共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Our knowledge of how the body absorbs triacylglycerols (TAG) from the diet and how this process is regulated has increased at a rapid rate in recent years. Dietary TAG are hydrolyzed in the intestinal lumen to free fatty acids (FFA) and monoacylglycerols (MAG), which are taken up by enterocytes from their apical side, transported to the endoplasmic reticulum (ER) and resynthesized into TAG. TAG are assembled into chylomicrons (CM) in the ER, transported to the Golgi via pre-chylomicron transport vesicles and secreted towards the basolateral side. In this review, we mainly focus on the roles of key proteins involved in uptake and intracellular transport of fatty acids, their conversion to TAG and packaging into CM. We will also discuss intracellular transport and secretion of CM. Moreover, we will bring to light few factors that regulate gut triglyceride production. Furthermore, we briefly summarize pathways involved in cholesterol absorption. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease. 相似文献
9.
10.
11.
12.
Xiaoyue Pan M. Mahmood Hussain 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2012,1821(5):727-735
Our knowledge of how the body absorbs triacylglycerols (TAG) from the diet and how this process is regulated has increased at a rapid rate in recent years. Dietary TAG are hydrolyzed in the intestinal lumen to free fatty acids (FFA) and monoacylglycerols (MAG), which are taken up by enterocytes from their apical side, transported to the endoplasmic reticulum (ER) and resynthesized into TAG. TAG are assembled into chylomicrons (CM) in the ER, transported to the Golgi via pre-chylomicron transport vesicles and secreted towards the basolateral side. In this review, we mainly focus on the roles of key proteins involved in uptake and intracellular transport of fatty acids, their conversion to TAG and packaging into CM. We will also discuss intracellular transport and secretion of CM. Moreover, we will bring to light few factors that regulate gut triglyceride production. Furthermore, we briefly summarize pathways involved in cholesterol absorption. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease. 相似文献
13.
14.
15.
16.
17.
Kristian H. Mikkelsen Morten Frost Martin I. Bahl Tine R. Licht Ulrich S. Jensen Jacob Rosenberg Oluf Pedersen Torben Hansen Jens F. Rehfeld Jens J. Holst Tina Vilsb?ll Filip K. Knop 《PloS one》2015,10(11)
Objective
The gut microbiota has been designated as an active regulator of glucose metabolism and metabolic phenotype in a number of animal and human observational studies. We evaluated the effect of removing as many bacteria as possible by antibiotics on postprandial physiology in healthy humans.Methods
Meal tests with measurements of postprandial glucose tolerance and postprandial release of insulin and gut hormones were performed before, immediately after and 6 weeks after a 4-day, broad-spectrum, per oral antibiotic cocktail (vancomycin 500 mg, gentamycin 40 mg and meropenem 500 mg once-daily) in a group of 12 lean and glucose tolerant males. Faecal samples were collected for culture-based assessment of changes in gut microbiota composition.Results
Acute and dramatic reductions in the abundance of a representative set of gut bacteria was seen immediately following the antibiotic course, but no changes in postprandial glucose tolerance, insulin secretion or plasma lipid concentrations were found. Apart from an acute and reversible increase in peptide YY secretion, no changes were observed in postprandial gut hormone release.Conclusion
As evaluated by selective cultivation of gut bacteria, a broad-spectrum 4-day antibiotics course with vancomycin, gentamycin and meropenem induced shifts in gut microbiota composition that had no clinically relevant short or long-term effects on metabolic variables in healthy glucose-tolerant males.Trial Registration
clinicaltrials.gov NCT01633762 相似文献18.
Blandine Laferrère 《Endocrinología y nutrición》2012,59(4):254-260
Studies of patients going into diabetes remission after gastric bypass surgery have demonstrated the important role of the gut in glucose control. The improvement of type 2 diabetes after gastric bypass surgery occurs via weight dependent and weight independent mechanisms. The rapid improvement of glucose levels within days after the surgery, in relation to change of meal pattern, rapid nutrient transit, enhanced incretin release and improved incretin effect on insulin secretion, suggest mechanisms independent of weight loss. Alternatively, insulin sensitivity improves over time as a function of weight loss. The role of bile acids and microbiome in the metabolic improvement after bariatric surgery remains to be determined. While most patients after bariatric surgery experienced sustained weight loss and improved metabolism, small scale studies have shown weight regain and diabetes relapse, the mechanisms of which remain unknown. 相似文献
19.
20.