首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pancreatic islets secrete insulin in a pulsatile manner, and the individual islets are synchronized, producing in vivo oscillations. In this report, the ability of imposed glucose waveforms to synchronize a population of islets was investigated. A microfluidic system was used to deliver glucose waveforms to ~20 islets while fura 2 fluorescence was imaged. All islets were entrained to a sinusoidal waveform of glucose (11 mM median, 1 mM amplitude, and a 5-min period), producing synchronized oscillations of fura 2 fluorescence. During perfusion with constant 11 mM glucose, oscillations of fura 2 fluorescence were observed in individual islets, but the average signal was nonoscillatory. Spectral analysis and a synchronization index (λ) were used to measure the period of fura 2 fluorescence oscillations and evaluate synchronization of islets, respectively. During perfusion with glucose waveforms, spectral analysis revealed a dominant frequency at 5 min, and λ, which can range from 0 (unsynchronized) to 1 (perfect synchronization), was 0.78 ± 0.15. In contrast, during perfusion with constant 11 mM glucose, the main peak in the spectral analysis corresponded to a period of 5 min but was substantially smaller than during perfusion with oscillatory glucose, and the average λ was 0.52 ± 0.09, significantly lower than during perfusion with sinusoidal glucose. These results indicated that an oscillatory glucose level synchronized the activity of a heterogeneous islet population, serving as preliminary evidence that islets could be synchronized in vivo through oscillatory glucose levels produced by a liver-pancreas feedback loop.  相似文献   

2.
Rejection of islet allografts is generally explained by immunologic problems, due to both cellular and antibody mechanisms. But another great problem is in the isolation of intact and viable islets of Langerhans: it is necessary to use a good method of pancreas distention, to determine the optimal concentration of collagenase for digestion, to select an effective technique for purifying the islets. This study correlates the morphology of isolated pancreatic islets of rats and dogs with secretion of insulin. The islets are incubated in a perifusion system and are tested during four periods; the glucose concentrations of the perifusion fluid are: 5.5 mM during the initial 70 min. period, 16.5 mM during the second 60 min. period, 5.5 mM during the third 60 min. period and 16.5 during the fourth 50 min. period. This "double glucose stimulation" is a good test of islet viability. The intact, viable isolated islets showed a significant increase of insulin secretion during the two 16.5 mM glucose periods. Damaged islets with some little morphologic alterations after showed a good insulin release during the first glucose stimulation, but a very poor insulin response to glucose during the second stimulation period.  相似文献   

3.
The effect of various inhibitors of insulin secretion such as mannoheptulose (20 mM), atropine (1 mM), diphenylhydantoin (20 microng/ml), high concentration of Mg++ (5.3 mM) in the presence of 20 mM glucose (control) on insulin content and secretion from collagenase-isolated rat pancreatic islets was studied in vitro by cultivation of islets up to 5 or 9 days in glass Petri dishes without attachment. In a following short-term incubation for 60 min the glucose-induced insulin release without and with theophylline (5 mM) was investigated. Islets cultivated at 5 mM glucose and at 20 mM glucose with the inhibitors mannoheptulose or atropine lost the responsiveness to glucose and theophylline whereas such islets cultivated at 20 mM glucose alone or with diphenylhydantoin (DPH) or 5.3 mg Mg++ showed a stimulation of insulin secretion by glucose and theophylline. Compared, however, with freshly isolated islets all cultivated islets were restricted in their maximal glucose response and this defect was not evoked alone by quantitative changes in islet insulin content. Nevertheless, culture conditions which facilitate a net increase of insulin (content and release) during cultivation influenced also positively the glucose-induced insulin release without and with 5 mM theophylline in the following short-term experiments.  相似文献   

4.
The possibility of cryopreservation of islets of Langerhans by vitrification using a mixture of cryoprotectants was investigated and the results were compared with a more conventional freezing method using Me2SO as cryoprotectant. Isolated mouse islets were divided into three groups: (1) control islets cultured for 6 days, (2) islets which were cryopreserved by vitrification after 2 days of culture, and (3) islets frozen in 1.5 M Me2SO after 2 days of culture. After warming, islets from groups 2 and 3 were cultured for 4 days. The thus treated islets were investigated with respect to insulin secretion in the presence of 2.5 or 25 mM glucose, survival during postwarming culture, morphology, and capability to reverse streptozotocin-induced diabetes. The insulin secretion in islets from all groups could be stimulated by a factor 5 or more by an increase in the concentration of glucose from 2.5 to 25 mM. The secretion of insulin in the presence of 2.5 mM glucose was similar in all groups of islets. The secretion of insulin in the presence of 25 mM glucose was slightly but not significantly lower in the cryopreserved islets than in the control noncryopreserved islets. The survival of islets during postwarming culture was comparable after cryopreservation with both methods, and islets from both groups could lower serum glucose in streptozotocin diabetic mice. We conclude that islets cryopreserved by the vitrification method are functional in vitro and in vivo. This method is quick, simple, and cheap because the use of complicated freezing equipment is avoided.  相似文献   

5.
Porcine islet isolation, cellular composition and secretory response   总被引:1,自引:0,他引:1  
Porcine islets were isolated by infusion of a warm collagenase solution into whole pancreata followed by static incubation at 37 degrees C for 15 minutes. The pancreata were then chopped into small pieces and the free islets purified by filtration and centrifugation over a ficoll gradient. The insulin:amylase ratio of the islets compared to that in the intact pancreas was determined in 19 pancreata and indicates that the isolated islets were of a high degree of purity. The distribution of insulin, glucagon, somatostatin and pancreatic polypeptide containing cells in pig pancreas sections was compared with that in rat. Porcine islets were much smaller and less well defined than rat islets with infiltration of acinar material even into the islet core. The levels of insulin, glucagon and somatostatin in porcine pancreas and isolated porcine islets were measured using conventional radioimmunoassay techniques. The ratio of these hormones in the pancreas was 105.1:5.8:1 respectively, and in the islets 105.1:0.68:0.087 respectively. Fragmentation of the islets during the isolation may have led to the loss of glucagon and somatostatin-containing cells. Islets cultured overnight and tested with a range of glucose concentrations for one hour did not show a significant stimulation of insulin secretion in the presence of 8.3 mM or 16.7 mM glucose compared to that in 2.8 mM glucose. However freshly isolated islets challenged with 8.3 mM, 13.9 mM and 22.2 mM glucose showed a 1.8 fold, 2.0 fold and 2.3 fold response respectively, over that in 2.8 mM glucose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In the present study, we evaluated the autocrine modulatory effect of insulin on glucose metabolism and glucose-induced insulin secretion in islets isolated from hamsters with insulin resistance (IR) induced by administration of a sucrose-rich diet (SRD) during 5 weeks. We used an approach of two metabolic pathways (glucose oxidation and utilization) based on the measurement of 14CO2 and 3H2O production from D-[U-14C]-glucose and D-[5-(3)H]-glucose, respectively, in isolated islets incubated with 3.3 and 16.7 mM glucose alone, or with 5 or 15 mU/ml insulin, anti-insulin guinea-pig serum (1:500), 25 microM nifedipine, or 150 nM wortmannin. Insulin release was measured by radioimmunoassay in islets incubated with 3.3 or 16.7 mM glucose, with or without 75, 150, and 300 nM wortmannin. Results showed that the stimulatory effect of insulin upon 14CO2 and 3H2O production in control islets was not observed in SRD islets. Addition of anti-insulin serum, nifedipine or wortmannin to the medium with 16.7 mM glucose decreased 14CO2 and 3H2O production in control but not in SRD islets. Whereas wortmannin did not decrease insulin release induced by 16.7 mM glucose in SRD hamsters, it did in controls. We can conclude that the autocrine stimulatory effect of insulin upon glucose metabolism observed in normal islets is attenuated or even absent in islets from IR animals. Such decreased islet sensitivity to insulin did not prevent the compensatory secretion of insulin from maintaining glucose homeostasis, suggesting that, at least in this model, the islets can put forward alternative mechanisms to overcome such defect.  相似文献   

7.
Islet responses of two different Mus geni, the laboratory mouse (Mus musculus) and a phylogenetically more ancient species (Mus caroli), were measured and compared with the responses of islets from rats (Rattus norvegicus). A minimal and flat second-phase response to 20 mM glucose was evoked from M. musculus islets, whereas a large rising second-phase response characterized rat islets. M. caroli responses were intermediate between these two extremes; a modest rising second-phase response to 20 mM glucose was observed. Prior, brief stimulation of rat islets with 20 mM glucose results in an amplified insulin secretory response to a subsequent 20 mM glucose challenge. No such potentiation or priming was observed from M. musculus islets. In contrast, M. caroli islets displayed a modest twofold potentiated first-phase response upon subsequent restimulation with 20 mM glucose. Inositol phosphate (IP) accumulation in response to 20 mM glucose stimulation in [(3)H]inositol-prelabeled rat or mouse islets paralleled the insulin secretory responses. The divergence in 20 mM glucose-induced insulin release between these species may be attributable to differences in phospholipase C-mediated IP accumulation in islets.  相似文献   

8.
The acute and chronic effects of 20 mM glucose and 10 microM carbachol on beta-cell responses were investigated. Acute exposure of rat islets to 20 mM glucose increased glucose usage rates and resulted in a large insulin-secretory response during a dynamic perifusion. The secretory, but not the metabolic, effect of 20 mM glucose was abolished by simultaneous exposure to 100 microM diazoxide. Glucose (20 mM) significantly increased inositol phosphate (IP) accumulation, an index of phospholipase C (PLC) activation, from [(3)H]inositol-prelabeled islets. Diazoxide, but not atropine, abolished this effect as well. Unlike 20 mM glucose, 10 microM carbachol (in the presence of 5 mM glucose) increased IP accumulation but had no effect on insulin secretion or glucose (5 mM) metabolism. The IP effect was abolished by 50 microM atropine but not by diazoxide. Chronic 3-h exposure of islets to 20 mM glucose or 10 microM carbachol profoundly reduced both the insulin-secretory and PLC responses to a subsequent 20 mM glucose stimulus. The adverse effects of chronic glucose exposure were abolished by diazoxide but not by atropine. In contrast, the adverse effects of carbachol were abolished by atropine but not by diazoxide. Prior 3 h of exposure to 20 mM glucose or carbachol had no inhibitory effect on glucose metabolism. Significant secretory responses could be evoked from 20 mM glucose- or carbachol-pretreated islets by the inclusion of forskolin. These findings support the concept that an early event in the evolution of beta-cell desensitization is the impaired activation of islet PLC.  相似文献   

9.
The effect of glucose on the metabolism of phospholipids in pancreatic islets was studied with three radioactive phospholipid precursors, [32P]orthophosphate, [3H]myoinositol, and [3H]arachidonic acid, to determine the conditions necessary for studying the breakdown of prelabeled phospholipids. Islets were incubated in the presence of a radioactive precursor for 60 or 90 min and in the presence of either 3.3 or 16.7 mM glucose to prelabel phospholipids. To study the breakdown of prelabeled phospholipid, the unincorporated precursor was removed and the islets were reincubated for 15 or 20 min under conditions that either did or did not stimulate insulin release. Prelabeling in the presence of a noninsulinotropic concentration of glucose (3.3 mM) supported the incorporation of precursors into almost all islet phospholipids studied. Prelabeling in an insulinotropic concentration of glucose (16.7 mM) increased the incorporation of precursors into a number of phospholipids even more; and reincubation in 16.7 mM glucose caused a rapid loss of radioactivity from specific phospholipids (phosphatidylinositol and/or phosphatidylcholine, depending on the precursor). This breakdown was observed only when islets had been prelabeled in 16.7 mM glucose. The amount of radioactivity lost from phospholipid corresponded roughly to the additional amount incorporated during the prelabeling in the high concentration of glucose. Radioactivity in phospholipids in islets prelabeled in 3.3 mM glucose or in nonsecretagogue metabolic fuels, such as malate plus pyruvate, did not decrease when the islets were subsequently exposed to 16.7 mM glucose, nor did it decrease in 3.3 mM glucose when these islets had been prelabeled in 16.7 mM glucose. Glyceraldehyde, an insulin secretagogue, but not galactose or L-glucose which are not insulin secretagogues, stimulated phospholipid breakdown in islets that had been prelabeled in 16.7 mM glucose. Depriving islets of extracellular calcium, a condition that inhibits insulin release, inhibited phospholipid breakdown. The results suggest that pancreatic islets contain a glucose-responsive and a glucose-unresponsive phospholipid pool. The glucose-responsive pool becomes labeled and undergoes rapid turnover only under stimulatory conditions and may play a role in the stimulus-secretion coupling of insulin release.  相似文献   

10.
Vitrification of human islets of Langerhans   总被引:2,自引:0,他引:2  
Cryopreservation of human islets of Langerhans by vitrification was studied. Isolated islets were divided into four groups: (1) control islets which were cultured for 6 days, (2) islets which were vitrified after 2 days of culture, (3) control islets which were cultured for 10-13 days, and (4) islets which were vitrified after 6-9 days of culture. After warming, islets from groups 2 and 4 were cultured for 4 days. The thus treated islets were investigated with respect to insulin secretion in the presence of 2.5 or 25 mM glucose, capacity to survive during postwarming culture, and morphology. The insulin secretion in islets from all groups could be stimulated by an increase of the concentration of glucose from 2.5 to 25 mM. No significant differences were observed between the insulin secretions of the vitrified and control islets or between the islets vitrified after 2 and 6-9 days of culture. It is concluded that human islets of Langerhans cryopreserved by vitrification are functional in vitro.  相似文献   

11.
In pancreatic islets of adult (three month) and old (24 month) rats the effect of glucose on glucose oxidation, pyridine nucleotides, glutathione and insulin secretion was studied. DNA content was similar in both groups of animals; however, islets of old rats exhibited 30% less insulin content. While glucose-induced (16.7 mM) insulin secretion in islets of old rats was approximately 50% less than in islets of adults, no significant difference was observed in the insulin releasing effect of theophylline (1 mM). Although islet production of 14CO2 in the presence of 16.7 mM glucose increased equally in both groups, elevation of glucose failed to increase the percentage of total glucose oxidation via the pentose phosphate shunt in islets of old rats. Elevation of glucose increased the NADPH/NADP and the NADH/NAD ratio in both groups of islets in a similar manner. The effect of glucose on the GSH/GSSG ratio revealed a dose-related increase in the islets of adult rats, whereas islets of old rats did not respond to elevation of glucose. Our data seem to indicate that the lower secretory response of islets of old rats is related to the failure of glucose to increase the GSH/GSSG ratio. In contrast the insulin release induced by theophylline does not appear to depend on islet thiols.  相似文献   

12.
The incorporation of glucose into glycogen was determined in pancreatic islets isolated from normal rats and incubated with glucose (5 or 20 mM) and compounds known to affect glycogen metabolism in other tissues. Incubation of pancreatic islets with glucose (20 mM) induced a marked increase in radioactive glycogen. Exposure to epinephrine in the presence of glucose (20 mM) slightly increased incorporation of glucose into glycogen. In contrast the incorporation of glucose into glycogen was not affected when isolated islets were exposed to glucagon or insulin, whereas anti-insulin serum in the incubation medium decreased radioactive glycogen formation.  相似文献   

13.
Objective: The metabolism of arachidonic acid (AA) has been shown to be altered in severe insulin resistance that is present in obese (fa/fa) Zucker rats. We examined the effects and mechanism of action of AA on basal and glucose‐stimulated insulin secretion in pancreatic islets isolated from obese (fa/fa) Zucker rats and their homozygous lean (Fa/Fa) littermates. Research Methods and Procedures: Islets were isolated from 10‐ to 12‐week‐old rats and incubated for 45 minutes in glucose concentrations ranging from 3.3 to 16.7 mM with or without inhibitors of the cyclooxygenase or lipoxygenase pathways. Medium insulin concentrations were measured by radioimmunoassay, and islet production of the 12‐lipoxygenase metabolite, 12‐hydroxyeicosatetraenoic acid (12‐HETE), was measured by enzyme immunoassay. Results: In islets from lean animals, AA stimulated insulin secretion at submaximally stimulatory glucose levels (< 11.1 mM) but not at 16.7 mM glucose. In contrast, in islets derived from obese rats, AA potentiated insulin secretion at all glucose concentrations. AA‐induced insulin secretion was augmented in islets from obese compared with lean rats at high concentrations of AA in the presence of 3.3 mM glucose. Furthermore, the inhibitor of 12‐lipoxygenase, esculetin (0.5 μM), inhibited AA‐stimulated insulin secretion in islets from obese but not lean rats. Finally, the islet production of the 12‐HETE was markedly enhanced in islets from obese rats, both in response to 16.7 mM glucose and to AA. Discussion: The insulin secretory response to AA is augmented in islets from obese Zucker rats by a mechanism related to enhanced activity of the 12‐lipoxygenase pathway. Therefore, augmented action of AA may be a mechanism underlying the adaptation of insulin secretion to the increased demand caused by insulin resistance in these animals.  相似文献   

14.
The expression of glucagon-like peptide-1 (GLP-1) receptor and the effects of GLP-1-(7-36) amide (t-GLP-1) on glucose metabolism and insulin release by pancreatic islets during rat development were studied. GLP-1 receptor mRNA was found in significant amounts in pancreatic islets from all age groups studied, GLP-1 receptor expression being maximal when pancreatic islets were incubated at physiological glucose concentration (5.5 mM), but decreasing significantly when incubated with either 1.67 or 16.7 mM glucose. Glucose utilization and oxidation by pancreatic islets from fetal and adult rats rose as a function of glucose concentration, always being higher in fetal than in adult islets. The addition of t-GLP-1 to the incubation medium did not modify glucose metabolism but gastric inhibitory polypeptide and glucagon significantly increased glucose utilization by fetal and adult pancreatic islets at 16.7 mM glucose. At this concentration, glucose produced a significant increase in insulin release by the pancreatic islets from 10-day-old and 20-day-old suckling rats and adult rats, whereas those from fetuses showed only a significant increase when glucose was raised from 1.67 to 5.5 mM. t-GLP-1 elicited an increase in insulin release by pancreatic islets from all the experimental groups when the higher glucose concentrations were used. Our findings indicate that GLP-1 receptors and the effect of t-GLP-1 on insulin release are already present in the fetus, and they therefore exclude the possibility that alterations in the action of t-GLP-1 are responsible for the unresponsiveness of pancreatic beta cells to glucose in the fetus, but stimulation of t-GLP-1 release by food ingestion in newborns may partially confer glucose competence on beta cells.  相似文献   

15.
We evaluated the possible autocrine modulatory effect of insulin on glucose metabolism and glucose-induced insulin secretion in islets isolated from normal hamsters. We measured 14CO2 and 3H2O production from d-[U-14C]glucose and d-[5-3H]glucose, respectively, in islets incubated with 0.6, 3.3, 8.3, and 16.7 mM glucose alone or with 5 or 15 mU/ml insulin, anti-insulin guinea pig serum (1:500), 25 microM nifedipine, or 150 nM wortmannin. Insulin release was measured (radioimmunoassay) in islets incubated with 3.3 or 16.7 mM glucose with or without 75, 150, and 300 nM wortmannin. Insulin significantly enhanced 14CO2 and 3H2O production with 3.3 mM glucose but not with 0.6, 8.3, or 16.7 mM glucose. Addition of anti-insulin serum to the medium with 8.3 and 16.7 mM glucose decreased 14CO2 and 3H2O production significantly. A similar decrease was obtained in islets incubated with 8.3 and 16.7 mM glucose and wortmannin or nifedipine. This latter effect was reversed by adding 15 mU/ml insulin to the medium. Glucose metabolism was almost abolished when islets were incubated in a Ca2+-deprived medium, but this effect was not reversed by insulin. No changes were found in 14CO2 and 3H2O production by islets incubated with 3.3 mM glucose and anti-insulin serum, wortmannin, or nifedipine in the media. Addition of wortmannin significantly decreased insulin release induced by 16.7 mM glucose in a dose-dependent manner. Our results suggest that insulin exerts a physiological autocrine stimulatory effect on glucose metabolism in intact islets as well as on glucose-induced insulin release. Such an effect, however, depends on the glucose concentration in the incubation medium.  相似文献   

16.
1. When pancreatic islets are preincubated for 20h in the presence of glucose (83.3mM) and thereafter transferred to a glucose-free medium, theophylline (1.4mM) provokes a dramatic stimulation of insulin release. This phenomenon does not occur when the islets are preincubated for either 20h at low glucose concentration (5.6mM) or only 30 min at the high glucose concentration (83.3mM). 2. The insulinotropic action of theophylline cannot be attributed to contamination of the islets with exogenous glucose and is not suppressed by mannoheptulose. 3. The secretory response to theophylline is an immediate phenomenon, but disappears after 60min of exposure to the drug. 4. The release of insulin evoked by theophylline is abolished in calcium-depleted media containing EGTA. Theophylline enhances the net uptake of 45Ca by the islets. 5. Glycogen accumulates in the islets during the preincubation period, as judged by both ultrastructural and biochemical criteria. Theophylline significantly increases the rate of glycogenolysis during the final incubation in the glucose-free medium. 6. The theophylline-induced increase in glycogenolysis coincides with a higher rate of both lactate output and oxidation of endogenous 14C-labelled substrates. 7. These data suggest that stimulation of glycolysis from endogenous stores of glycogen is sufficient to provoke insulin release even in glucose-deprived islets, as if the binding of extracellular glucose to hypothetical plasma-membrane glucoreceptors is not an essential feature of the stimulus-secretion coupling process.  相似文献   

17.
Hexose metabolism in pancreatic islets. Inhibition of hexokinase.   总被引:4,自引:0,他引:4       下载免费PDF全文
In islet homogenates, hexokinase-like activity (Km 0.05 mM; Vmax. 1.5 pmol/min per islet) accounts for the major fraction of glucose phosphorylation. Yet the rate of glycolysis in intact islets incubated at low glucose concentrations (e.g. 1.7 mM) sufficient to saturate hexokinase only represents a minor fraction of the glycolytic rate observed at higher glucose concentrations. This apparent discrepancy between enzymic and metabolic data may be attributable, in part at least, to inhibition of hexokinase in intact islets. Hexokinase, which is present in both islet and purified B-cell homogenates, is indeed inhibited by glucose 6-phosphate (Ki 0.13 mM) and glucose 1,6-bisphosphate (Ki approx. 0.2 mM), but not by fructose 2,6-bisphosphate. In intact islets, the steady-state content of glucose 6-phosphate (0.26-0.79 pmol/islet) and glucose 1,6-bisphosphate (5-48 fmol/islet) increases, in a biphasic manner, at increasing concentrations of extracellular glucose (up to 27.8 mM). From these measurements and the intracellular space of the islets, it was estimated that the rate of glucose phosphorylation as catalysed by hexokinase represents, in intact islets, no more than 12-24% of its value in islet homogenates.  相似文献   

18.
The impact of modest but prolonged (3 h) exposure to high physiological glucose concentrations and hyperkalemia on the insulin secretory and phospholipase C (PLC) responses of rat pancreatic islets was determined. In acute studies, glucose (5-20 mM) caused a dose-dependent increase in secretion with maximal release rates 25-fold above basal secretion. When measured after 3 h of exposure to 5-10 mM glucose, subsequent stimulation of islets with 10-20 mM glucose during a dynamic perifusion resulted in dose-dependent decrements in secretion and PLC activation. Acute hyperkalemia (15-30 mM) stimulated calcium-dependent increases in both insulin secretion and PLC activation; however, prolonged hyperkalemia resulted in a biochemical and secretory lesion similar to that induced by sustained modest hyperglycemia. Glucose- (8 mM) desensitized islets retained significant sensitivity to stimulation by either carbachol or glucagon-like peptide-1. These findings emphasize the vulnerability of the beta-cell to even moderate sustained hyperglycemia and provide a biochemical rationale for achieving tight glucose control in diabetic patients. They also suggest that PLC activation plays a critically important role in the physiological regulation of glucose-induced secretion and in the desensitization of release that follows chronic hyperglycemia or hyperkalemia.  相似文献   

19.
We have studied acute effects of the PPARgamma agonist pioglitazone in vitro on human islets from both non-diabetic and type 2 diabetic subjects. In 5 mM glucose, pioglitazone caused a transient increase in insulin secretion in non-diabetic, but not diabetic, islets. Continuous presence of the drug suppressed insulin release in both non-diabetic and diabetic islets. In islets from non-diabetic subjects, both high glucose and tolbutamide-stimulated insulin secretion was inhibited by pioglitazone. When islets were continuously perifused with 5 mM glucose, short-term pretreatment with pioglitazone caused approximately 2-fold increase in insulin secretion after drug withdrawal. Pioglitazone pretreatment of diabetic islets restored their glucose sensitivity. Examination of cytosolic free Ca(2+) concentration ([Ca(2+)](i)) in non-diabetic islets revealed slight Ca(2+) transient by pioglitazone at 3 mM glucose with no significant changes at high glucose. Our data suggest that short-term pretreatment with pioglitazone primes both healthy and diabetic human islets for enhanced glucose-sensitive insulin secretion.  相似文献   

20.
Islets of Langerhans, isolated from normal or 19-day pregnant rats, were cultured for 20 h at 37 degrees C in tissue culture medium 199. When islets were cultured in medium containing low glucose (5.5 mM), the higher adenylate cyclase activity and insulin secretory responses characteristic of islets from pregnant rats were maintained during the test period of 29 h. Islets from normal and pregnant rats were also cultured for 20 h in medium containing a very high glucose concentration (83.3 mM) in order to load the B cells with glycogen. It was found, after glycogen loading, that, while adenylate cyclase activity increased to a greater extent in islets from pregnant rats than controls, this activity was not increased in proportion to the striking changes in insulin release rate observed in pregnant rat islets. The results show that the difference in insulin secretory response between islets from normal and pregnant rats may be preserved when the islets are cultured for 20 h, and that these differences are enhanced for a variety of reasons after culture of islets in 83.3 mM glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号