron carriers, and Cl. welchii and Chromatium ferredoxins were two-electron carriers.  相似文献   

10.
我们利用微型计算机图形技术对两种铁氧还蛋白的分子结构进行了研究,输入蛋白晶体数据,重构出铁氧还蛋白分子的三维结构模型,并可使之统X轴、Y轴和Z轴旋转;计算出肽链上原子之间的健长、健角、(?)角:显示微区结构;进一步可使两个铁氧还蛋白的三维结构图叠合,(?)利比较分析.实验表明,微型计算机分子图开技术在研究蛋白质等生物大分子结构,运动及中与功能的关系方面是有效的工具;  相似文献   

11.
Ferredoxins are iron-sulfur proteins that have been studied for decades because of their role in facilitating the monooxygenase reactions catalyzed by p450 enzymes. More recently, studies in bacteria and yeast have demonstrated important roles for ferredoxin and ferredoxin reductase in iron-sulfur cluster assembly. The human genome contains two homologous ferredoxins, ferredoxin 1 (FDX1) and ferredoxin 2 (FDX2--formerly known as ferredoxin 1L). More recently, the roles of these two human ferredoxins in iron-sulfur cluster assembly were assessed, and it was concluded that FDX1 was important solely for its interaction with p450 enzymes to synthesize mitochondrial steroid precursors, whereas FDX2 was used for synthesis of iron-sulfur clusters, but not steroidogenesis. To further assess the role of the FDX-FDXR system in mammalian iron-sulfur cluster biogenesis, we performed siRNA studies on FDX1 and FDX2, on several human cell lines, using oligonucleotides identical to those previously used, along with new oligonucleotides that specifically targeted each gene. We concluded that both FDX1 and FDX2 were important in iron-sulfur cluster biogenesis. Loss of FDX1 activity disrupted activity of iron-sulfur cluster enzymes and cellular iron homeostasis, causing mitochondrial iron overload and cytosolic iron depletion. Moreover, knockdown of the sole human ferredoxin reductase, FDXR, diminished iron-sulfur cluster assembly and caused mitochondrial iron overload in conjunction with cytosolic depletion. Our studies suggest that interference with any of the three related genes, FDX1, FDX2 or FDXR, disrupts iron-sulfur cluster assembly and maintenance of normal cytosolic and mitochondrial iron homeostasis.  相似文献   

12.
Two distinct ferredoxins were purified from Rhodobacter capsulatus SB1003. Their complete amino acid sequences were determined by a combination of protease digestion, BrCN cleavage and Edman degradation. Ferredoxins I and II were composed of 64 and 111 amino acids, respectively, with molecular weights of 6,728 and 12,549 excluding iron and sulfur atoms. Both contained two Cys clusters in their amino acid sequences. The first cluster of ferredoxin I and the second cluster of ferredoxin II had a sequence, CxxCxxCxxxCP, in common with the ferredoxins found in Clostridia. The second cluster of ferredoxin I had a sequence, CxxCxxxxxxxxCxxxCM, with extra amino acids between the second and third Cys, which has been reported for other photosynthetic bacterial ferredoxins and putative ferredoxins (nif-gene products) from nitrogen-fixing bacteria, and with a unique occurrence of Met. The first cluster of ferredoxin II had a CxxCxxxxCxxxCP sequence, with two additional amino acids between the second and third Cys, a characteristics feature of Azotobacter-[3Fe-4S] [4Fe-4S]-ferredoxin. Ferredoxin II was also similar to Azotobacter-type ferredoxins with an extended carboxyl (C-) terminal sequence compared to the common Clostridium-type. The evolutionary relationship of the two together with a putative one recently found to be encoded in nifENXQ region in this bacterium [Moreno-Vivian et al. (1989) J. Bacteriol. 171, 2591-2598] is discussed.  相似文献   

13.
Ferredoxins were isolated and purified from leaves of different species of Nicotiana and Petunia and from spinach leaves. Their spectral properties, degree of homogeneity, and molecular weights were determined. The preparations were further analyzed by polyacrylamide gel electrophoresis of tryptic hydrolysates. This allowed us to distinguish between not only ferredoxins of Nicotiana, Petunia, and spinach, but even ferredoxins of various Nicotiana species. We used the differences in tryptic peptide compositions as phenotypic markers to study the mode of inheritance of chloroplast ferredoxin to see whether the coding site is in the chloroplast or in the nucleus. Analysis of the tryptic peptide composition of ferredoxin from different interspecific hybrids of Nicotiana showed that the characteristics of both parental ferredoxins were present. The results indicate that the primary structure of at least the male ferredoxin is coded for in the nucleus. In some of the hybrids the relative contribution of the male parent appeared to be low, suggesting that the female genome (presumably that part located in the plastome) exerted a dominating influence.  相似文献   

14.
The Rieske iron-sulfur center consists of a [2Fe-2S] cluster liganded to a protein via two histidine and two cysteine residues present in conserved sequences called Rieske motifs. Two protein families possessing Rieske centers have been defined. The Rieske proteins occur as subunits in the cytochrome bc1 and cytochrome b6f complexes of prokaryotes and eukaryotes or form components of archaeal electron transport systems. The Rieske-type proteins encompass a group of bacterial oxygenases and ferredoxins. Recent studies have uncovered several new proteins containing Rieske centers, including archaeal Rieske proteins, bacterial oxygenases, bacterial ferredoxins, and, intriguingly, eukaryotic Rieske oxygenases. Since all these proteins contain a Rieske motif, they probably form a superfamily with one common ancestor. Phylogenetic analyses have, however, been generally limited to similar sequences, providing little information about relationships within the whole group of these proteins. The aim of this work is, therefore, to construct a dendrogram including representatives from all Rieske and Rieske-type protein classes in order to gain insight into their evolutionary relationships and to further define the phylogenetic niches occupied by the recently discovered proteins mentioned above.  相似文献   

15.
Summary Recent evidence indicates that a gene transposition event occurred during the evolution of the bacterial ferredoxins subsequent to the ancestral intrasequence gene duplication. In light of this new information, the relationships among the bacterial ferredoxins were reexamined and an evolutionary tree consistent with this new understanding was derived. The bacterial ferredoxins can be divided into several groups based on their sequence properties; these include the clostridial-type ferredoxins, theAzotobacter-type ferredoxins, and a group containing the ferredoxins from the anaerobic, green, and purple sulfur bacteria. Based on sequence comparison, it was concluded that the amino-terminal domain of theAzotobacter-type ferredoxins, which contains the novel 3Fe3S cluster binding site, is homologous with the carboxyl-terminal domain of the ferredoxins from the anaerobic photosynthetic bacteria.A number of ferredoxin sequences do not fit into any of the groups described above. Based on sequence properties, these sequences can be separated into three groups: a group containingMethanosarcina barkeri ferredoxin andDesulfovibrio desulfuricans ferredoxin II, a group containingDesulfovibrio gigas ferredoxin andClostridium thermoaceticum ferredoxin, and a group containingDesulfovibrio africanus ferredoxin I andBacillus stearothermophilus ferredoxin. The last two groups differ from all of the other bacterial ferredoxins in that they bind only one FeS cluster per polypeptide, whereas the others bind two. Sequence examination indicates that the second binding site has been either partially or completely lost from these ferredoxins.Methanosarcina barkeri ferredoxin andDesulfovibrio desulfuricans ferredoxin II are of interest because, of all the ferredoxins whose sequences are presently known, they show the strongest evidence of internal gene duplication. However, the derived evolutionary tree indicates that they diverged from theAzotobacter-type ferredoxins well after the ancestral internal gene duplication. This apparent discrepancy is explained by postulating a duplication of one halfchain sequence and a deletion of the other halfchain. TheClostridium thermoaceticum andBacillus stearothermophilus groups diverged from this line and subsequently lost one of the FeS binding sites.It has recently become apparent that gene duplication is ubiquitous among the ferredoxins. Several organisms are now known to have a variety of ferredoxins with widely divergent properties. Unfortunately, in only one case are the sequences of more than one ferredoxin from the same organism known. Thus, although the major features of the bacterial ferredoxin tree are now understood, a complete bacterial phylogeny cannot be inferred until more sequence information is available.  相似文献   

16.
J M Moulis  J Meyer 《Biochemistry》1982,21(19):4762-4771
The sulfur atoms of the two [4Fe-4S] clusters present in the ferredoxin from Clostridium pasteurianum have been replaced by selenium. The substitution is readily carried out by incubating the apoferredoxin with excess amounts of Fe3+, selenite, and dithiothreitol under anaerobic conditions. The UV-visible absorption spectrum of the Se-substituted ferredoxin, the core extrusion of its active sites, and analyses of its iron and selenium contents show that it contains two [4Fe-4Se] clusters. The Se-substituted ferredoxin is considerably less resistant to oxygen or to acidic and alkaline pH than the native ferredoxin: the half-lives of the former are 20-500 times shorter than those of the latter. The native ferredoxin and the Se-substituted ferredoxin display similar kinetic properties when used as electron donors to the hydrogenase from C. pasteurianum. It is of note, however, that the Km and Vmax values are lower for the 2[4Fe-4Se] ferredoxin than for the 2[4Fe-4S] ferredoxin. Reductive and oxidative titrations with dithionite and with thionine, respectively, show that both ferredoxins are two-electron carriers. The redox potentials of the ferredoxins have been measured by equilibrating them with the H2/H+ couple via hydrogenase: values of -423 and -417 mV have been found for the 2[4Fe-4S] ferredoxin and 2[4Fe-4Se] ferredoxin, respectively. Ferredoxins containing both chalcogenides in their [4Fe-4X] (X = S, Se) clusters have been prepared by reconstitution reactions involving mixtures of sulfide and selenide: the latter experiments show that sulfide and selenide are equally reactive in the incorporation of [4Fe-4X] (X = S, Se) sites into ferredoxin. The present report, together with former studies, establishes the general feasibility of the Se/S substitution in [2Fe-2S] and in [4Fe-4S] clusters of proteins and of synthetic analogues.  相似文献   

17.
Rubredoxin and two distinct ferredoxins have been purified from Desulfovibrio africanus. The rubredoxin has a molecular weight of 6000 while the ferredoxins appear to be dimers of identical subunits of approximately 6000 to 7000 molecular weight. Rubredoxin contains one iron atom, no acid-labile sulfide and four cysteine residues per molecule. Its absorbance ratio A278/A490 is 2.23 and its amino acid composition is characterized by the absence of leucine and a preponderance of acidic amino acids. The two ferredoxins, designated I and II, are readily separated on DEAE-cellulose. The amino acid compositions of ferredoxins I and II show them to be different protein species; the greater number of acidic amino acid residues in ferredoxin I than in ferredoxin II appears to account for separation based on electronic charge. Both ferredoxins contain four iron atoms, four acid-labile residues per molecule. Spectra of the two ferredoxins differ from those of ferredoxins of other Desulfovibrio species by exhibiting a pronounced absorption peak at 283 nm consistent with an unusual high content of aromatic residues. The A385/A283 absorbance ratio of ferredoxins I and II are 0.56 and 0.62, respectively. The N-terminal sequencing data of the two ferredoxins clearly indicate that ferredoxins I and II are different protein species. However, the two proteins exhibit a high degree of homology.  相似文献   

18.
植物早期光诱导蛋白基因研究进展   总被引:1,自引:0,他引:1  
植物早期光诱导蛋白(ELIP)是核编码的叶绿体蛋白,它属于叶绿素结合蛋白超家族的成员。皿伊基因是一古老的基因,在原核细胞中即已存在。真核生物细胞核中的皿,尸基因最初可能来源于其质体基因组。目前,已从30多种不同植物中克隆到该基因,研究发现它们多属于胁迫诱导基因,其功能可能涉及光保护作用。本文介绍了20多年来皿,尸基因的克隆、生物发生、表达调控和功能方面的研究进展,以期为今后的进一步研究奠定基础。  相似文献   

19.
Divergent evolution of chloroplast-type ferredoxins   总被引:8,自引:0,他引:8  
The TOL plasmid pWW0 of Pseudomonas putida encodes a set of enzymes required for the oxidation of toluene to Krebs cycle intermediates. The structural genes for these enzymes are encoded in two operons which comprise the xylCMABN and xylXYZLTEGFJQKIH genes, respectively. The function of the xylT gene has not yet been identified. The nucleotide sequence of xylT was determined in this study and putative gene product was shown to contain a sequence characteristic for chloroplast-type ferredoxins. The nahT gene, the homologue of xylT, present on NAH plasmid NAH7 encoding naphthalene-degrading enzymes, was also sequenced. The sequence conservation between xylT and nahT strongly suggests that both gene products have some physiological function. Chloroplast-type ferredoxins have been discovered in photosynthetic organisms (plants, algae, cyanobacteria and Rhodobacter) and Halobacterium species. Furthermore, chloroplast-type ferredoxin-like sequences have been found in the electron-transfer components of some oxygenases. The sequences of XylT and NahT were compared with those of the previously identified chloroplast-type ferredoxins, in order to examine their evolutionary relationships.  相似文献   

20.
Rubredoxin and two distinct ferredoxins have been purified from Desulfovibrio africanus. The rubredoxin has a molecular weight of 6000 while the ferredoxins appear to be dimers of identical subunits of approximately 6000 to 7000 molecular weight. Rubredoxin contains one iron atom, no acid-labile sulfide and four cysteine residues per molecule. Its absorbance ratio A278/A490 is 2.23 and its amino acid composition is characterized by the absence of leucine and a preponderance of acidic amino acids.

The two ferredoxins, designated I and II, are readily separated on DEAE-cellulose. The amino acid compositions of ferredoxins I and II show them to be different protein species; the greater number of acidic amino acid residues in ferredoxin I than in ferredoxin II appears to account for separation based on electronic charge. Both ferredoxins contain four iron atoms, four acid-labile sulfur groups and either four (ferredoxin II) or six (ferredoxin I) cysteine residues per molecule. Spectra of the two ferredoxins differ from those of ferredoxins of other Desulfovibrio species by exhibiting a pronounced absorption peak at 283 nm consistent with an unusual high content of aromatic residues. The A385/A283 absorbance ratio of ferredoxins I and II are 0.56 and 0.62, respectively.

The N-terminal sequencing data of the two ferredoxins clearly indicate that ferredoxins I and II are different protein species. However, the two proteins exhibit a high degree of homology.

The physiological activity of ferredoxins I and II appears to be similar as far as the electron transfer in the phosphoroclastic reaction is concerned.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号