首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herbivore microbial associates can affect diverse interactions between plants and insect herbivores. Some insect symbionts enable herbivores to expand host plant range or to facilitate host plant use by modifying plant physiology. However, little attention has been paid to the role of herbivore-associated microbes in manipulating plant defenses. We have recently shown that Colorado potato beetle secrete the symbiotic bacteria to suppress plant defenses. The bacteria in oral secretions from the beetle hijack defense signaling pathways of host plants and the suppression of induced plant defenses benefits the beetle’s performance. While the defense suppression by the beetle-associated bacteria has been investigated in local damaged leaves, little is known about the effects of the symbiotic bacteria on the manipulation of plant defenses in systemic undamaged leaves. Here, we demonstrate that the symbiotic bacteria suppress plant defenses in both local and systemic tissues when plants are attacked by antibiotic-untreated larvae.  相似文献   

2.
昆虫唾液成分在昆虫与植物关系中的作用   总被引:13,自引:4,他引:9  
近年来,人们对于植食性昆虫唾液的深入研究,揭示出其在昆虫与植物的相互关系和协同进化中起到非常重要的作用。植食性昆虫唾液中含有的酶类和各种有机成分,能诱导植物的一系列生化反应,而且这些反应有很强的特异性,与为害的昆虫种类甚至龄期有关。鳞翅目幼虫口腔分泌物(或反吐液)中含有的β-葡糖苷酶、葡萄糖氧化酶等酶类和挥发物诱导素等有机成分,已经证明可以诱导植物的反应; 刺吸式昆虫的取食也可以刺激植物产生反应,但其唾液内的酶类,如烟粉虱的碱性磷酸酶, 蚜虫的酚氧化酶、果胶酶和多聚半乳糖醛酸酶, 蝽类的寡聚半乳糖醛酸酶等是否发挥作用,目前还没有直接的证据。寄主植物对昆虫的唾液成分也有很大的影响,可能是昆虫对不同植物营养成分和毒性成分的适应方式。对昆虫唾液蛋白的分析表明,具有同样类型口器、食物类型接近的昆虫,唾液成分有更多的相似性。研究植食性昆虫的唾液成分,对于阐明昆虫和植物的协同进化关系、昆虫生物型的形成机理、害虫的致害机理,以及指导害虫防治等,有着一定的理论和实际意义。  相似文献   

3.
Theoretically, induced defenses should be prevalent within low resource environments like the forest understory where constitutive defenses would be costly. Also, the induced response should be stronger when the herbivore is a generalist rather than a specialist, which often have mechanisms to avoid or overcome plant defenses. These ideas have been previously tested for herbaceous species, and we examined these predictions in Lindera benzoin (spicebush), a common woody shrub of the eastern deciduous forest. Lindera benzoin plants in contrasting light environments served as control plants or were subjected to one of four treatments: application of jasmonic acid, clipping, herbivory by the specialist Epimecis hortaria (tulip tree beauty) and herbivory by the generalist Spodoptera exigua (beet armyworm). Following treatment, we assessed induced responses by measuring leaf chemistry (C/N ratio, protein content, and peroxidase activity), and by using insect bioassays with E. hortaria larvae. We found no difference in peroxidase activity between light environments in controls, plants treated with clipping or jasmonic acid. In plants subject to insect herbivory, peroxidase activity was greater in shade plants than in sun plants. The magnitude of this increase in the shade varied between the herbivores, with a 32 fold increase in plants exposed to the generalist S. exigua and a 9 fold increase in plants exposed to the specialist E. hortaria . Leaves from shade plants had more protein and lower C/N ratios than leaves from sun plants, regardless of induction treatment. In control plants, E. hortaria larvae consumed more leaf biomass and achieved greater final weights in the sun than in the shade, but these differences disappeared with induction treatments were applied. These results are among the first to show rapid induction in a woody plant, and different levels of induction with light environments and with specialist versus generalist herbivores.  相似文献   

4.
Heli Nykänen  Julia Koricheva 《Oikos》2004,104(2):247-268
We conducted a meta‐analysis of 68 studies published between 1982 and 2000 in which the responses of woody plants to natural or simulated herbivore damage and/or insect herbivore performance on control and damaged plants were measured. Cumulative meta‐analyses revealed dramatic temporal changes in the magnitude and direction of the plant and herbivore responses reported during the last two decades. Studies conducted in the 1980s reported increase in phenolic concentrations, reduction in nutrient concentrations and negative effect on herbivore performance, consistently with the idea of induced resistance. In contrast, in the early 1990s when the idea that some types of plant damage may result in induced susceptibility was generally accepted, studies reported non‐significant results or induced susceptibility, and smaller effects on herbivores. The above changes may reflect paradigm shifts in the theory of induced defenses and/or the differences between study systems used in the early and the more recent studies. Overall, plant growth and carbohydrate concentrations were reduced in damaged plants despite enhanced photosynthetic rates. Damage increased the concentrations of carbon and phenolics, while terpene concentrations tended to decrease after damage; changes in nutrient concentrations after damage varied according to nutrient mobility, inherent plant growth rate, ontogenetic stage and plant type (deciduous/evergreen). Early season damage caused more pronounced changes in plants than late season damage, which is in accordance with the assumption that vigorously growing foliage has a greater capacity to respond to damage. Insect growth rate and female pupal weight decreased on previously damaged plants, while herbivore survival, consumption and male pupal weight were not significantly affected. The magnitude and direction of herbivore responses depended on the type of plant, the type of damage, the time interval between the damage and insect feeding (rapid/delayed induced resistance), and the timing of the damage.  相似文献   

5.
Considerable research has examined plant responses to concurrent attack by herbivores and pathogens, but the effects of attack by parasitic plants, another important class of plant-feeding organisms, on plant defenses against other enemies has not been explored. We investigated how attack by the parasitic plant Cuscuta pentagona impacted tomato (Solanum lycopersicum) defenses against the chewing insect beet armyworm (Spodoptera exigua; BAW). In response to insect feeding, C. pentagona-infested (parasitized) tomato plants produced only one-third of the antiherbivore phytohormone jasmonic acid (JA) produced by unparasitized plants. Similarly, parasitized tomato, in contrast to unparasitized plants, failed to emit herbivore-induced volatiles after 3 d of BAW feeding. Although parasitism impaired antiherbivore defenses, BAW growth was slower on parasitized tomato leaves. Vines of C. pentagona did not translocate JA from BAW-infested plants: amounts of JA in parasite vines grown on caterpillar-fed and control plants were similar. Parasitized plants generally contained more salicylic acid (SA), which can inhibit JA in some systems. Parasitized mutant (NahG) tomato plants deficient in SA produced more JA in response to insect feeding than parasitized wild-type plants, further suggesting cross talk between the SA and JA defense signaling pathways. However, JA induction by BAW was still reduced in parasitized compared to unparasitized NahG, implying that other factors must be involved. We found that parasitized plants were capable of producing induced volatiles when experimentally treated with JA, indicating that resource depletion by the parasite does not fully explain the observed attenuation of volatile response to herbivore feeding. Collectively, these findings show that parasitic plants can have important consequences for host plant defense against herbivores.  相似文献   

6.
7.
昆虫与植物的协同进化:寄主植物-铃夜蛾-寄生蜂相互作用   总被引:4,自引:1,他引:4  
王琛柱  钦俊德 《昆虫知识》2007,44(3):311-319
近数10年内,Ehrlich和Raven于1964年提出的协同进化理论及Jermy于1976年提出的顺序进化理论极大地促进了对昆虫与植物相互作用的研究。文章首先简要介绍有关理论,对植食性昆虫与植物关系研究的若干核心问题进行评述。主要问题包括(1)植食性昆虫如何选择寄主植物?(2)植物次生物质是否作为植物防御昆虫取食的重要屏障?(3)昆虫能否适应植物的化学防御?(4)植食性昆虫寄主范围是否是从广到专演化的?随之,作者结合对铃夜蛾Helicoverpa系统研究取得的结果,对上述问题做了进一步的论证和阐述。最后,在继承协同进化、顺序进化等理论精髓的基础上,根据当今三营养级相互作用领域的研究新进展,提出一个新的假说,即多营养级协同进化假说。该假说肯定植物次生物质在植物防御和昆虫识别寄主植物上的重要作用,同时把其他营养级并列放入交互作用的系统,特别强调第三营养级在昆虫与植物关系演化过程中的参与和寄主转移与昆虫食性专化和广化的联系。  相似文献   

8.
硅对植物抗虫性的影响及其机制   总被引:4,自引:0,他引:4  
硅不是植物必需营养元素,但硅在提高植物对一系列非生物和生物胁迫的抗性方面都具有重要作用。综述了硅对植物抗虫性的影响及其机制。在多数植物中,增施硅肥可增强其抗虫性;所增强的抗性与硅肥种类和施用方式之间存在关系。植物组织中沉积的硅可增加其硬度和耐磨度,降低植物可消化性,从而增强植物组成性防御,包括延缓昆虫生长发育、降低繁殖力、减轻植物受害程度;植物体内的硅含量以及硅沉积的位点和排列方式影响组成性防御作用的强度。此外,硅可以调节植物诱导性防御,包括直接防御和间接防御,直接防御涉及增加有毒物质含量、产生局部过敏反应或系统获得抗性、产生有毒化合物和防御蛋白,从而延缓昆虫发育;间接防御主要通过释放挥发性化合物吸引植食性昆虫的捕食性和寄生性天敌而导致植食性昆虫种群下降。  相似文献   

9.
Evolutionary interactions among insect herbivores and plant chemical defenses have generated systems where plant compounds have opposing fitness consequences for host plants, depending on attack by various insect herbivores. This interplay complicates understanding of fitness costs and benefits of plant chemical defenses. We are studying the role of the glucosinolate-myrosinase chemical defense system in protecting Arabidopsis thaliana from specialist and generalist insect herbivory. We used two Arabidopsis recombinant inbred populations in which we had previously mapped QTL controlling variation in the glucosinolate-myrosinase system. In this study we mapped QTL controlling resistance to specialist (Plutella xylostella) and generalist (Trichoplusia ni) herbivores. We identified a number of QTL that are specific to one herbivore or the other, as well as a single QTL that controls resistance to both insects. Comparison of QTL for herbivory, glucosinolates, and myrosinase showed that T. ni herbivory is strongly deterred by higher glucosinolate levels, faster breakdown rates, and specific chemical structures. In contrast, P. xylostella herbivory is uncorrelated with variation in the glucosinolate-myrosinase system. This agrees with evolutionary theory stating that specialist insects may overcome host plant chemical defenses, whereas generalists will be sensitive to these same defenses.  相似文献   

10.
Quintero C  Bowers MD 《Oecologia》2012,168(2):471-481
Numerous empirical studies have examined ontogenetic trajectories in plant defenses but only a few have explored the potential mechanisms underlying those patterns. Furthermore, most documented ontogenetic trajectories in plant defenses have generally concentrated on aboveground tissues; thus, our knowledge regarding whole plant trends in plant defenses throughout development or potential allocation constraints between growth and defenses is limited. Here, we document changes in plant biomass, nutritional quality and chemical defenses for below- and aboveground tissues across seven age classes of Plantago lanceolata (Plantaginaceae) to evaluate: (1) partial and whole plant ontogenetic trajectories in constitutive chemical defenses and nutritional quality, and (2) the role of resource allocation constraints, namely root:shoot (R:S) ratios, in explaining whole plant investment in chemical defenses over time. Overall investment in iridoid glycosides (IGs) significantly increased, while water and nitrogen concentrations in shoot tissues decreased with plant age. Significant variation in IG content between shoot and root tissues across development was observed: allocation of IGs into root tissues linearly increased from younger to older plants, while non-linear shifts in allocation of IGs during ontogeny were observed for shoot tissues. Finally, R:S ratios only weakly explained overall allocation of resources into defenses, with young stages showing a positive relationship, while older stages showed a negative relationship between R:S ratios and IG concentrations. Ontogenetic trajectories in plant quality and defenses within and among plant tissues can strongly influence insect herbivores’ performance and/or predation risk; thus, they are likely to play a significant role in mediating species interactions.  相似文献   

11.
Inducible direct plant defense against insect herbivores: A review   总被引:7,自引:0,他引:7  
Plants respond to insect herbivory with responses broadly known as direct defenses, indirect defenses, and tolerance. Direct defenses include all plant traits that affect susceptibility of host plants by themselves. Overall categories of direct plant defenses against insect herbivores include limiting food supply, reducing nutrient value, reducing preference, disrupting physical structures, and inhibiting chemical pathways of the attacking insect. Major known defense chemicals include plant secondary metabolites, protein inhibitors of insect digestive enzymes, proteases, lectins, amino acid deaminases and oxidases. Multiple factors with additive or even synergistic impact are usually involved in defense against a specific insect species, and factors of major importance to one insect species may only be of secondary importance or not effective at all against another insect species. Extensive qualitative and quantitative high throughput analyses of temporal and spatial variations in gene expression, protein level and activity, and metabolite concentration will accelerate not only the understanding of the overall mechanisms of direct defense, but also accelerate the identification of specific targets for enhancement of plant resistance for agriculture.  相似文献   

12.
植物诱导性直接防御   总被引:7,自引:2,他引:7  
众所周知,植物对植食性昆虫危害的反应表现在3个方面:直接防御,间接防御,和耐害性。直接防御是指植物自身所具有的能影响寄主植物感虫性的所有特性。植物对昆虫危害的直接防御包括:限制食物供给,降低营养价值,减少偏嗜程度,破坏组织结构和抑制害虫代谢途径。目前已知的防御化合物主要包括植物次生代谢物质、昆虫消化酶(蛋白)抑制剂、蛋白酶、凝集素、氨基酸脱氨酶和氧化酶。植物在防御某种昆虫为害时多个因素往往具有累加效应或协同作用,并且对一种昆虫起主导作用的因素在防御另一种昆虫时可能仅仅起次要作用甚至根本不起作用。因此,对寄主植物基因表达、蛋白水平和活性以及代谢物含量在不同时空条件下进行广泛的定量和定性的高通量分析,不仅可以促进对植物直接防御机制的全面理解,而且有助于在农业生产中加快对作物抗性的特定靶标的鉴定。  相似文献   

13.
Analysis of a diverse cross‐sample of plant‐insect interactions suggests that the abundance of vitamin C (L ‐ascorbic acid, ascorbate or AsA) in plants influences their susceptibility to insect feeding. These effects may be mediated by AsAs roles as an essential dietary nutrient, as an antioxidant in the insect midgut, or as a substrate for plant‐derived ascorbate oxidase, which can lead to generation of toxic reactive oxygen species. Ascorbate can also influence the efficacy of plant defenses such as myrosinases and tannins, and alter insects' susceptibility to natural enemies. Conversely, herbivores appear to influence both de novo synthesis and redox cycling of AsA in their host plants, thereby potentially altering the nutritional value of crops and their susceptibility to pests. The recent development of genetically modified crops with enhanced AsA content provides both an impetus and a tool set for further studies on the role of AsA in plant‐insect interactions.  相似文献   

14.
15.
16.
Plants respond to leaf vibrations caused by insect herbivore chewing   总被引:1,自引:0,他引:1  
H. M. Appel  R. B. Cocroft 《Oecologia》2014,175(4):1257-1266
Plant germination and growth can be influenced by sound, but the ecological significance of these responses is unclear. We asked whether acoustic energy generated by the feeding of insect herbivores was detected by plants. We report that the vibrations caused by insect feeding can elicit chemical defenses. Arabidopsis thaliana (L.) rosettes pre-treated with the vibrations caused by caterpillar feeding had higher levels of glucosinolate and anthocyanin defenses when subsequently fed upon by Pieris rapae (L.) caterpillars than did untreated plants. The plants also discriminated between the vibrations caused by chewing and those caused by wind or insect song. Plants thus respond to herbivore-generated vibrations in a selective and ecologically meaningful way. A vibration signaling pathway would complement the known signaling pathways that rely on volatile, electrical, or phloem-borne signals. We suggest that vibration may represent a new long distance signaling mechanism in plant–insect interactions that contributes to systemic induction of chemical defenses.  相似文献   

17.
Effector proteins that modulate plant--insect interactions   总被引:2,自引:0,他引:2  
Insect herbivores have highly diverse life cycles and feeding behaviors. They establish close interactions with their plant hosts and suppress plant defenses. Chewing herbivores evoke characteristic defense responses distinguishable from general mechanical damage. In addition, piercing-sucking hemipteran insects display typical feeding behavior that suggests active suppression of plant defense responses. Effectors that modulate plant defenses have been identified in the saliva of these insects. Tools for high-throughput effector identification and functional characterization have been developed. In addition, in some insect species it is possible to silence gene expression by RNAi. Together, this technological progress has enabled the identification of insect herbivore effectors and their targets that will lead to the development of novel strategies for pest resistances in plants.  相似文献   

18.
植食性昆虫与寄主植物通过协同进化形成了复杂的防御和反防御机制.本文系统综述了昆虫唾液效应子和激发子在植物与昆虫互作中的作用及机理.昆虫取食中释放的唾液激发子被植物识别而激活植物早期免疫反应,昆虫也能从口腔分泌效应子到植物体内抑制免疫;抗性植物则利用抗性(R)蛋白识别昆虫无毒效应子,启动效应子诱导的免疫反应,而昆虫又进化...  相似文献   

19.
Plants in nature, which are continuously challenged by diverse insect herbivores, produce constitutive and inducible defenses to reduce insect damage and preserve their own fitness. In addition to inducing pathways that are directly responsible for the production of toxic and deterrent compounds, insect herbivory causes numerous changes in plant primary metabolism. Whereas the functions of defensive metabolites such as alkaloids, terpenes, and glucosinolates have been studied extensively, the fitness benefits of changes in photosynthesis, carbon transport, and nitrogen allocation remain less well understood. Adding to the complexity of the observed responses, the feeding habits of different insect herbivores can significantly influence the induced changes in plant primary metabolism. In this review, we summarize experimental data addressing the significance of insect feeding habits, as related to herbivore-induced changes in plant primary metabolism. Where possible, we link these physiological changes with current understanding of their underlying molecular mechanisms. Finally, we discuss the potential fitness benefits that host plants receive from altering their primary metabolism in response to insect herbivory.Plants in nature are subject to attack by a wide variety of phytophagous insects. Nevertheless, the world is green, and most plants are resistant to most individual species of insect herbivores. To a large extent, this resistance is due to an array of toxic and deterrent small molecules and proteins that can prevent nonadapted insects from feeding. Although many plant defenses are produced constitutively, others are inducible (i.e. defense-related metabolites and proteins that are normally present at low levels become more abundant in response to insect feeding). Inducible defense systems, which allow more energy to be directed toward growth and reproduction in the absence of insect herbivory, represent a form of resource conservation. Well-studied examples of inducible plant defenses include the production of nicotine in tobacco (Nicotiana tabacum; Baldwin et al., 1998), protease inhibitors in tomato (Solanum lycopersicum; Ryan, 2000), benzoxazinoids in maize (Zea mays; Oikawa et al., 2004), and glucosinolates in Arabidopsis (Arabidopsis thaliana; Mewis et al., 2005). Additionally, herbivore-induced plant responses can include the production of physical defenses such as trichomes or thickened cell walls that can make insect feeding more difficult. Some plant defensive metabolites are highly abundant, suggesting that their biosynthesis can have a significant effect on overall plant metabolism. For instance, benzoxazinoids can constitute 1% to 2% of the total dry matter of some Poaceae (Zúñiga et al., 1983), and up to 6% of the nitrogen in herbivore-induced Nicotiana attenuata can be devoted to nicotine production (Baldwin et al., 1998).In addition to the herbivore-induced production of physical and chemical defenses, numerous changes in plant primary metabolism occur in response to insect herbivory. Among other observed effects, these can include either elevated or suppressed photosynthetic efficiency, remobilization of carbon and nitrogen resources, and altered plant growth rate. However, although the defensive value of induced toxins such as nicotine, terpenes, benzoxazinoids, and glucosinolates is clear, it is sometimes more difficult to elucidate the function of herbivore-induced changes in plant primary metabolism. Insects may also manipulate plant primary metabolism for their own benefit, making it challenging to determine whether the observed changes are actually a plant defensive response.Here, we describe commonly observed changes in plant primary metabolism, focusing on carbohydrates and nitrogen, and discuss their possible functions in plant defense against insect herbivory. There are large differences among published studies involving different plant-herbivore combinations, and no universal patterns in the herbivory-induced changes in plant primary metabolism. Therefore, we also discuss how the potential benefits can depend on the tissue that is being attacked, the extent of the tissue damage, and the type of insect herbivore that is involved in the interaction.  相似文献   

20.
Variation in plant secondary metabolite content can arise due to environmental and genetic variables. Because these metabolites are important in modifying a plant’s interaction with the environment, many studies have examined patterns of variation in plant secondary metabolites. Investigations of chemical defenses are often linked to questions about the efficacies of plant defenses and hypotheses on their evolution in different plant guilds. We performed a series of meta-analyses to examine the importance of environmental and genetic sources of variation in secondary metabolites as well as the antiherbivore properties of different classes of defense. We found both environmental and genetic variation affect secondary metabolite production, supporting continued study of the carbon-nutrient balance and growth-differentiation balance hypotheses. Defenses in woody plants are more affected by genetic variation, and herbaceous plant defenses are more influenced by environmental variation. Plant defenses in agricultural and natural systems show similar responses to manipulations, as do plants in laboratory, greenhouse, or field studies. What does such variation mean to herbivores? A comparison of biotic, physical, and chemical defenses revealed the most effective defensive strategy for a plant is biotic mutualisms with ants. Fast-growing plants are most often defended with qualitative defenses and slow-growing plants with quantitative defenses, as the plant apparency and resource availability hypotheses predict. However, we found the resource availability hypothesis provides the best explanation for the evolution of plant defenses, but the fact that there is considerable genetic and environmental variation in defenses indicates herbivores can affect plant chemistry in ecological and evolutionary time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号