首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从杭州石荠ling(Mosla hangchowensis)5个不同地方种群采集种子,在实验室萌发,幼苗移植以实验地,在营养生长末期时,研究了株高,冠幅,主茎长,最大分枝长,基茎粗,叶面积,一级分枝数,平均二级分枝数,主茎叶对数,根长和根幅等11个空间结构参数,分析不同种群的空利用策略和分化程度,结果发现,基本无基因交流的各地方种群产生了不同的适应方式,并在表型上有可见的差异,其中惠安种群以扩大冠幅占领较大的横向空间,种群分化程度最大,杭州种群以增加高度占领较大的纵向空间,分化程度次之,临海,天台和普陀种群分化程度较小,临海和天台种群水选下层种子萌发生长的植物个体比水选上层各形成植株个体大,但个体对空间的利用策略仍一致。  相似文献   

2.
Radiographic and histological studies of baboon (Papio hamadryas, P. anubis) and chimpanzee (Pan troglodytes) permanent tooth development have found that periods of molar crown mineralization overlap markedly in chimpanzees but are staggered in baboons. Here we test the hypothesis that these intertaxon differences in molar initiation are primarily due to the space available in the mandibles of each species for these teeth. This study includes radiographic, linear measurement, and three-dimensional (3D) coordinate landmark data taken from baboon (Papio anubis n=51) and great ape (Pan paniscus n=43, P. troglodytes n=60) mandibles and permanent molars across a broad developmental range for each taxon. Unexpectedly, 3D multivariate statistical shape analysis of the molar crypt, crown, and root data shows that all three species trajectories of molar row shape change are indistinguishable from each other. Qualitative analysis of these 3D data reveals subtle and inconclusive intergeneric differences in the space maintained between adjacent molars during growth. The space distal to each newly initiated molar is slightly greater in the baboon. Bivariate analyses comparing molar row and mandibular corpus proportions in Papio and Pan fail to show clear or consistent taxonomic differences in the ratio of space afforded developing molars in the alveolar bone. Thus, there is a poor correlation between mandibular proportion and both intermolar spacing and 3D molar development pattern. Contrary to earlier studies, these results suggest that pattern of molar crown initiation and temporal overlap of adjacent mineralizing crowns is not significantly different between Papio and Pan. This may be due in part to the inclusion here of not only 3D molar crown data but also 3D molar crypt data. This study strongly refutes the hypothesis that space available in the mandible directly underlies different times of permanent molar crown initiation between Papio and Pan.  相似文献   

3.
Abstract A recent article by Midgley and colleagues suggests that large trees give rise to inordinately high stand basal areas because they pack canopy space more efficiently than smaller trees. We argue that this phenomenon bears more relation to the fact that diameter increment is not necessarily accompanied by significant crown expansion during all stages of a tree's life. Using data from a canopy tree population in an old‐growth temperate forest, we found that crown area scaled as roughly the 3/5 power of trunk basal area. Rather than reflecting fixed scaling laws, we suggest that this pattern arises because of limited opportunities for crown expansion in dense stands. Old canopy trees in dense stands can thus accumulate large basal areas without occupying a commensurately large canopy area.  相似文献   

4.
On the basis of L-systems a mathematical model was designed to describe the growth of a dark coniferous tree. The software models a virtual timber stand composed of single trees and its further development. To eliminate branch crossing of growing trees, the rule forbidding shoot growth into the space already occupied was applied to the model. The model parameters were defined for two dark coniferous species of the southern Sikhote-Alin’ — Jezo spruce (Picea jezoensis) and Khingam fir (Abies nephrolepis). The model describes various modifications of tree crown under the influence of neighbouring trees, height uncertainty of crown starting point, variation of taper and shape of a trunk depending on plantation density, and recovery of normal tree growth after singling. Comparison of the modelled results and empirical observations show that the model succeeds in describing the growth both of single trees and of mixed plantations.  相似文献   

5.
树木视觉形态性状是城市绿地微景观美学质量的重要影响因素之一,树木视觉形态性状的变化与其周围邻体木的竞争作用息息相关,但邻体竞争对树木视觉性状的作用机制尚不明确。研究于2022年8-10月对北京市城市公园中常见的针叶树种白皮松、侧柏、油松、圆柏展开调查,从树冠形态、干冠协调、树干形态3个方面构建了9个树木视觉形态性状指标,采用3个不同的竞争指标分析邻体竞争对针叶树种视觉形态性状的影响。结果表明,针叶树的树冠形态对邻体竞争的响应比较敏感,竞争中的白皮松、侧柏、油松、圆柏偏冠指数与孤立木相比分别提高了16.95%、28.95%、22.76%、17.67%;树冠缺失率分别提高了3.92%、6.09%、4.87%、4.95%。与孤立木相比,部分针叶树种高径比、分枝角变异度在多侧竞争环境中显著提高,而树冠舒展度则显著降低。邻体竞争强度越大,针叶树树冠的偏移与缺失程度越大。当针叶树受到强烈的侧方竞争时,对象木树冠和树干的径向生长显著受阻,表现为树冠舒展度大幅度下降、高径比显著提高,使树冠向细高方向发展。当针叶树上方的生长空间被占据时,其轴向生长同样受到严重阻碍,树木的冠径比和高径比维持较稳定状态。总体而言,四种针叶树种在视觉形态上对竞争胁迫的响应具有一定差异性,其中油松最为敏感,圆柏次之。综上,在城市森林微景观中,邻体竞争会导致针叶树种的树冠及树形发生明显变化,这种变化主要受综合资源竞争的影响,与其周围潜在生长空间的大小及对称性有关。在城市森林景观营建时,建议将针叶树栽植在对称的竞争环境中,但是其邻体木不宜过高,通过四周邻体木的适度竞争,能够促进针叶树的轴向生长,同时降低树冠偏移或变形的风险,提高其视觉美学效果。  相似文献   

6.
7.
油松、侧柏林种内竞争特点的对比研究   总被引:1,自引:0,他引:1  
王希群  马履一 《生态科学》2006,25(6):481-484
植物竞争研究一直是种群生态学最活跃的研究领域之一,论文以林木个体相对胸径、相对树高、相对冠幅、相对冠长、相对冠面积、树冠体积、树冠伸展度、冠长率、圆满度、投影比、生长空间指标、生长空间竞争指数和简单竞争指数13个变量作为对比研究油松、侧柏林个体之间竞争关系的指数,采用这些指标的变异系数对其种内竞争的差异程度进行比较研究,并用这些变量作为评价指标将其竞争能力分为两类:种内竞争性强的树种和种内竞争性弱的树种。油松为种内竞争性强的树种,而侧柏为种内竞争性弱的树种,已有的研究结果已从生物量、根系特征、抗旱机理、耗水特性、分布及结构特点五个方面为这种划分提供了理论支持。  相似文献   

8.
In pure and mixed stands of Norway spruce ( Picea abies [L.] Karst.) and European beech ( Fagus sylvatica L.) we have analyzed crown allometry and growing space efficiency at the tree level and have scaled this from tree level to stand level production. Allometry is quantified by the ratio A between the relative growth rates of laterally and vertically oriented tree dimensions. Efficiency parameters, EOC for efficiency in space occupation, EEX for efficiency in space exploitation, and EBI for efficiency in biomass investment, were evaluated, based on quantity and quality of growing space and were measured using crown size and competition index. The evaluation reveals why pure stands of spruce are preferred by foresters, even though the natural vegetation would be dominated by beech. Spruce occupies its share of resources intensively by means of tightly packed pillar-like crowns, whereas beech seizes resources extensively by means of a multi-layered, veil-like canopy. With a given relative biomass increment, beech achieves a 57 % higher increment in crown projection area and a 127 % higher increment in height due to its particular capacity of lateral and vertical expansion. Beech trees are approximately 60 % more efficient in space occupation than spruce trees, however, on average, they are about 70 % less efficient in space exploitation. As a vertical fast growing tree, spruce is efficient in space exploitation under constant conditions, but far more susceptible to disturbances and less well equipped to overcome them when compared with beech. Beech is weaker in terms of space exploitation, while being superior in space occupation, where it encircles competitors and fills gaps after disturbances, which is a successful long-term strategy. A mixture of the two species reduces stand level production by 24 % in comparison to a pure spruce stand, however, when considering enhanced stabilization of the whole stand and risk distribution in the long term, the mixed stand may exceed the production level of pure spruce stands. EEX reflects a strong ontogenetic drift and competition effect that should be considered when scaling from tree to stand level production.  相似文献   

9.
通过标准地调查,对深圳市梧桐山毛棉杜鹃Rhododendron moulmainense风景林林分密度进行研究。结果显示,当上层乔木密度为250~350株·hm-2时,毛棉杜鹃拥有充足的生长空间,个体生长达到最优。在标准地内,毛棉杜鹃密度越低,长势越好。为保证毛棉杜鹃具有充足的生长空间,又兼顾生态景观林的景观连续性,避免出现较大的林窗,通过树冠系数法得到万花屏地区毛棉杜鹃最低密度437株·hm-2;小梧桐地区最低密度733株·hm-2。  相似文献   

10.
北京地区侧柏人工林密度效应   总被引:9,自引:2,他引:9  
密度是影响森林尤其是人工林生长的重要因素,林冠层是森林生态系统与其他系统进行能量和物质交换的重要场所,树木及树冠生长对林分密度的响应关系可以看作是生物对环境变化产生的适应性现象。林分密度效应是生态学和森林培育学的重要研究内容之一。以23块8种不同密度梯度的北京山区侧柏人工幼龄林林分为研究对象分析其树木生长及树冠生长对密度的响应关系,其中树冠指标使用了参照了美国林务局(USDA)的树冠调查指标。研究结果表明:(1)林分平均胸径、平均树高和平均冠幅生长均随密度增大而减小,林分密度大于3000株/hm2时各指标减小的趋势变缓,使用异速生长模型可以很好地拟合这种变化关系;(2)随密度增加,树冠水平方向和垂直方向生长均到显著地抑制作用,树冠外形表现出由饱满冠型向狭长冠型变化的适应性现象;(3)使用树冠二维、三维指标与密度进行相关性分析可知树冠长度、树冠率等指标与林分密度呈负相关关系,树冠圆满度及树冠生产效率与密度表现出极显著正相关关系;(4)采用枝解析的方法研究了树枝长度、材积的平均生长量、连年生长量与密度的关系,结果表明幼龄期各生长量差异不大;(5)在建立冠幅模型时考虑了自变量间的多重共线性问题,所建的胸径单自变量二次方模型能够很好地预测侧柏人工幼龄林冠幅生长过程,模型相关系数R2为0.961。  相似文献   

11.
Forest canopies and tree crown structures are of high ecological importance. Measuring canopies and crowns by direct inventory methods is time‐consuming and of limited accuracy. High‐resolution inventory tools, in particular terrestrial laser scanning (TLS), is able to overcome these limitations and obtain three‐dimensional (3D) structural information about the canopy with a very high level of detail. The main objective of this study was to introduce a novel method to analyze spatiotemporal dynamics in canopy occupancy at the individual tree and local neighborhood level using high‐resolution 3D TLS data. For the analyses, a voxel grid approach was applied. The tree crowns were modeled through the combination of two approaches: the encasement of all crown points with a 3D α‐shape, which was then converted into a voxel grid, and the direct voxelization of the crown points. We show that canopy occupancy at individual tree level can be quantified as the crown volume occupied only by the respective tree or shared with neighboring trees. At the local neighborhood level, our method enables the precise determination of the extent of canopy space filling, the identification of tree–tree interactions, and the analysis of complementary space use. Using multitemporal TLS data recordings, this method allows the precise detection and quantification of changes in canopy occupancy through time. The method is applicable to a wide range of investigations in forest ecology research, including the study of tree diversity effects on forest productivity or growing space analyses for optimal tree growth. Due to the high accuracy of this novel method, it facilitates the precise analyses even of highly plastic individual tree crowns and, thus, the realistic representation of forest canopies. Moreover, our voxel grid framework is flexible enough to allow for the inclusion of further biotic and abiotic variables relevant to complex analyses of forest canopy dynamics.  相似文献   

12.
黑松(Pinus thunbergii)在特定的沙质海岸环境中形成了与之相适应的灌化树形。由蛀食胁迫诱发的黑松补偿性响应是其自我保护和适应不良环境的一种重要机制,目前尚缺乏相关研究。该文通过比较蛀食前后植株补偿性生长特征的变化来阐明补偿性响应的机理及其在灌化过程中的作用。结果表明:(1) 蛀食胁迫后,当年和次年枝的数量明显增加,且对当年枝的影响大于次年枝,可见这种补偿响应具有持续性,但强度有减弱的趋势。同样,叶构件的补偿响应也具有持续性但强度差别不显著。(2) 当年枝和叶构件的补偿性生长与其在1年枝上的位置密切相关,蛀食后近顶端枝和叶长度分别为未蛀枝上同部位的1.75与1.43倍,而近底端补偿性生长不明显。(3) 在密度效应的影响下,蛀食枝的芽死亡率上升5.4倍,营养芽产量上升1.55倍,而生殖芽产量差异不显著,因此蛀食胁迫诱发的补偿性响应更倾向于投资营养生长。(4) 主枝遭蛀食胁迫停止生长后,分枝数增多,枝计盒维数增加25%。树冠计盒维数随枝条受害率的增加呈现“先增后减”的变化趋势。通过非线性回归分析表明,两者呈“后峰型”曲线函数关系。(5) 枝和叶构件的总生物量在两条件下差异不显著,属等量补偿性生长。本研究认为:灌化黑松响应蛀食胁迫的补偿性生长机理可用顶端优势去除理论解释,且具有持续效应,这种枝构型改变方式将最终导致黑松灌化形态的形成;同时,补偿性响应还包括芽命运和计盒维数的变化。因此,可将芽命运和计盒维数作为反映植物补偿性生长的指标。  相似文献   

13.
Summary Temperature effects on the root crown section, where most of the plant fluid translocation streams through a narrow space, were investigated. Cooled root crown section of tomato seedlings during daytime increased root weight; high temperatures enhanced shoot development. High and low temperatures day and night, on root crown, reduced root and shoot development. Wilting effects of shoots due to high temperature root environment, were delayed greatly by cooled root crown.The root crown section may, under certain temperature conditions, be the bottleneck of plant development, as it controls the up and down flow of water, nutrients, assimilated products, and hormones.  相似文献   

14.
Several lineages of herbivorous mammals have evolved hypsodont cheek teeth to increase the functional lifespan of their dentition. While the selective drivers of this trend and the developmental processes involved have been studied in greater detail, thus far no quantitative information is available on the relationship between additional investment into tooth growth and the resulting extension of the functional period of these teeth. To achieve this, we performed a detailed analysis of molar crown growth in known-age Soay sheep repeatedly injected with different fluorochromes. Our study revealed that in sheep molars especially the formation of the crown base portion is prolonged in comparison with other herbivorous artiodactyl species. Our results demonstrate that growth of the crown base accounted for more than half of the total crown formation time (CFT) of the anterior lobes of the first (approx. 220?days of total CFT of 300?days), second (approx. 260 of 460?days) and third (approx. 300 of at least 520?days) molars, and that the formation of this crown portion occurred largely after the teeth had already reached functional occlusion. By combining data on wear-related changes in crown morphology from the literature with the reconstructed additional investment into the crown base portion, it was possible to relate this additional investment to a prolongation of the functional periods of the molars ranging from 4?years in the M1 to 6?years in the M3. Our results allow to establish a quantitative link between an additional investment into molar crown growth of sheep and the extension of the functional period of these teeth. The reported findings enable an assessment of the adaptive value, in terms of increased longevity, of an additional investment into crown elongation in a mammalian herbivore.  相似文献   

15.
不同光环境下紫椴幼树树冠结构的可塑性响应   总被引:20,自引:1,他引:19  
从冠形、侧枝和叶片在树冠中的空间分布角度对天然更新紫椴幼树的树冠结构进行了论述,认为紫椴幼树树冠对光照条件的变化有显著的可塑性响应.强光通过抑制主干的生长促进了侧枝的分化,庇荫则通过抑制1级侧枝的生长促进了侧枝的再分枝.随着光照水平的降低,紫椴幼树的数量叶片密度显著降低,且叶片逐渐集中于冠上层.林冠下的紫椴幼树通过这种侧枝和叶片的分布格局,在形态上提高其对光的截获能力在适度庇荫环境中,紫椴幼树垂直生长采取演替先锋种的"避荫”对策,侧枝生长采取中等耐荫种的"掠光”对策;在弱光环境中,紫椴幼树则采取典型的忍耐适应行为.这种树冠结构的变化是提高紫椴幼树对光的截获能力的一种有益适应.  相似文献   

16.
BACKGROUND AND AIMS: Growth in trunk height in canopy openings is important for saplings. How saplings increase height growth in canopy openings may relate to crown architectural constraints. Responses of crown development to canopy openings in relation to trunk height growth were studied for saplings (0.2-2.5 m tall) of eight tropical submontane forest tree species in Indonesia. The results of this study were also compared with those of temperate trees in northern Japan. METHODS: The crown architecture differed among the eight tropical species, i.e. they had sparsely to highly developed branching structures. Crown allometry was compared among the eight species in each canopy condition (closed canopy or canopy openings), and between closed canopy and canopy openings within a species. A general linear regression model was used to analyse how each species increases height growth rate in canopy openings. Crown allometry and its plasticity were compared between tropical and temperate trees by a nested analysis of covariance. KEY RESULTS: Tropical submontane trees had responses similar to cool-temperate trees, showing an increase in height in canopy openings, i.e. taller saplings of sparsely branched species increase height growth rates by increasing the sapling leaf area. Cool-temperate trees have a wider crown projection area and a smaller leaf area per crown projection area to avoid self-shading within a crown compared with tropical submontane trees. Plasticity of the crown projection area is greater in cool-temperate trees than in tropical submontane trees, probably because of the difference in leaf longevity. CONCLUSIONS: This study concluded that interspecific variation in the responses of crown development to canopy openings in regard to increasing height related to the species' branching structure, and that different life-forms, such as evergreen and deciduous trees, had different crown allometry and plasticity.  相似文献   

17.
We assessed leaf-area density (LAD; m2 m−3) within the crown of Aucuba japonica (Cornaceae) growing under different light regimes and analyzed the components of crown architecture that most influenced variation in LAD. At a whole-crown level, extension-unit (EU) density (EUs/m3) had the greatest impact on LAD. The number of leaves per unit EU length and EU length had a wide range of impacts depending on the degree of crowding of foliage on the EU. Leaf size had a lesser impact on LAD. LAD was higher in the uppermost crown and declined towards the base. The non-uniformity of LAD among crown layers was much greater under high irradiance. Individuals under high irradiance achieved greater LAD by increased branching, well-marked EU dimorphism and a larger number of leaves per unit EU length; the reverse was true for the individuals under low irradiance. We identified two distinct modes of growth response to light regime. Under high irradiance, individuals responded by differential growth between the layers of crowns with the lower crown suppressed and growth in the upper crown increased. Conversely, shaded individuals did not respond by differential growth between crown layers.  相似文献   

18.
UMEKI  KIYOSHI 《Annals of botany》1997,79(6):631-641
The effect of crown asymmetry on the size–structure dynamicsof populations was evaluated using a spatial competition modelincorporating crown asymmetry. Computer simulations were carriedout with various combinations of density levels, spatial patterns,and degrees of asymmetry in competition to assess how they modifythe effect of crown asymmetry on size–structure dynamics. In the model, crown asymmetry is expressed by the crown-vector,or the vector linking the stem base and the centre of the projectedarea of the crown on the horizontal plane. Crown-vectors areassumed to develop in the manner by which crowns repel eachother. As crown-vectors develop, the positions of the crown-centresmove. Competition between individuals is expressed by a neighbourhoodmodel, in which individual growth is determined by the distancefrom, and size of, the neighbours' crown-centres. Generally, populations of individuals which developed asymmetriccrowns had larger survivorship, larger mean size, smaller coefficientsof variation and skewness, and a more regular spatial patternthan populations of individuals which developed symmetric crowns.The effect of crown symmetry is generally stronger in populationswith high density and a clumped spatial pattern. The effectof mortality caused by one-sided competition on size-structuredynamics was similar to that of crown asymmetry; mortality increasedmean size, reduced size hierarchy, and made the spatial patternmore regular. Because mortality was heavier in populations withoutcrown asymmetry, its effect on size-structure dynamics cancelledout, or overwhelmed, the effect of crown asymmetry in latergrowth stages. If crown asymmetry is associated with a reductionin growth, the effect of crown asymmetry is reduced. Nevertheless,the resultant population structure is different from that ofpopulations without crown asymmetry. Competition; crown asymmetry; morphological plasticity; neighbourhood interference model; size-structure dynamics  相似文献   

19.
基于异速生长理论的准噶尔盆地荒漠灌丛形态研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了揭示荒漠灌丛形态的发生发展机制并认识其在荒漠生态系统中的功能, 从形态和结构决定功能的原理出发, 对生长在准噶尔荒漠东南部的岛状灌丛进行了形态学调查。依据Malthusian方程微分形式, 根据异速生长理论, 建立了冠幅与株高生长、灌丛表面积与体积生长的数学关系式, 利用植被调查数据进行了验证, 并最终得出不同灌丛在不同株高时的情景示意图。结果表明: 1)将荒漠灌丛形态假设成半三轴椭球体是合理的; 2)虽然灌丛形态发展趋势可以是扁平、近半球和竖直3种类型, 但是形态建成后, 一般维持在扁平和近半球两种类型; 3) 18类荒漠灌丛的体积和表面积的数量关系具有一定的一致性, 可能与同处于相同环境条件下的水分利用效率相近有关。  相似文献   

20.
This study tests whether crown and stem development in Norway spruce could be described using a modified profile theory. 29 trees from three age-groups (25, 67, 86) with different treatments (unthinned, normally and intensively thinned) were destructively sampled. Crown ratio and crown length varied between age groups and treatments. Crown width was positively correlated with crown length, but branch length along the crown depended on tree age and growing space. Foliage mass density peaked at a relative crown height of 50–70% in middle-aged and mature stands, while young crowns were densest and widest at the base. Foliage mass was predictable from branch and stem cross-sectional area, provided the distance from the top was included. The ratio of foliage mass to branch cross-sectional area increased for 2–4 m down from the tip of the crown, then started to decrease. The relationship between cumulative foliage mass and stem cross-sectional area was non-linear along the stem in the upper crown, but the ratio of cumulative branch to stem cross-sectional area was linear. Trees in the mature and unthinned stands had more cross-sectional area in branches relative to stems than in the young and thinned stands. We conclude that the profile theory needs modification regarding (1) crown shape which varies with age and growing space, and (2) the ratio of foliage mass to branch area which varies along the stem. Both aspects emphasise the need to include impacts of disuse of sapwood pipes in models of crown and stem development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号